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Abstract

Reflectance values for image-based relighting are often
estimated from grouped pixels with similar reflectance, but
such groupings are difficult to compute with certainty for
sparse image data. To address this problem, we propose
an iterative method that aggregates BRDF data in a single
image with known geometry and lighting by soft grouping,
where pixels contribute to one another’s estimate according
to their degree of reflectance similarity. Estimation of spec-
ular reflectance is further improved by albedo-independent
soft grouping of pixels based on shape continuity. With re-
covered reflectances, we demonstrate realistic relighting for
synthetic and real scenes, including surfaces with spatially-
varying reflectance.

1. Introduction

Photographs have commonly been used in computer
graphics for realistic rendering of scenes under various il-
lumination conditions. Previous approaches to relighting
scenes include capturing a set of images under densely sam-
pled lighting directions [2], or estimating parameters of re-
flectance models, which can be used for rendering with ar-
bitrary lighting [6][9][10].

To avoid the need for large sets of images and multi-
ple illumination conditions, some previous methods process
bidirectional reflectance distribution function (BRDF) data
aggregated from predefined groupings of pixels with similar
reflectance [11][8][1].

While these methods assume a prior reflectance group-
ing, formation of these groups for reflectance estimation
is a difficult task, especially when local reflectance vari-
ations often exist. To address this problem, Lensch et
al. [4] present a method for clustering reflectances by it-
erative splitting and refitting of reflectance models to a
user-specified number of materials. Spatially-varying re-
flectances are preserved by expressing the BRDF of each
pixel in terms of basis BRDFs of its cluster. Nishino et al.
[7] assemble reflectance data from point correspondences

among multiple views with fixed lighting to estimate re-
flectance parameters as well as the illumination environ-
ment.

In our work, the goal is also to aggregate BRDF infor-
mation for reflectance estimation, but with substantially re-
duced data. For broader applicability, our approach takes as
input only a single image, and with such limited data, we
cannot perform clustering as in [4] where 20-25 images are
captured. In fact, a single image is insufficient for estimat-
ing the reflectance of independent pixels, so some form of
data aggregation becomes necessary.

Determination of pixel groupings is, however, a chal-
lenging problem. With just a single BRDF sample for each
pixel, it cannot be known with full certainty whether two
pixels share the same reflectance. Furthermore, the pres-
ence of spatially-varying BRDFs will complicate the par-
titioning of pixels. To deal with this uncertainty, we pro-
pose a soft reflectance grouping where pixels contribute in
varying degrees to one another’s reflectance estimate. In
computing the reflectance of a given pixel, the BRDF data
of other neighboring pixels are each weighted by their re-
flectance similarity to the examined pixel, so that pixels
which are more likely of the same reflectance are more
strongly grouped while less similar pixels have relatively
little impact on the estimation. By computing these soft
groupings separately for each pixel, spatially-varying re-
flectance is also modelled in this framework.

Because of initially imprecise soft groupings, we pro-
gressively refine reflectance estimates by iterating the pro-
cess. In successive iterations, updated soft groupings pro-
duce improved reflectance values, which in turn leads to
more accurate comparisons of pixel similarity and better
soft groupings. To further improve results, we make more
complete use of BRDF information by partially grouping
pixels that have similar reflectance except for albedo. On
a continuous surface, it is typical for reflectance to vary
only in albedo, so we take advantage of this characteristic to
provide more data for estimation of non-albedo reflectance
parameters. Under this scheme, we have been able to ob-
tain reasonable reflectance estimates which have been ef-
fectively used for relighting scenes.



2. Reflectance estimation

Our algorithm for reflectance estimation takes as input
a single image, geometry that can be obtained by range
scans or other means, and the light source position. The
reflectance models we use are a Lambertian model for dif-
fuse reflectance and a single isotropic lobe from the Lafor-
tune model [3] to represent other reflectance effects, such
as specular reflection. In terms of light directionL, surface
normalN and viewing directionV , reflectance at a pointx
is formulated as

I(x) = ρ(x)N(x)·L+[c1(L·V )+c2(N(x)·L)(N(x)·V )]n

(1)
where the albedoρ and the Lafortune coefficientsc1, c2 and
n are the four reflectance parameters we aim to recover for
each image pixel.

2.1. Neighborhood support

Since estimating the reflectance of a single pixel from
a single observation is an underconstrained problem, it is
necessary to gather additional data to compute a feasible
estimate. This data can be derived from neighboring pix-
els with similar reflectance, but uncertainty also exists on
which pixels indeed share reflectance characteristics.

To account for this uncertainty, we propose a method
with varying local support from neighboring pixels. Pixels
with reflectance that seem similar to the examined pixel are
more likely to share the same reflectance, and therefore their
data should be emphasized in the estimation process. The
less similar a pixel is to the examined pixel, the less likely it
is of the same reflectance, and consequently it should have
less influence on parameter estimation.

We incorporate two forms of neighborhood support in
our estimation framework: reflectance similarity and shape
continuity. Our measure of reflectance similarity for pixel
y with respect to pixelx is based on a weighted sum of
reflectance parameter differences:

rx(y) = 1
1+‖R(y)−R(x)‖

R = [α1ρ, α2c1, α3c2, α4n]T .

(2)

whereR is a vector of weighted reflectance parameters. The
initial reflectance similarities are computed with respect to
only albedoρk(x) = Ik(x)

N(x)·L where k = R, G, B and
[α1 α2 α3 α4] = [1 0 0 0]. After the initial iteration where
the other reflectance parameters become available, we com-
pute the reflectance similarity using all the parameters.

The reflectance for image regions shadowed from the
primary light source cannot be independently estimated
without at least determining the principal indirect illumina-
tion sources of each point. Because of the difficulty in this,

the shadowed areas are computed from the known geome-
try and the primary light position, and are excluded from
the reflectance estimation process. Reflectance values for
these regions must nonetheless be determined for relight-
ing purposes, so we simply associate these shadowed pixels
with image pixels for which a reflectance is computed. A
more refined approach to shadow generation that accounts
for global illumination is presented in [5], which computes
radiosity exchanges in a perfectly diffuse scene.

Shape continuity is also used in determining neighbor-
hood support because many continuous surfaces are made
of the same material, and differences in reflectance on a
surface mainly result from albedo texture. We take advan-
tage of this property to gain additional data for estimating
non-albedo reflectance parameters. Our shape continuity
for pixel y with respect to pixelx penalizes sharp changes
in depth and surface normals along a straight-line pathP
between the two points:

sx(y) =
∑|P |−1

k=1 [β1
1

1+|d(P (k+1))−d(P (k))|

+β2(N(P (k + 1)) ·N(P (k)) + 1)2] + r′x(y)

whereP is an array of pixel coordinates,d is the depth and
N is the unit surface normal.β1, β2 are empirical weights
that tradeoff depth and surface normal factors. The term
r′x(y) represents the difference in specular reflectance pa-
rameters betweenx andy. Althoughr′ is unrelated to shape
continuity, we include this term to reduce the likelihood of
grouping pixels from different materials that are present on
the same continuous surface:

r′x(y) = 1
1+‖R′(y)−R′(x)‖

R′ = [α2c1, α3c2, α4n]T .

2.2. Iterative Reflectance Estimation

The measures of reflectance similarity and shape con-
tinuity are used to drive an iterative procedure for refin-
ing reflectance estimates. The iterations are performed in
two steps. In the first step, we do a soft grouping of pixels
weighted by reflectance similarity. For each pixelx, its new
reflectance values are computed according to

arg min
ρ,c1,c2,n

∑

x′∈Wx

rx(x′)[I(x′)− Î(x′)]2 (3)

whereWx is a 25x25 window centered aroundx not includ-
ing shadowed pixels,̂I is computed from (1), andr is from
(2) with [α1 α2 α3 α4] = [1 0 0 0] for the first iteration.
This equation is computed using the Levenberg-Marquardt
minimization algorithm with multiple initial seeds.

In the second step, the non-albedo reflectance parame-
ters are re-estimated with a soft grouping weighted by shape



continuity. Similar to the first step, the reflectance forx is

arg min
c1,c2,n

∑

x′∈Wx

sx(x′)[I(x′)− Î(x′)]2 (4)

where the albedo of̂I is taken to be its estimated value in
(3). These steps are repeated until the change in estimated
reflectance values falls below a thresholdt:

1
|I ′|

∑

x∈I′
[Rnew(x)−Rold(x)]2 < t

whereI ′ is the set of unshadowed image pixels.
With the final reflectance estimates and scene geometry,

the image can clearly be relit for arbitrary illumination con-
ditions. Shadows are cast according to the geometry and
light positions, and pixel intensities within the cast shadows
result from global illumination computations [11, 5].

3. Results

We applied our method to the synthetic scene in Fig-
ure 1, which contains some challenging features such as
complex texture on the container and table, and different
materials that form a smoothly-shaped pipe. In our results,
the scene texture is handled properly. Although specular re-
flection exists on only a few areas of the container in the
original image, it is accurately rendered on other parts of
the surface for different lighting. In particular, it can be
noticed on the container that although golden-colored ar-
eas in the original image are entirely diffuse, they exhibit
correct specular characteristics for other illumination con-
ditions, since our shape-continuity soft grouping method
effectively transferred reflectance properties of the material
across albedos. An effect like this could not happen without
albedo-independent grouping. Different materials that to-
gether form one surface, such as the pipe, are not incorrectly
soft grouped because they exhibit different reflectance in the
original image. The iterative refinement of reflectance esti-
mates and its effect on relighting is illustrated in Figure 2.

We also process a real image of a ceramic cat (with range
data, courtesy of Ko Nishino) that is shown in Figure 3.
From the original (leftmost) image, the computed diffuse
reflectance is exhibited in the second image, rendered with
the same illumination as the original. The albedo values that
describe the diffuse reflectance appear to fit the ceramic cat.
The last two images display relighting results for two differ-
ent illumination directions. The reflectance appearance in
these relighting results seem reasonable, though some spec-
ular reflections are slightly broad, which results from the
precision level of the geometry. Accuracy of the geometry
is an important factor in obtaining realistic results.

4. Conclusion

In this paper, we have presented a method for aggre-
gating BRDF data in a single image for estimation of re-
flectance parameters and subsequent relighting. To account
for uncertainty in grouping pixels with limited information,
our algorithm forms soft groups with variable support from
neighboring pixels. Albedo-independent pixel grouping is
also introduced for improving estimates of specular param-
eters. By computing these soft groups on a per pixel basis,
spatial variations of reflectance can be captured within our
estimation framework.
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Figure 1. Synthetic images and relighting results

Intermediate relighting 1 Intermediate relighting 2 Final relighting Ground-truth relighting

Figure 2. Effect of iterations on relighting
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Figure 3. Real image and relighting results


