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ABSTRACT 
Management of clutter is an important factor in the design 
of user interfaces and information visualizations, allowing 
improved usability and aesthetics. However, clutter is not a 
well defined concept. In this paper, we present the Feature 
Congestion measure of display clutter. This measure is 
based upon extensive modeling of the saliency of elements 
of a display, and upon a new operational definition of clut-
ter. The current implementation is based upon two features: 
color and luminance contrast. We have tested this measure 
on maps that observers ranked by perceived clutter. Results 
show good agreement between the observers’ rankings and 
our measure of clutter. Furthermore, our measure can be 
used to make design suggestions in an automated UI cri-
tiquing tool. 
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INTRODUCTION 
Clutter is an important phenomenon in our lives, and an 
important consideration in the design of user interfaces and 
information visualizations.  Many existing visualization 
systems are designed to reduce clutter by filtering what 
objects or information the user sees [e.g.  1,  9,  32], or using 
non-linear magnification techniques so that objects in the 
center of the screen are allowed more display area [ 11].  
Tips for designing web pages, maps, and other visualiza-
tions often focus on techniques for displaying a large 
amount of information while keeping clutter to a minimum 
through careful choices of representation and organization 
of that information.  However, in spite of the existence of 
these tools and tips, we lack a clear understanding of what 

clutter is, what features, attributes, and factors are relevant, 
why it presents a problem, and how to identify it.  If we can 
better understand clutter, we can create tools to automati-
cally identify it in a display, and even eventually create 
systems that will advise a designer when the level of clutter 
is too high, and suggest techniques for reducing visual clut-
ter.  Such a system might also indicate a too sparse and un-
cluttered display; excessively sparse displays can lead to 
inefficient use of available display space, and require the 
user to go to a new page or view in order to acquire the 
information required for their task. 

In the following section, we discuss lay definitions of clut-
ter, and suggest an operational definition. This definition 
allows us to enumerate areas of knowledge of human per-
ception that may be brought to bear on understanding clut-
ter.  Next, we present a more restrictive definition which 
gives us a first cut at a measure of the level of clutter in a 
display.  This Feature Congestion measure of clutter makes 
use of extensive modeling of what makes items in a display 
visually salient.  We present the results of an experiment in 
which observers were asked to rank the level of clutter in a 
collection of maps.  We show that our Feature Congestion 
measure of clutter does a good job of predicting the relative 
clutter rankings of these maps. 

WHAT IS CLUTTER? 
A common wisdom notion of clutter is simply that it is 
what occurs when one has too many objects. Within the 
CHI community, a common method for clutter reduction is 
simply to remove items or information from the central 
portion of the display [ 1,  9,  32]. The American Heritage 
College Dictionary goes a step further, defining clutter as “a 
confused or disordered state, caused by filling or covering 
with objects.” This clarifies in an important way that clutter 
is not merely the state of having too many objects; it refers 
to a state in which a number of objects cause “confusion.”   

We suggest that clutter is not a purely non-aesthetic result 
of having too many objects, but rather that its confusion-
causing aspect is important, and will enable us to get a han-
dle on how to measure and reduce clutter.  For the purposes 
of a scientific exploration of clutter and its impact on work, 
we suggest the following operational definition: 

Definition: Clutter is the state in which excess items, or 
their representation or organization, lead to a degradation 
of performance at some task.  
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The association between clutter and the representation or 
organization of information in a display has been recog-
nized by a number of designers and researchers.  Web page 
design tips often focus on organization of textual and 
graphic information to reduce clutter.  Map generalization 
work focuses on changing representations of information at 
different map scales to reduce clutter and improve usability 
[ 4].  Semantic zoom [e.g.  18] and goal-directed zoom [ 32] 
interfaces allow for varying both the amount and the repre-
sentation of information at each scale of the visualization. 

The above definition of clutter brings up two key points: the 
association between clutter and degradation in performance, 
and the notion that clutter may depend upon the user’s task.  
Note that the idea that clutter leads to a performance degra-
dation in using a display does not mean that we should aim 
for displays with zero clutter; in a complex task involving 
multiple displays, too little information in one display will 
only force the user to switch to another to acquire the nec-
essary information, which has its own performance costs. 

The notion of task dependence seems to agree with people’s 
intuitive notions of clutter.  In our experiment on ranking 
clutter in maps, reported later in this paper, a number of 
subjects spontaneously suggested that they were trying to 
think of a task in order to judge clutter. 

Clutter likely also depends upon the expertise of the user.  
Consider a weather map of the United States, with labels 
specifying the names of a large number of U.S. cities and 
their expected high temperature. To someone fairly unfa-
miliar with the U.S., with a task of finding tomorrow’s 
forecast temperature for Denver, this map could appear 
quite cluttered, since the person would have to search 
through a large number of cities to find Denver.  However, 
for someone familiar with the U.S. the map might not be 
very cluttered at all, since they know where to look for cit-
ies of interest.  In our map ranking experiment, a number of 
the users reported just this intuition.  One user volunteered, 
“This map would seem pretty cluttered, except what would 
I use it for?  I would probably want to look up the tempera-
ture for San Francisco, and I know where that is.”   

As another example of the dependence upon user expertise, 
Sellen and Harper [ 24] cite the example of a manager 
whose desk his employers found so unacceptably cluttered 
that they insisted he put all his papers in boxes whenever 
the company had visitors.  But the manager was famous for 
being able to quickly extract exactly the paper he wanted 
from those stacks of papers.  It is difficult to believe that the 
manager found his office as cluttered as his employers did. 

The dependence upon task and user expertise likely pro-
vides a partial explanation for why people do not always 
agree on the level of clutter.  On the other hand, we often 
find a room cluttered when we have no task to complete, 
and a sense of clutter does not seem to go away completely 
even when we know the location of every object.  Clearly 
perception of clutter depends upon a complex set of issues, 
including such amorphous issues as personal aesthetics. 

The complexity of clutter perception, and its dependence 
upon high-level issues like task and user expertise, can 
make deriving a clutter measure seem daunting. We suggest 
that, although user knowledge and task are important, we 
can, as a first step, make a fair amount of headway into 
understanding clutter by considering general visual tasks, 
and looking at low-level contributions to clutter.   

In a user interface or visualization, designers aim for quick, 
easy, natural, and veridical access to the visual information 
present in a display. Such access typically consists of basic 
visual subtasks. Researchers know a fair amount about ar-
eas of perception and cognition in which additional objects 
or information in a display can cause degradation in per-
formance at a basic visual task (see the following section).  
Furthermore, the degradation of performance at many basic 
visual tasks with increasing numbers of objects does not 
have a strong dependence upon the expertise of the user. 
The following subsection gives a brief and partial enumera-
tion of basic visual contributors to clutter. In many cases we 
can say something quantitative about performance degrada-
tion, thus enabling meaningful measures of clutter.   

A full model of task performance supercedes a measure of 
clutter, by our definition.  However, in the absence of a 
complete performance model, clutter gets at an important 
question: for a given situation (information to be displayed, 
possible tasks, and user expertise), how does performance 
vary with display design, i.e. the amount of information 
displayed, and its representation and organization? 

Basic Visual Tasks for Which Increasing  
the Number of Items Degrades Performance 
It is well known that additional items can make search for a 
visually-defined target slower or less accurate (see [ 31] for 
a review).  It is true that in some cases the target seems to 
“pop out” at the viewer, and search shows little effect of 
additional display items.  However, this largely occurs in 
very homogeneous displays, for instance when searching 
for a blue disk among a display of red disks. For more typi-
cal displays of even moderate complexity, one should ex-
pect that extra items make search slower.   

Extra display items also degrade performance is in what is 
known as lateral masking.  It is more difficult to see and/or 
identify a low contrast item in the presence of noise when 
there is “crowding,” i.e. when there are other items very 
nearby.  In a related phenomenon, it is more difficult to 
count how many objects there are, or identify objects, par-
ticularly in the periphery, when objects are closely flanked 
by other objects.  Though this is an issue of object density 
rather than their number, as the number of objects in-
creases, often density also increases. Another related phe-
nomenon is that when a number of dense curves are present 
in an image, for instance in a complicated maze, it can be 
difficult to visually trace one of the curves without using 
one’s finger to keep track.   
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More objects increase the chances of occlusion of one ob-
ject with another.  Occlusion potentially leads to difficulties 
in correctly recognizing the occluded figures.   

More items can also stretch or exceed the limits of short 
term memory [ 13].  This can make it difficult to get veridi-
cal information from a display.  For instance, more objects 
can make it difficult to comprehend the mapping between a 
graph and its legend, to compare the information in two 
spatial locations in the display, or to comprehend the rela-
tionship between two different views into an information 
space, for example a map at two different levels of zoom.  
The relevant factor seems not to be merely the number of 
objects, but their features (color, orientation, etc.); the ca-
pacity for certain simple features is higher than for more 
complex features.  Researchers have made headway into 
understanding the relationship between features and capac-
ity, but there is still much work to be done. 

The above are some of the most important phenomena in 
which performance may degrade due to additional items.  
Sometimes more items lead to performance benefits. This 
tends to occur when the items are low entropy, meaning 
that the appearance of one item is easily predicted from its 
neighbors.  Under such conditions, it can be easier, for in-
stance, to spot a trend in data when there are a larger num-
ber of points contributing to that trend, or to notice a group-
ing of items with similar characteristics.  Given a consistent 
trend or group of items, more items can aid detection of a 
deviation – an outlier with features or trend different from 
the group, or a boundary between two differing groups. 

While all of these phenomena have been studied exten-
sively in the human vision literature, some we understand 
better than others; for some we have predictive models, for 
others we merely have a lot of experimental data.  Phenom-
ena for which we have good predictive models are prime 
candidates for a starting point for deriving a measure of 
clutter.  Two of these areas are visual search and masking.   

Masking models have proven useful in quantifying such 
things as the visibility of compression artifacts in JPEG 
images.  However, predominantly these models have pre-
dicted perception of low-contrast patterns [ 29], of limited 
utility in evaluating clutter for typical displays.   

On the other hand, many real-life tasks have a strong visual 
search component to them.  We feel that this is our best 
choice for a starting point in developing a measure of clut-
ter for information visualizations.  In the next section we 
discuss previous work in deriving a measure of clutter.  In 
the section following that, we will discuss a model of visual 
search that is particularly well suited to creating a measure 
of clutter, and derive our measure of clutter. 

PREVIOUS WORK 
As mentioned above, a number of visualization techniques 
have aided the user in reducing clutter, by allowing them to 
selectively view detail.  Such techniques have not required 
a measure of clutter, relying instead upon a user’s ability to 

navigate to a view with less clutter, and upon the tendency 
of a visualization to become less cluttered as the user zooms 
in on it, if additional items are not added to the display with 
increasing zoom.  The work of Ahlberg & Shneiderman [ 1], 
as well as that of Fiskin & Stone [ 9], for instance, allow the 
user to filter what information appears in the display using 
dynamic queries, and also allow zooming to reduce clutter.  
Non-linear magnification schemes such as fisheye views 
[ 11] allow the user to make use of reduced clutter in 
zoomed-in views, while maintaining context in the periph-
ery of the display.  The addition of a measure of clutter 
could allow such systems to better control the level of clut-
ter, while taking some of the burden off of the user. 

Woodruff et al [ 32] go beyond relying upon the user to fil-
ter information or zoom so as to reduce display clutter.  
Their system, VIDA, helps users to construct visualizations 
with neither excessive clutter nor sparsity of information, 
guided by the cartographic principle of constant informa-
tion density.  For this, they require a measure of informa-
tion density, essentially equivalent to a measure of clutter.  
Woodruff et al experiment with several measures of infor-
mation density: the number of visible objects, and the num-
ber of vertices.  VIDA allows plug-in of alternative meas-
ures of information density. 

Other researchers have suggested additional measures of 
information density or clutter.  Dynamic Logic’s study on 
the effect of clutter on ads used as a metric the number ele-
ments on a web page, where an element consisted of a 
word, graphic, or “interest area” [ 2].  Tufte [ 28] suggested 
the number of entries in the source data matrix per unit 
area. Nickerson [ 14] enumerated a number of density 
measures, including the number of graphic tokens per unit 
area, the number of vectors needed to draw the visualiza-
tion, and the length of program to generate the visualiza-
tion.  Frank & Timpf [ 10] suggested the amount of “ink” 
per unit area as a metric for simple black & white maps.   

These metrics have a number of difficulties, and few have 
actually been implemented.  Certainly the amount of clutter 
has some dependency upon the number of objects, graphic 
tokens, or entries in the source data matrix in the display.  
The number of objects (or, conversely, the amount of blank 
space) has been shown to influence task performance at 
both a directory assistance search task [ 25], and at a number 
of tasks with a map [ 20].  However, column alignment 
helped in the directory assistance task, and Phillip & Noyes 
[ 20] found that “like clutters like,” e.g. additional lines on a 
map cause increased difficulty for tasks involving lines.  
Counting the number of objects does not take into account 
the appearance or organization of the objects.  Merely 
counting the number of elements on a web page did not 
prove to be a good measure of clutter in the sense of corre-
lating with ad effectiveness [ 2], though human clutter 
judgments did correlate with ad effectiveness.  Further-
more, for complex visualizations, the number of objects can 
be ill-defined; how many objects make up a texture indicat-
ing a mountain range on a map, or the outlines of U.S. 
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states?  A vertex may be similarly ill-defined – how sharp a 
turn in a curve is required?  The amount of ink is ill-defined 
for color displays.  In addition to these difficulties in apply-
ing suggested clutter measures when we are given a list of 
drawing objects in a visualization, the situation is even 
bleaker if one is given an existing visualization in image 
form, as with the maps in our empirical study. 

In the following section, we discuss relevant research into 
predictive models of a particularly ubiquitous visual task: 
visual search.  We then introduce our measure of clutter, 
based upon this research.  Our clutter measure, in its current 
implementation, does not explicitly deal with objects, but it 
will be a function of the number of objects in the display, as 
well as of their appearance and organization.  Furthermore, 
in its current implementation, our measure may be applied 
to any static display, since it takes an image as input, and 
does not require a list of items in the display. 

THE STATISTICAL SALIENCY MODEL AND THE 
FEATURE CONGESTION MEASURE OF CLUTTER 

Visual Search 
A vast amount of research has been done on visual search.  
Treisman’s early work [e.g. 26] is justly famous and well-
known among HCI researchers and thus worth discussion 
although it is not the most useful research for our purposes.  
Treisman suggested a dichotomy between so-called parallel 
vs. serial visual search.  Parallel search involved simultane-
ous processing across the visual field, and thus was insensi-
tive to the addition of more items to the display.  Serial 
search, on the other hand, involved a serial mechanism 
which visited one or a small number of items at a time, and 
thus would be slower with additional items.  Treisman sug-
gested that search could be used to determine basic features 
of the visual system: search for a target defined by a basic 
feature (“feature search”) would be parallel, whereas search 
for a target defined by a combination of basic features 
(“conjunction search”) would be serial.  Search asymme-
tries, in which search for target A among distractors B is 
easier than search for target B among distractors A, pro-
vide, by this account, additional information about the basic 
feature detectors and their operation in visual search.   

One reason this model is of limited utility for our purposes 
is that it is primarily descriptive of experimental results, 
rather than predictive. In particular, it is difficult to extract 
from Treisman’s model predictions about search in com-
plex displays.  In addition, many of Treisman’s early theo-
retical conclusions are now in question.  Few researchers 
still believe in a simple dichotomy between “feature” and 
“conjunction” search (e.g., [ 8,  17,  31]), and her interpreta-
tion of search asymmetries has been seriously challenged 
[ 22].  Newer predictive models, based on concepts from 
image processing and statistics, are rising in prominence.  
These models have proven quite powerful at predicting 
search performance without the need for explicit asymme-
tries or separate mechanisms for features vs. conjunctions.  
These newer models are the basis for our present work.  

Researchers have developed a number of predictive models 
of visual search [ 30,  17,  12,  22].  Some have aimed at pre-
dicting a quantitative measure of search performance, such 
as reaction time, or percent-correct performance [ 17,  30].  
Other work has aimed at predicting the “saliency” of dis-
play items [ 12,  22].  The saliency of an item corresponds 
qualitatively to ease of search for that item if it were the 
target, and correlates with the likelihood that a user makes 
an eye movement to that item (eye movements also depend 
upon the user’s task, of course).  The saliency measures are 
more versatile for evaluating displays, since they can oper-
ate on arbitrary image data.  In looking for a qualitative 
measure of the clutter in a display, qualitative measures of 
search performance like saliency measures should suffice.   

Two saliency models could be appropriate for our purposes: 
one by Itti et al [ 12] and one by Rosenholtz [ 22].  Both are 
designed to model human performance with visual displays. 
The Itti model is based on biologically inspired mecha-
nisms, starting with linear filters similar to receptive fields 
found in visual cortex, and then applying a variety of non-
linear neural-like operations. Rosenholtz's model tries to 
capture human performance at a functional rather than bio-
logical level, utilizing the notion that the visual system is 
designed to characterize various statistical aspects of the 
visual display.  This statistical framework leads to easier 
intuitions for why a target in a display is or is not salient, 
and can suggest features for a salient target.  Because these 
aspects will prove useful when developing a clutter model, 
or making design recommendations, we will use the Rosen-
holtz model as a starting point in our investigations. 

The Statistical Saliency Model 
Rosenholtz begins with the premise that the visual system 
has an interest in detecting “unusual” items.  She suggests 
that an item is “unusual,” and thus salient, if its features are 
outliers to the local distribution of features in the display.  
Following a long line of visual search researchers, these 
features are likely to include such things as contrast, color, 
orientation, and motion [ 31]. Rosenholtz suggests a meas-
ure like a z-score for the degree to which a feature vector, 
T, is an outlier to the local distribution of feature vectors, 
represented by their mean, µD, and covariance, ΣD. The sa-
liency, ∆, is given by the following equation: 

)()'( 1
DDD TT µµ −Σ−=∆ −  

where ()’ indicates a vector transpose.1  The higher the tar-
get saliency, the easier the predicted search.  The saliency, 
∆, can be thought of as a formalization of Duncan & Hum-
                                                           
1 This is a parametric measure of “outlierness.”  One could 
of course also use a non-parametric measure, which might 
seem more appropriate, since feature distributions are rarely 
Gaussian, as assumed by the parametric measure.  How-
ever, empirical evidence [ 23] suggests that the parametric 
measure better models search performance. 
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phreys’ [ 7] notion of the different roles of target-distractor 
versus distractor-distractor similarity in search perform-
ance.  Rosenholtz’ model predicts the results of a wide 
range of search experiments involving basic features such 
as those above, including experiments that were previously 
thought to involve search asymmetries [ 22]. 

To better understand the model, and get an intuition for the 
Feature Congestion measure of clutter described in the fol-
lowing section, consider the graphical interpretation in Fig-
ure 1. The statistical saliency model represents the local 
distribution of features by their mean, µD, and covariance, 
ΣD.  This is equivalent to representing the distribution by a 
set of covariance ellipsoids in the appropriate feature space, 
as shown.  The innermost, 1σ, ellipsoid indicates feature 
vectors one standard deviation away from the mean feature 
vector. The 2σ ellipsoid indicates feature vectors that are 
two standard deviations away from the mean, and so on.  A 
target with a feature vector on the nσ ellipsoid will have 
saliency ∆=n.  The farther out the target feature vector lies 
on these nested ellipsoids, the easier the predicted search. 

A designer can also use this model to choose attention-
drawing features for a particular item in the display.  (If the 
designer wants not to draw attention to an item, the model 
can help with that as well.)  Suppose the relevant feature 
space is a three-dimensional perceptual color space, like 
CIELab [ 6].  If the designer wants to add an item to a given 
portion of the display, such that the saliency of that item is 
at least d, then any colors outside of the dσ covariance el-
lipse will suffice. The model also tells us the most efficient 
direction to move in color space when picking the color of 
the new item.  For a given distance from the mean color, 
colors in the direction of the shortest principal axis of the 
covariance ellipsoid will be most salient. 

Furthermore, the covariance ellipsoid can inform a designer 
about the difficulty of drawing attention to a new item in a 
display.  If the covariance ellipsoid is large relative to the 
set of possible features (e.g. relative to the color gamut), 
then the saliency model predicts that it will be difficult to 

add an attention-getting item to the display, because few 
possible feature vectors will have sufficient saliency.  This 
observation provides the key for our first cut at a measure 
of clutter, described in the next subsection. 

Feature Congestion 
As mentioned earlier, we suggest a definition of clutter as a 
state in which excess items, or their representation and or-
ganization, cause degradation at some task.  We have enu-
merated a number of basic visual tasks with known effects 
of “clutter.”  However, we do not have good predictive 
models of many of these basic visual tasks.  As a first cut 
for a measure of visual clutter, we suggest considering the 
task of visual search, and adding components corresponding 
to other basic visual tasks as models become available.   

Visual search is an important subtask in many real-world 
tasks.  A user must find buttons or other components of a 
user interface.  An alert system must draw attention to a 
relevant part of a display so that the user can find it easily.  
Comprehending information visualizations also has a sig-
nificant visual search component.  Because of the ubiquity 
of the visual search task, even a very limited measure of 
clutter based only upon this task should be a significant 
step.  The question is how to go from a model of visual 
search ease to a measure of clutter. 

One possible measure is that clutter is inversely propor-
tional to the average saliency of a list of potential search 
targets in a display.  If all possible targets in a display are 
highly salient, and thus easy to search for, then visual 
search performance has not been compromised by the num-
ber and appearance of items in the display, and thus the 
display is uncluttered.  This measure seems straightforward 
from our definition of clutter, but it has several disadvan-
tages.  The first is that while this may be a worthwhile 
measure to investigate given a list of potential targets, such 
a list may not always be readily available.  If we guess that 
every bit of the display consists of a potential target, this 
measure amounts to computing the inverse of the average 
saliency per unit display area.  This could give counterintui-
tive results.  Consider, for instance, a map of the United 
States with nothing marked on it but a number indicating 
the temperature in Chicago.  The background of the map 
will have low saliency, and the temperature a high saliency.  
Integrating saliency over the entire map will give a low 
value, indicating, according to this measure, a high level of 
clutter.  Yet clearly this map would be highly uncluttered. 

An example illustrates another problem with this straight-
forward measure of clutter. Consider two displays, each 
with 50 items, all potential search targets.  In the first dis-
play, all items have the same color and shape.  In the sec-
ond display, the items vary randomly in both color and 
shape.  The statistical saliency model says that none of the 
items in the two displays is very salient, but for very differ-
ent reasons.  The uniform items in the first display have low 
saliency because of their uniformity (T-µD=0).  The highly 
variable items in the second display have low saliency be-

Feature space

Distractor
distribution

Easy
target

Difficult
target

x1

x2

 

Figure 1. Graphical depiction of the statistical saliency 
model.  Ellipses represent points of equal saliency.  Outer 
ellipses correspond to greater saliency and easier search. 
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cause, while they differ, the difference is small compared to 
the amount of variability in the display, (ΣD is quite high).  
This fact that these two displays will have similar saliency 
profiles, and thus yield similar measures of clutter, violates 
our intuitions: based purely upon aesthetic considerations, it 
seems unlikely that these two displays would be judged 
equally cluttered.     

We suggest an alternate way of characterizing clutter. As 
more items are added to a display, populating a greater vol-
ume of feature space, there is less room in feature space to 
add new salient items.  We refer to this condition as Feature 
Congestion. Increased congestion leads to degraded per-
formance, e.g. in searching for the new items.  We propose 
that Feature Congestion is one of the major causes of clut-
ter. By analogy, one might consider a person’s desk highly 
cluttered if it is difficult to leave a note that will draw atten-
tion by its location or appearance. 

We suggest, therefore, a new measure of clutter, based upon 
predicting the level of feature congestion in an image.  This 
model can operate without knowledge of what constitutes 
an item or target in the display.  Instead, we treat the dis-
play essentially as a given background image, and ask how 
easy it would be to add a new, salient item. 

The statistical saliency model indicates the difficulty in 
adding a new, salient item to a local area of a display: the 
size of the local covariance ellipsoid represented by ΣD 
gives a measure of this difficulty, and thus of the local clut-
ter in the display. Locally measuring the ellipsoid size, and 
pooling over the relevant display area, gives a measure of 
clutter for the whole display.   

We call this measure the Feature Congestion measure of 
visual clutter.  Displays with high clutter, according to this 
measure, are cluttered because feature space is already 
“congested” so that there is little room for a new feature to 
draw attention.  Too many colors, sizes, shapes, and/or mo-
tions are already clamoring for attention.   

Our discussion leads us to a surprisingly simple measure of 
clutter – the clutter in a local part of a display is related to 
the local variability in certain key features.  One can draw 
parallels between this measure and recent work on the re-
lated problem of visual complexity. Oliva et al [ 16] had 
users hierarchically sort photographs according to their 
complexity, and indicate at each hierarchical level the basis 
for the sort. Users indicated that complexity depended upon 
quantity and variety of objects, detail, and color, as well as 
upon higher-level, more global concepts like the symmetry, 
organization, and “openness” of the depicted space.  

Implementation of the Feature Congestion clutter measure 
involves 4 stages: 1) compute local feature (co)variance at 
multiple scales; 2) combine across scale; 3) combine clutter 
across feature types; and 4) pool over space to get a single 
measure of clutter for each input image.   

In the current implementation, we use color and luminance 
contrast as features.  Additional features would likely in-

crease the power of our measure, and allow it to deal with a 
full range of possible inputs: from GUI’s, through web 
pages, to natural scenes.  We wanted to start with the sim-
plest model we could; thus we restricted ourselves to color 
and luminance contrast, since they are essential to so much 
in pattern perception (for examples of using these features, 
along with orientation, in modeling perceptual phenomena, 
see [ 19,  29]). Color naturally seems important to our sense 
of clutter. Contrast feature detectors are known to exist 
early in the visual system, and can not only detect simple 
luminance contrast, but also serve as a measure of size and 
shape (see [ 21] for a review of evidence that such detectors 
may mediate pre-attentive processing of shape in the human 
visual system). Future implementations might include fea-
tures such as motion and orientation, which are also be-
lieved to be basic features in visual search and attention.  
Treisman & Gelade’s work [ 26], might also be used to sug-
gest features, though many of the basic features they sug-
gest might already be handled by luminance contrast, and as 
mentioned above the notion that visual search may be used 
to identify basic features has been called into question. 

Below we briefly describe our implementation. See [ 21] for 
more details on the feature covariance stage of processing, 
as similar steps are used to segment an image into regions 
of different texture – a process thought to have much in 
common with visual search in the human brain. 

Feature covariance 
We start by converting the input image into the perceptu-
ally-based CIELab color space [ 6].  We then process the 
image at multiple scales (currently 3) by creating a Gaus-
sian pyramid by alternately smoothing and subsampling the 
image [ 3].  For luminance contrast, we then compute a form 
of “contrast-energy” by filtering the luminance band by a 
center-surround filter formed from the difference of two 
Gaussians, and squaring the outputs.  Then, for each fea-
ture, we compute the local feature (co)variance.  This may 
be done efficiently through a combination of linear filtering 
(to average over a local area) and point-wise non-linear 
operations (to compute the variance). This gives us contrast 
variance (a scalar), and a 3x3 covariance matrix for color.  
From this covariance matrix it is straightforward to com-
pute the volume of the covariance ellipsoid, our local meas-
ure of color feature congestion.  The contrast feature con-
gestion is simply the square root of the contrast variance. 

Combine across scales 
For each feature, we combine feature congestion across 
scale by taking the maximum at each pixel.  We chose the 
max operation based upon the reasoning that a feature is 
locally congested if it is congested at any scale.   

Combine across features 
Next we combine color and contrast clutter at each point.  
Since color clutter is the volume of the covariance ellipsoid, 
while contrast clutter is a “length” representing variance in 
a single dimension, we first take the cube root of the color 
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clutter measure to make the two measures more equivalent.  
The two features are scaled so as to approximately equate 
color & luminance contrast discriminability. We then com-
bine color and contrast clutter at each point by taking the 
average of the two.  The result is a single clutter map of 
local clutter at each display location.  Combining by taking 
an average amounts to saying that an image is very clut-
tered at a point if it has both color and contrast clutter, but 
less cluttered if it is cluttered only in contrast or only in 
color.  High contrast clutter with low color clutter corre-
sponds, for instance, to a block of black and white text, 
where the user would be faced with many “objects” (here, 
words), yet it would be relatively easy to draw attention to a 
saturated red word or symbol. High color clutter with low 
contrast color could correspond to a more unusual situation 
in visualization design, with a variety of colors present lo-
cally, but without much luminance contrast; in this situation 
the colors will not be very discriminable, and a small 
amount of luminance contrast will be quite noticeable.   

A final model of clutter will almost certainly involve a 
more complicated combination rule than that used here.  
The features might, for instance, be combined into a single 
large feature vector prior to computation of the covariance, 
as might be suggested by [ 8].  Some features might have 
priority over other features; e.g. Callaghan [ 5] has sug-
gested that color dominates over geometric form in texture 
segregation. Much basic research needs to be done to ade-
quately model feature interaction.  In the absence of such 
research, our aim was to see how far we could go with a 
simple measure.  Attempts to allow a general linear combi-
nation of color and luminance contrast features did not 
greatly improve performance of our clutter measure. 

Combine across space 
Finally, we pool over space to get a single measure of clut-
ter for each display.  In the current implementation we sim-
ply take the average clutter value over the entire image. 

Computing this clutter measure is reasonably efficient.  Our 
MATLAB implementation, with virtually no attempt made 
to optimize code, computes clutter for a 512x512 image in 
approximately 10.5 seconds. 

EXPERIMENT: CLUTTER RANKINGS FOR MAPS 
In order to begin to test our measure of clutter, we have 
conducted an experiment in which we ask users to rank the 
clutter of a number of maps.  Maps are a familiar visualiza-
tion for many users, and have many features typical of more 
general visualizations.  We were interested in whether users 
give consistent clutter rankings, and in whether or not we 
could predict those rankings using our Feature Congestion 
measure of clutter.  Ideally, we would also test task per-
formance, and measure its correlation with the clutter rank-
ings given by our subjects and by our model. We are in the 
process of doing so; in the meantime, it is worthwhile test-
ing whether our model can predict the human clutter rank-
ings.  It is reasonable to assume that the rankings will corre-

late inversely with performance, and it is known that clutter 
judgments can be predictive of objective measures of dis-
play effectiveness in other settings [ 2]. 

Methods 
We collected 25 maps at various scales by searching the 
web for maps of the U.S. and San Francisco Bay Area.  
This included 9 maps of the U.S., 6 maps of the bay area, 3 
maps of all of San Francisco, and 7 maps of a portion of the 
city.  This selection of multiple map scales and cartogra-
phers naturally led to a wide range of clutter levels.  We 
asked 20 users to order the maps according to perceived 
clutter.  Users were recruited from a college campus, and 
ranged in age from 10-48.  They were not given a definition 
of clutter, but rather were told to do their best with their 
own intuitive definition of what “clutter” meant.  Each map 
was printed on 8½ x 11” paper in full color, and scaled so 
that its width filled the page.  Users indicated their rankings 
by ordering the 25 maps.  They received the maps in ran-
dom order, and were instructed that this was the case. 

Results 
The following is the ordering of the map images from low 
clutter to high, according to their average ranking by human 
observers: 2, 1, 3, 4, 7, 9, 8, 10, 6, 11, 14, 16, 15, 5, 19, 17, 
18, 13, 23, 20, 21, 24, 12, 22, 25.  Thumbnails of these im-
ages may be seen in Figure 3, where they are ordered ac-
cording to the clutter measure.  Because thumbnails do not 
allow viewing of high frequencies which can be crucial to 
judgments of clutter, we have also made these images 
available at a somewhat higher resolution at 
https://dspace.mit.edu/handle/1721.1/7508. We computed 
Kendall’s coefficient of concordance, W, from the rankings 
of the 20 users.  This statistical test tests both whether there 
is agreement in rank data among a set of judges, and 
whether the images differ significantly in their perceived 
clutter (agreement in rank and a significant effect of image 
on ranking are equivalent).  It returns a value of W between 
0 and 1, where larger values indicate more agreement.  This 
test yielded W=0.72, indicating significant and substantial 
correlation between the rankings of the different subjects 
(χ2(24)=345.3, p<0.001).  The average Spearman rank-
order correlation between pairs of subjects was 0.70.  Thus, 
some images were clearly perceived as more cluttered than 
others, and there was a fair amount of agreement among 
subjects, though still, of course, variability in the rankings.  
Figure 2 indicates, for each map image, the 25th and 75th 
percentile rankings, as a measure of this variability.  Clearly 
subjects show a great deal of agreement on the clutter level 
of some of the maps (e.g. #25), but quite a bit of disagree-
ment on others (e.g. #5, #13).   

Observers’ comments gave some hint as to the reason for 
some of the agreement and disagreement on clutter rank-
ings.  For map #25, the strong agreement seems to have 
been due to the sense that this map obviously attempts to 
include too much information, and the resulting difficulty in 
quickly reading information from the map – two hallmarks 
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of clutter according to a number of the observers.  Much of 
the disagreement about map #10 seems to focus on whether 
taking all of the text off of the map per se allowed a large 
amount of information to be presented without cluttering 
the map, or whether having the text separated from the map 
made the map slower to read and thus more cluttered.  On 
the other hand, observers disagreed, e.g. on map #24, on 
how to weight a low number of colors and a large amount 
of text; the use of few colors was seen by many observers 
as reducing clutter, though a couple of observers thought 
that more colors could actually lead to less clutter.   

Modeling with the Feature Congestion Clutter Measure 
We compared our clutter measure with the human clutter 
rankings. Figure 3 shows the maps in order of their clutter 
as determined by the clutter measure. Calculating Spear-
man’s rank-order correlation between the model and the 
average subject ranking, we find a significant correlation of 
0.83 (p<0.001). This is comparable to the correlation be-
tween observers, suggesting that the model does as well as 
could be expected, given the variability among observers. 

Figure 2 shows the relationship between human rankings 
and clutter measure. In general, the fit is good, as expected 
from the correlation coefficient. The images for which the 
clutter measure performs worst seem to be those with a 
large amount of text and little color variation, e.g. #23 and 
24. This suggests that we may require a more appropriate 
weighting between text and color variation, and perhaps 
that the presence of text needs to be an explicit feature in 
the model. Note that the distributions of clutter rankings are 
quite skewed for a number of images, e.g. #18, 19. 

Recommendations for drawing attention 
In addition to providing a measure of display clutter, our 
methods can be used to suggest to a designer how to add a 
new attention-grabbing element to the display. Figure 4 
shows examples in which local clutter maps suggested low-

clutter candidate locations for a new element, and the local 
feature covariance suggested what colors of the new ele-
ment would best draw attention.  In principle, we could also 
use this to select element size and shape, by computing lu-
minance contrast energy for a number of candidate sizes 
and shapes, and then choosing the most salient, given the 
local contrast variance.  The resulting symbols that we have 
added seem reasonable, even though map #6, has a wide 
variety of colors, and map #24 already contains a large 
number of objects. 

CONCLUSIONS AND FUTURE WORK 
Extensive experimental work remains to be done, including 
examining displays other than maps, and comparisons of 
our clutter measure with task performance data. In addition, 
experiments are necessary to support better modeling of the 
effects of expertise and task on clutter, as well as better 
modeling of basic perceptual phenomena. 

In its present implementation, our clutter measure uses only 
color and luminance contrast as features. It may require 
additional features, e.g. to deal properly with displays with 
a large amount of text.  Previous work modeling search in 
text displays (e.g. [ 27 15]) should prove invaluable.  For 
example, Tullis [ 27] has shown that search in a text display 
is a function of the number and size of groups, and has 
demonstrated a method for extracting such structure from a 
display. Nygren [ 15], however, has pointed out that group-
ing, per se, does not help performance unless the groups are 
sorted so the user can search hierarchically; first finding the 
right group, then searching within that group. Thus, any 
measure of clutter will need to make assumptions about the 
usefulness of text groupings for hierarchical search. Our 
current measure implicitly understands about grouping by 
proximity and visual similarity; a display with a red group, 
a blue group, and a green group will be judged less clut-
tered than a display with one large multicolored group. 
However, the current implementation does not know about 
semantic groupings based either on similarity or on text 
structure such as headings. 

We have suggested an operational definition of clutter as 
congestion: clutter is when it would be difficult to add a 
new salient item to a display.  Our resulting Feature Con-
gestion measure of clutter can take arbitrary image data as 
input.  We tested this measure by comparing it to rankings 
of clutter in maps by human observers.  Observers were 
fairly consistent in their rankings, and our measure was 
consistent with the human data.  We have also demon-
strated that this clutter measure could be used in an auto-
mated way to make design suggestions as to location and 
features for an item to draw attention. 
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Figure 2: Clutter measure vs. median human ranking, with 
25th and 75th percentile ranks shown by error bars.  Diagonal 
line shows best linear fit of measure to rankings.  Numbers 

indicate image numbers, as in Figure 3.
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Figure 3. Map images in raster scan order according to their clutter ranking by the Feature Congestion clutter measure. 

                                  

Figure 4. Maps with added elements designed (using the Statistical Saliency Model and Feature Congestion clutter measure) to 
draw attention.  Left: pink & green symbols added.  Right: Red and purple symbols added. 
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