
Useful Derivations for i-Vector Based Approach

to Data Clustering in Speech Recognition

Yu Zhang

December 16, 2011

Contents

1 Background 2
1.1 Traditional maximum likelihood eigen-decomposition 2
1.2 What’s new in Kenny’s paper? 2

2 The i-vector based approach to data clustering 3
2.1 Data model . 3
2.2 Frontend i-vector extraction . 3

2.2.1 The i-vector solution . 3
2.2.2 Smoothed data model . 4
2.2.3 Solving i-vector . 5

2.3 Hyperparameter estimation . 6
2.3.1 Updating T . 7
2.3.2 Updating R . 7
2.3.3 Summarizing the EM algorithm 8

3 Implementation 9
3.1 Training T and R . 9
3.2 Extracting ŵ(i) . 9
3.3 Computational complexity . 9

4 Clustering of i-vectors using LBG algorithm 10

A The Matrix Codebook for this memo 11
A.1 Trace . 11
A.2 Variance of quadratic form . 11
A.3 Others . 12

B From a graphic model view 12
B.1 Probabilistic PCA . 12

B.1.1 Maximum likelihood PCA 13

1

1 Background

1.1 Traditional maximum likelihood eigen-decomposition

Let M(s) denote the mean supervector for a speaker s formulating as:

M(s) = M0 + Tw, (1)

and the likelihood function written as:∏
s

max
w

PHMM(Ys|M0 + Tw,R). (2)

The optimization proceeds by iterating the following two steps:

1. For each training speaker s, use the current estimates of T and R to find
the w which maximizes the HMM likelihood given the speaker’s training
data Ys:

w(s) = arg max
w

PHMM(Ys|M0 + Tw,R) (3)

2. Update T and R by maximizing:∏
s

PHMM(Ys|M0 + Tw(s),R) (4)

1.2 What’s new in Kenny’s paper?

In Kenny’s paper [3], they treat w(i) as a random vector with a standard normal
distribution. So the estimation of T and R becomes to maximize the marginal
likelihood function∏

s

∫
w

P (Ys|M0 + Tw,R)N (w|0, I)dw, (5)

where the product extends over all speakers in the training set.
Calculating the posterior distribution of w(i) in the E-step rather than the

maximum likelihood estimate is the key to avoiding the degeneracy problem
that arises when Eq. (2) is used to estimate the eigenvoices in situations where
speaker-dependent training is not feasible (e.g., when training data is sparse)
or the number of eigenvoices is large compared with the number of training
speakers.

The algorithm can be briefly break-down into the following steps:

1. For each training speaker s, use the current alignment of the speaker’s
training data and the current estimates T andR to carry out MAP speaker
adaptation. Use the speaker adapted model to realign the speaker’s train-
ing data.

2. The E-step: For each speaker s, calculate the posterior distribution of
w(i) using the current alignment of the speaker’s training data, the current
estimates of T and R and the prior N (w|0, I).

3. The M-step: Update T and R by a linear regression in which the w(i)’s
play the role of the explanatory variables.

2

2 The i-vector based approach to data cluster-
ing

We are considering in this memo to use i-vector based approach for more generic
data clustering problems in speech recognition. Possible applications include
training data clustering for multiple acoustic model training [7] and acoustic
sniffing in IVN-based training [5]. So hereafter, we will change the subscript
s representing the speaker to subscript i representing each individual acoustic
unit that to be clustered. The granularity of the acoustic units can be one single
utterance, several utterances (e.g., one conversational side in Switchboard), or
even more utterances from a pre-defined source (speaker, environment, channel,
etc.)

2.1 Data model

Suppose we are given a set of training data denoted as Y = {Y i|i = 1, 2, . . . , I},
where Y i = (yi

1,y
i
2, . . . ,y

i
Ti

) is a sequence of D-dimensional feature vectors
extracted from the i-th acoustic unit (e.g., utterance). From Y, a Gaussian
Mixture Model (GMM) can be trained using a Maximum Likelihood (ML)
criterion to serve as a Universal Background Model (UBM). Let’s use Ω =
{ck,mk,Rk|k = 1, . . . ,K} to denote the set of UBM-GMM parameters where
ck’s are mixture component weights, mk and Rk are D-dimensional mean and
D ×D diagonal covariance matrix for the kth mixture component.

Given the data model Ω, the probability of each acoustic unit Y i can be
written as:

p(Y i|Ω) =

Ti∏
t=1

K∑
k=1

ckN (yi
t;mk,Rk). (6)

And we denote Ω(0) hereafter the initial model parameters of the UBM.

2.2 Frontend i-vector extraction

2.2.1 The i-vector solution

Let M0 denote the (D ·K)-dimensional supervector by concatenating the mk’s.
Given an utterance Y i, let’s use another (D · K)-dimensional random super-
vector M(i) to characterize it independent of its linguistic content. In i-vector
based approach, M(i) is correlated with M0 as:

M(i) = M0 + Tw(i), (7)

where T is a fixed but unknown (D · K) × F rectangular matrix of low rank
(i.e., F � (D ·K)), and w(i) is an F -dimensional random vector having a prior
distribution of N (·; 0, I). A graphical model representation is shown in Fig. 1.
In [2], T is called the total variability matrix and w(i) the i-vector. They are
also comparable with the loading matrix and factors in factor analysis.

3

Figure 1: A graphical model representation of i-vector approach.

Given Y i, M(i), and Rk’s, the i-vector is the MAP solution of the following
problem:

ŵ(i) = argmax
w(i)

p(w(i)|Y i)

= argmax
w(i)

p(Y i|w(i))p(w(i)),
(8)

where

p(Y i|w(i)) =

Ti∏
t=1

K∑
k=1

ckN (yi
t;Mk(i),Rk), (9)

in which Mk(i) is the k-th D-dimensional subvector of M(i).

2.2.2 Smoothed data model

Eq. (9) is intractable because of the summation term. So Viterbi approximation
was imposed in [3] so that

p(Y i|w(i)) '
Ti∏
t=1

max
k
N (yi

t;Mk(i),Rk). (10)

One can also define a “smoothed” version of p(Y i|w(i)):

p(Y i|w(i)) '
Ti∏
t=1

K∏
k=1

N (yi
t;Mk(i),Rk)p(k|y

i
t,Ω

(0)), (11)

where

p(k|yi
t,Ω

(0)) =
ckN (yi

t;mk,R
(0)
k)∑K

l=1 clN (yi
t;ml,R

(0)
l)

(12)

is the Baum-Welch occupancy probability of the kth component given yi
t. Note

that the production terms in Eq. (11) are not strictly probability densities
because they do not integrate to 1. Using Eq. (11) will lead to the same i-
vector solution as in [2], although in that paper, the form of p(Y i|w(i)) was
never explicitly given.

2.2.3 Solving i-vector

Given the smoothed data model in Eq. (11), the closed-form solution of the
problem in Eq. (8) gives the i-vector extraction formula as follows:

ŵ(i) = l−1(i)T>R−1Γy(i), (13)

where
l(i) = I + T>Γ(i)R−1T , (14)

4

R is the (D · K) × (D · K) block-diagonal matrix with Rk as its kth block
component, Γ(i) is a (D ·K)× (D ·K) block-diagonal matrix with γk(i)ID×D
as its kth block component; Γy(i) is a (D · K)-dimensional supervector with
Γy,k(i) as its kth D-dimensional subvector. The statistics γk(i) and Γy,k(i) are
calculated as follows:

γk(i) =

Ti∑
t=1

p(k|yi
t,Ω

(0)),

Γy,k(i) =

Ti∑
t=1

p(k|yi
t,Ω

(0))(yi
t −mk).

(15)

Proof: First,

log p(Y i|w(i)) =

Ti∑
t=1

K∑
k=1

p(k|yi
t,Ω

(0)) logN (yi
t;Mk(i),Rk)

=

Ti∑
t=1

K∑
k=1

p(k|yi
t,Ω

(0))
[

log
1

(2π)D/2|Rk|1/2

−1

2
(yi

t −mk − Tkw(i))>R−1k (yi
t −mk − Tkw(i))

]
=

Ti∑
t=1

K∑
k=1

p(k|yi
t,Ω

(0))
[

log
1

(2π)D/2|Rk|1/2
− 1

2
(yi

t −mk)>R−1k (yi
t −mk)

+w>(i)T>k R
−1
k (yi

t −mk)− 1

2
w>(i)T>k R

−1
k Tkw(i)

]
.

(16)
Only the last two terms are related with w(i), and we can define:

H(i) =

Ti∑
t=1

K∑
k=1

p(k|yi
t,Ω

(0))
[
w>(i)T>k R

−1
k (yi

t −mk)− 1

2
w>(i)T>k R

−1
k Tkw(i)

]
= w>(i)TR−1Γy(i)− 1

2
w>(i)T>Γ(i)R−1Tw(i).

(17)
So

p(w(i)|Y i) ∝ p(Y i|w(i))p(w(i))

∝ exp
(
w>(i)TR−1Γy(i)− 1

2
w>(i)T>Γ(i)R−1Tw(i)

)
· exp

(
− 1

2
w>(i)w(i)

)
= exp

(
w>(i)TR−1Γy(i)− 1

2
w>(i)[T>Γ(i)R−1T + I]w(i)

)
= exp

(
w>(i)TR−1Γy(i)− 1

2
w>(i)l(i)w(i)

)
∝ exp

(
− 1

2

(
w(i)− l−1(i)T>R−1Γy(i)

)>
l(i)
(
w(i)− l−1(i)T>R−1Γy(i)

))
.

(18)
Therefore, the “posterior” distribution ofw(i) is Gaussian of mean l−1(i)T>R−1Γy(i)
and covariance l−1(i).

�

5

2.3 Hyperparameter estimation

Given the training data Y, the hyperparameters T and R can be estimated by
maximizing the following log-likelihood function:

F(T ,R) = log

I∏
i=1

∫
pT ,R(Y i,w(i))dw(i)

=

I∑
i=1

log

∫
pT ,R(Y i,w(i))dw(i)

=

I∑
i=1

log

∫
pT ,R(Y i,w(i))

pT (0),R(0)(Y i,w(i))
pT (0),R(0)(Y i,w(i))dw(i)

=

I∑
i=1

log

∫
pT ,R(Y i,w(i))

pT (0),R(0)(Y i,w(i))
pT (0),R(0)(w(i)|Y i)dw(i) + C1,

(19)

where T (0) and R(0) are hyperparameters from last iteration, C1 is a constant
independent of T and R (we will use Cj ’s hereafter for those constants). By
Jensen’s inequality, we have:

F(T ,R) ≥
I∑

i=1

∫
log

(
pT ,R(Y i,w(i))

pT (0),R(0)(Y i,w(i))

)
pT (0),R(0)(w(i)|Y i)dw(i)

=

I∑
i=1

∫
log pT ,R(Y i,w(i))pT (0),R(0)(w(i)|Y i)dw(i) + C2

=

I∑
i=1

∫
log pT ,R(Y i|w(i))pT (0),R(0)(w(i)|Y i)dw(i) + C3.

(20)

So an auxiliary function A can be built as:

A(T ,R) =

I∑
i=1

∫
log pT ,R(Y i|w(i))pT (0),R(0)(w(i)|Y i)dw(i)

=

I∑
i=1

E
(

log pT ,R(Y i|w(i))
) (21)

and the log likelihood function is

logF(T ,R) =
∑
i

G(i)− 1

2
|l(i)|+ 1

2
E[w(i)>]T>R−1Γy(i) (22)

6

2.3.1 Updating T

Referring to Eqs (16) and (17), for updating T , only the H function is involved.
So given the properties in Eq. (48), we have

A =
∑
i

E[w>(i)T>R−1Γy(i)− 1

2
w>(i)T>Γ(i)R−1Tw(i)] + C4

=
∑
i

E[w>(i)]T>R−1Γy(i)− 1

2
tr(T>Γ(i)R−1TE[w(i)w>(i)]) + C4

=
∑
i

tr

(
R−1

(
Γy(i)E[w>(i)]− 1

2
Γ(i)TE[w(i)w>(i)]

)
T>
)

+ C4,

(23)
and

∂A
∂T

=
∑
i

R−1
(
Γy(i)E[w>(i)]− Γ(i)TE[w(i)w>(i)]

)
. (24)

Setting Eq. (24) to 0, and taking use of the diagonal structure of Γ(i), T can
be solved line-by-line according to:

Tm
∑
i

Γm(i)E[w(i)w>(i)] =
∑
i

Γm
y (i)E[w>(i)], (25)

in which Tm, Γm and Γm
y are the mth row of T , Γ and Γy, respectively.

2.3.2 Updating R

Go back to Eq. (16) and set

G(i) =

Ti∑
t=1

K∑
k=1

p(k|yi
t,Ω

(0))
[

log
1

(2π)D/2|Rk|1/2
− 1

2
(yi

t −mk)>R−1k (yi
t −mk)

]
=

1

2

K∑
k=1

γk(i) log |R−1k | − tr(R−1k Γyy>,k(i)) + C5,

(26)
in which

Γyy>,k(i) =

Ti∑
t=1

p(k|yi
t,Ω

(0))(yi
t −mk)(yi

t −mk)>. (27)

It is not difficult to see that:

A =
∑
i

G(i) + E[H(i)]. (28)

Because

∂G(i)

∂R−1
=

1

2

K∑
k=1

γk(i)R− Γyy>,k(i), (29)

7

and

∂E[H(i)]

∂R−1
=

∂tr
(
R−1

(
Γy(i)E[w>(i)]− 1

2Γ(i)TE[w(i)w>(i)]
)
T>
)

∂R−1
(30)

Note that Eq. (25)

∑
i

∂E[H(i)]

∂R−1
=

∂tr
(∑

iR
−1
(
Γy(i)E[w>(i)]− 1

2Γ(i)TE[w(i)w>(i)]
)
T>
)

∂R−1

=
1

2

∑
i

(
Γy(i)E[w>(i)]T> + TE[w(i)]Γy(i)>

)
(31)

Setting
∂A
∂R−1

to 0, we have

Rk =
1∑

i γk(i)

(∑
i

Γyy>,k(i)−Mc

)
(32)

where Mk denotes the kth diagonal block of the matrix

1

2

∑
i

(
Γy(i)E[w>(i)]T> + TE[w(i)]Γy(i)>

)
. (33)

2.3.3 Summarizing the EM algorithm

• E-Step:

E[w(i)] = l−1(i)T>R−1Γy(i)

E[w(i)w>(i)] = E[w(i)]E[w>(i)] + l−1(i)
(34)

• M-Step:

Tm
∑
i

Γm(i)E[w(i)w>(i)] =
∑
i

Γm
y (i)E[w>(i)]

Rk =
1∑

i γk(i)

(∑
i

Γyy>,k(i)−Mk

)
(35)

3 Implementation

3.1 Training T and R

1. Train a GMM-UBM using all the training data.

2. Initialize R by borrowing Rk’s from the UBM, and T randomly as:

Tm,f ∈ [−αRm,m, αRm,m], ∀m = 1, . . . , DK; f = 1, . . . , F, (36)

where Tm,f is the mth line and f th column of T , which is similar for
Rm,m; α is typically set to 0.1.

8

3. For each acoustic unit i, extract the Baum-Welch statistics γk(i), Γy,k(i)
and Γyy>,k(i) using the UBM as in Eqs. (15) and (27).

4. The E-Step: Calculate the posterior expectation E[w(i)] and E[w(i)w>(i)]
using the statistics and the current estimation of T and R with Eq. (34).

5. Repeat Steps 3 and 4 for all i’s. Accumulate necessary statistics for solving
Eq. (35).

6. The M-Step: Updating T and R using Eq. (35).

7. If training converges, stop; otherwise go back to Step 4.

3.2 Extracting ŵ(i)

Extracting ŵ(i) is straightforward by using the above Steps 3 and 4 and setting:

ŵ(i) = E[w(i)]. (37)

The procedure is the same for both training and testing acoustic units.

3.3 Computational complexity

In i-vector extraction, the most computational cost is the calculation of l(i) in
Eq. (14). The right-hand-side of the equation can be implemented step-by-step
as:

R−1 → Γ(i)R−1 → T>Γ(i)R−1 → T>Γ(i)R−1T , (38)

so the complexity is O(I ×DK × F × F). In our implementation, the property
that Γ(i) is a block diagonal matrix can be used to make the computation more
efficient:

1. Compute all the K block matrices of T>R−1T :

Hk = T>RkT ∀k = 1, . . . ,K. (39)

2. For each acoustic unit i,

l(i) =
∑
k

γk(i)Hk. (40)

By doing so, the complexity of evaluating Eq. (14) is dominated by O(I ×K ×
F × F +DK × F × F).

9

4 Clustering of i-vectors using LBG algorithm

As described above, given the training corpus, an i-vector can be extracted from
each acoustic unit. Given the training set i-vectors, we use a hierarchical divisive
clustering algorithm, namely LBG algorithm [4], to cluster them into multiple
clusters. To measure the similarity between two i-vectors ŵ(i) and ŵ(j), the
both Euclidean distance and cosine similarity measure can be used.

It is quite easy to use Euclidean distance in clustering. However when cosine
similarity is used, the calculation of the clustering centroid needs to be reviewed.
Given the cosine similarity defined as:

sim(ŵ(i), ŵ(j)) =
ŵ>(i)ŵ(j)

||ŵ(i)||||ŵ(j)||
, (41)

it can be proved that the corresponding clustering centroid, cŵ consisting of n
i-vectors ŵ(1), ŵ(2), . . . , ŵ(n), can be calculated as:

cŵ = argmax
c

n∑
i=1

sim(ŵ(i), c)

=

∑n

i=1 ŵ(i)/||ŵ(i)||∣∣∣∣∑n
i=1 ŵ(i)/||ŵ(i)||

∣∣∣∣ if
∑n

i=1 ŵ(i)/||ŵ(i)|| 6= 0

0 otherwise

. (42)

After the convergence of the LBG clustering algorithm, we obtain E clusters of
i-vectors with their centroids denoted as cŵ1 , c

ŵ
2 , . . . , c

ŵ
E , respectively. We use

cŵ0 to denote the centroid of all the training i-vectors.

References

[1] F. Beaufays, V. Vanhoucke, and B. Strope, “Unsupervised discovery and
training of maximally dissimilar cluster models,” Proc. Interspeech2010,
pp. 66-69.

[2] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Trans. on Audio, Speech
and Language Processing, Vol. 19, No. 4, pp. 788-798, 2011.

[3] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with
sparse training data,” IEEE Trans. on Speech and Audio Processing, Vol.
13, No. 3, pp. 345-354, 2005.

[4] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. on Communication, Vol. COM-28, pp. 84-95, 1980.

[5] J. Xu, Y. Zhang, Z.-J. Yan, and Q. Huo, “An i-Vector based Approach to
Acoustic Sniffing for Irrelevant Variability Normalization based Acoustic
Model Training and Speech Recognition,” Proc. Interspeech2011.

10

[6] S. Young, et al., The HTK Book (for HTK version 3.4), 2006.

[7] Y. Zhang, J. Xu, Z.-J. Yan, and Q. Huo, “An i-vector based approach
to training data clustering for improved speech recognition,” Proc. Inter-
speech2011.

A The Matrix Codebook for this memo

A.1 Trace

tr(AB) = tr(BA) (43)

∂tr(X) = tr(∂X) (44)

∂

∂X
tr(AX>) = A (45)

∂

∂X
tr(AXBX>) = AXB +A>XB> (46)

∂

∂X
tr(AX−1B) = −X−>A>B>X−> (47)

∂

∂X
ln |det(X)| = (X−1)> (48)

A.2 Variance of quadratic form

Assume that x ∼ N (x|µ,R) and A is positive semi-definite,

E(xx>) = R+ µµ> (49)

E(x>Ax) = tr(AR) + µ>Aµ

(50)

Proof:

∵ A is positive semi-definite

∴ A = C>C

∴ E(C>x>xC) = C>(R+ µµ>)C

∴ E(x>Ax) = E(
∑
i

(Cx)2i) = tr(C>(R+ µµ>)C) = tr(AE(xx>))

Note that

tr(Aµµ>) =
∑
i

∑
j

aijµiµj

=
∑
i

Aµµi

= µ>Aµ (51)

and let µ = E(w),R = E(ww>) − E(w)E(w)>, A = T>Γ(i)R−1T we get
Eq.[23].

11

A.3 Others
1 Proposition:

RΓ(i) = Γ(i)R (52)

where

R = diag{R1, . . . ,RC} (53)

Γ(i) = diag{γ1I, . . . , γCI} (54)

Proof:

RΓ(i) = diag{R1, . . . ,RC}diag{γ1I, . . . , γCI}
= diag{γ1IR1, . . . , γCIRC}
= Γ(i)R (55)

In Mark J.F. Gales’s paper, it assume that w is only a model parameter and
find the solution through “the alternative of the variables method” (there is no
closed-form maximum likelihood solution for w,T ,R.

B From a graphic model view

B.1 Probabilistic PCA

Probabilistic PCA is a simple example of the linear-Gaussian framework, in
which all of the marginal and conditional distributions are Gaussian. We can
formulate probabilistic PCA by first introducing an explicit latent variable w
corresponding to the principal-component subspace. Next we define a Gaussian
prior distribution p(w) over the latent variable, together with a Gaussian condi-
tional distribution p(x|w) for the observed variable x conditioned on the value
of the latent variable. Specifically, the prior distribution over w is given by a
zero-mean unit-covariance Gaussian

p(w) = N (w|0, I) (56)

and the conditional distribution of the observed variable x

p(x|w) = N (x|Tw + µ, σ2I). (57)

We can view the probabilistic PCA model from a generative viewpoint in
which a sampled value of the observed variable is obtained by first choosing a
value for latent variable and then sampling the observed variable conditioned
on this latent value:

x = Tw + µ+ ε (58)

where w is an Gaussian latent variable, and ε is a zero-mean Gaussian-distributed
noise variable with covariance σ2I. The generative process is illustrated in Fig-
ure 2.

12

Figure 2: Probabilistic PCA

B.1.1 Maximum likelihood PCA

13

