Flow-Based Algorithms for Local Graph Clustering

Lorenzo Orecchia (MIT Math) Zeyuan A. Zhu (MIT CSAIL)
Graph Clustering for Large Networks

INPUT: Large Data or Social Network

GOAL: find clusters, i.e., subsets well-connected inside and poorly connected to the rest of the graph.
INPUT: Large Data or Social Network

GOAL: find clusters, i.e.,
subsets well-connected inside and poorly connected to the rest of the graph.
Graph Clustering and Conductance

Undirected unweighted $G = (V, E), |V| = n, |E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{Vol}(S), \text{Vol}(\bar{S})\}}$$
Graph Clustering and Conductance

Undirected unweighted $G = (V, E)$, $|V| = n$, $|E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}$$

$$\text{vol}(S) = |E(S, V)| = 8$$

$$|E(S, \bar{S})| = 4$$

$$\phi(S) = \frac{1}{2}$$
Graph Clustering and Conductance

Undirected unweighted $G = (V, E)$, $|V| = n$, $|E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}$$

Random-Walk Interpretation

Given uniform distribution over S, what is probability of exiting S in one step of random walk over the edges of G?
Graph Clustering and Conductance

Undirected unweighted \(G = (V, E), |V| = n, |E| = m \)

Measure of Cluster Quality is Conductance:

\[
\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}
\]

Fundamental primitive in graph clustering: find cut of minimum conductance

\[
\min_{S \subseteq V} \phi(S)
\]
Graph Clustering and Conductance

Undirected unweighted $G = (V, E), |V| = n, |E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}$$

Fundamental primitive in graph clustering: find cut of minimum conductance

$$\min_{S \subseteq V} \phi(S)$$
Graph Clustering and Conductance

Undirected unweighted $G = (V, E)$, $|V| = n$, $|E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}({\bar{S}})\}}$$

Fundamental primitive in graph clustering: find cut of minimum conductance

$$\min_{S \subseteq V} \phi(S)$$
Graph Clustering and Conductance

Undirected unweighted $G = (V, E), |V| = n, |E| = m$

Measure of Cluster Quality is Conductance:

$$\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}$$

Fundamental primitive in graph clustering: find cut of minimum conductance

$$\min_{S \subseteq V} \phi(S)$$
Graph Clustering and Conductance

Undirected unweighted \(G = (V, E), |V| = n, |E| = m \)

Measure of Cluster Quality is Conductance:

\[
\phi(S) = \frac{|E(S, \bar{S})|}{\min\{\text{vol}(S), \text{vol}(\bar{S})\}}
\]

Fundamental primitive in graph clustering: find cut of minimum conductance

\[
\min_{S \subseteq V} \phi(S)
\]

- Fundamental NP-Complete problem
- Best known approximation algorithm achieves \(O(\sqrt{\log n}) \)-approximation via SDP relaxation
- SDP relaxation can be interpreted as combining spectral and flow techniques
Local Clustering for Large Networks

\[G = (V, E), \quad |V| = n, |E| = m \]

Massive Networks

\[n \to \infty, \quad m \to \infty \]
Local Clustering for Large Networks

\[G = (V, E), \quad |V| = n, |E| = m \]

Massive Networks

\[n \to \infty, \ m \to \infty \]
Local Clustering for Large Networks

 Massive Networks

$G = (V, E)$,
$|V| = n, |E| = m$

$n \to \infty, m \to \infty$

 Semi-supervised Model

$\min_{S \subseteq V} \phi(S)$

Detect low-conductance cut “near” input region A
Local Graph Clustering Problem

\[\min_{S \subseteq V} \phi(S) \]

Semi-supervised Model

Detect low-conductance cut “near” input region \(A \)

Problem formulation:
Given random vertex from target cut \(A \), find cut \(S \) such that

\[\phi(S) \approx \phi(A) \]

in time \(\text{poly}(\text{Vol}(A)) \).

Infinite graph \(G \)

Random seed

Target cut \(A \)
Local Graph Clustering Problem

\[\min_{S \subseteq V} \phi(S') \]

Semi-supervised Model

Detect low-conductance cut “near” input region \(A \)

Problem formulation:
Given random vertex from target cut \(A \), find cut \(S \) such that

\[\phi(S') \approx \phi(A) \]

in time \(\text{poly}(|\text{Vol}(A)|) \). In particular, explored region has size \(\text{poly}(|\text{Vol}(A)|) \).

Infinite graph \(G \)

Explored region

Output Cut \(S \)
Random-Walk-Based Algorithms

Compute marginals of random walk started at seed
Random-Walk-Based Algorithms

Compute marginals of random walk started at seed

Vector of marginals

High probability

Low probability
Random-Walk-Based Algorithms

Compute marginals of random walk started at seed

High probability

Low probability

Output sweep cut of minimum conductance
Random-Walk-Based Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Conductance</th>
<th>Support Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Spielman, Teng’04]</td>
<td>$\sqrt{\phi(A) \log^3 \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)^2}\right)$</td>
</tr>
<tr>
<td>[Andersen, Chung, Lang ‘07]</td>
<td>$\sqrt{\phi(A) \log \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)}\right)$</td>
</tr>
<tr>
<td>[Andersen, Peres ‘09]</td>
<td>$\sqrt{\phi(A) \log \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\sqrt{\phi(A)}}\right)$</td>
</tr>
<tr>
<td>[Oveis Gharan, Trevisan ’12]</td>
<td>$\sqrt{\frac{\phi(A)}{\epsilon}}$</td>
<td>$O(\text{Vol}(A)^{1+\epsilon})$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\sqrt{\phi(A)}}\right)$</td>
</tr>
</tbody>
</table>
Random-Walk-Based Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Output Conductance</th>
<th>Support Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Spielman, Teng’04]</td>
<td>$\sqrt{\phi(A) \log^3 \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)^2}\right)$</td>
</tr>
<tr>
<td>[Andersen, Chung, Lang ‘07]</td>
<td>$\sqrt{\phi(A) \log \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)}\right)$</td>
</tr>
<tr>
<td>[Andersen, Peres ‘09]</td>
<td>$\sqrt{\phi(A) \log \text{vol}(A)}$</td>
<td>$O(\text{Vol}(A))$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\sqrt{\phi(A)}}\right)$</td>
</tr>
<tr>
<td>[Oveis Gharan, Trevisan ‘12]</td>
<td>$\sqrt{\frac{\phi(A)}{\epsilon}}$</td>
<td>$O(\text{Vol}(A)^{1+\epsilon})$</td>
<td>$\tilde{O}\left(\frac{\text{Vol}(A)}{\sqrt{\phi(A)}}\right)$</td>
</tr>
</tbody>
</table>

Essentially optimal for Random-Walk approach
Well-Connected Local Clustering

OBSERVATION:
Spectral, random-walk-based algorithms in practice work better than theoretical bounds.

RECENT WORK (both in global and local graph clustering):
Strengthen assumptions to explain behavior of spectral algorithms:

NEW ASSUMPTION: “A good ground-truth clustering exists”

GLOBAL SETTING: bounds on higher eigenvalues.

LOCAL SETTING: mixing time τ_A of graph induced by target cut A.
Well-Connected Local Clustering

OBSERVATION:
Spectral, random-walk-based algorithms *in practice work better than theoretical bounds*

RECENT WORK *(both in global and local graph clustering):*
Strengthen assumptions to explain behavior of spectral algorithms:

NEW ASSUMPTION: “A good ground-truth clustering exists”

GLOBAL SETTING: bounds on higher eigenvalues.

LOCAL SETTING: mixing time τ_A of graph induced by target cut A.

Input cluster A should be well connected
Well-Connected Local Clustering

OBSERVATION: Spectral, random-walk-based algorithms in practice work better than theoretical bounds

RECENT WORK (both in global and local graph clustering):
Strengthen assumptions to explain behavior of spectral algorithms:

NEW ASSUMPTION: “A good ground-truth clustering exists”

GLOBAL SETTING: bounds on higher eigenvalues.

LOCAL SETTING: mixing time τ_A of graph induced by target cut A.

Input cluster A should be well connected
Well-Connected Local Clustering

OBSERVATION:
Spectral, random-walk-based algorithms *in practice work better than theoretical bounds*

RECENT WORK *(both in global and local graph clustering):*
Strengthen assumptions to explain behavior of spectral algorithms:

NEW ASSUMPTION: "A good ground-truth clustering exists"

LOCAL SETTING: mixing time τ_A of graph induced by target cut A.

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

$$\tau_A \cdot O \left(\frac{1}{\phi(A)} \right)$$

The random-walk-based algorithm outputs cut S with

$$\phi(S) \cdot O(\sqrt{\tau_A}) \cdot \phi(A)$$

MIXING TIME WITHIN SET A SMALLER THAN TO THE OUTSIDE

and

$$\text{vol}(\text{Explored}) \cdot O(\text{vol}(A))$$

APPROXIMATION RATIO

LOCALITY GUARANTEE
Limitations of Random-Walks

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

\[\tau_A \cdot O \left(\frac{1}{\phi(A)} \right) \]

The random-walk-based algorithm outputs cut \(S \) with

\[\phi(S) \cdot O(\sqrt{\tau_A}) \cdot \phi(A) \quad \text{and} \quad \text{vol(Explored}) \cdot O(\text{vol}(A)) \]

LIMITATIONS:

- This result is also essentially tight for the random-walk approach
- Only weak pseudo-approximation, when \(\phi(A) \) is small
Limitations of Random-Walks

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

$$\tau_A \cdot O\left(\frac{1}{\phi(A)}\right)$$

The random-walk-based algorithm outputs cut S with

$$\phi(S') \cdot O(\sqrt{\tau_A}) \cdot \phi(A) \quad \text{and} \quad \text{vol(Explored))} \cdot O(\text{vol}(A))$$

APPROXIMATION RATIO

LOCALITY GUARANTEE

LIMITATIONS:

- This result is also essentially tight for the random-walk approach

- Only weak pseudo-approximation, when $\phi(A)$ is small

$$\tau_A = \Theta\left(\frac{1}{\phi(A)}\right) \quad \phi(S') \cdot O(\sqrt{\phi(A)})$$

Typical Cheeger-like spectral guarantee
Our Result

OUR RESULT [Orecchia, Zhu’14]:
Under the same well-connectedness assumption,

\[\tau_A \cdot O\left(\frac{1}{\phi(A)}\right) \]

our algorithm runs in time \(\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)}\right) \) and yields

\[\phi(S) \cdot O(\phi(A)) \quad \text{and} \quad \text{vol(Explored))} \cdot \tilde{O}(\text{vol}(A)) \]

MIXING TIME WITHIN SET \(A \) SMALLER THAN TO THE OUTSIDE
Our Result

OUR RESULT [Orecchia, Zhu’14]:
Under the same well-connectedness assumption,

\[\tau_A \cdot O\left(\frac{1}{\phi(A)}\right) \]

our algorithm runs in time \(\tilde{O}\left(\frac{\text{Vol}(A)}{\phi(A)}\right) \) and yields

\[\phi(S) \cdot O\left(\phi(A)\right) \]
and

\[\text{vol(Explored)} \cdot O(\text{vol}(A)) \]

CONSTANT APPROXIMATION

CONSTANT SIZE BLOW-UP

ALGORITHMIC IDEA:
Post-processes output of random-walk algorithm by localized flow computation
Overlap Property

ADDITIONAL PROPERTY OF RANDOM-WALK–BASED ALGORITHM:

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

\[\tau_A \cdot O \left(\frac{1}{\phi(A)} \right) \]

MIXING TIME WITHIN SET \(A \) SMALLER THAN TO THE OUTSIDE

The random-walk-based algorithm outputs cut \(S \) with

\[\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \Box(1). \]

OVERLAP PROPERTY
Overlap Property

ADDITIONAL PROPERTY OF RANDOM-WALK–BASED ALGORITHM:

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

\[\tau_A \cdot O\left(\frac{1}{\phi(A)}\right) \]

The random-walk-based algorithm outputs cut \(S \) with

\[\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \square(1). \]

\(\tau_A \) · \(O\left(\frac{1}{\phi(A)}\right) \)

OVERLAP PROPERTY

MIXING TIME WITHIN SET \(A \) SMALLER THAN TO THE OUTSIDE

Output Cut \(S \)

Unknown Target cut \(A \)

Intersection is constant fraction of volume of target cut
Overlap Property

ADDITIONAL PROPERTY OF RANDOM-WALK –BASED ALGORITHM:

[Zhu, Lattanzi, Mirrokni ’13] Under the well-connectedness assumption

$$\tau_A \cdot O\left(\frac{1}{\phi(A)}\right)$$

The random-walk-based algorithm outputs cut S with

$$\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \square(1).$$

GOAL: Exploit overlap to produce better approximation to $\phi(A)$
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]

On input cut S, this algorithm outputs cut C such that, for any target cut A with
\[
\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \frac{\text{vol}(S)}{\text{vol}(V)} + \delta \frac{\text{vol}(\bar{S})}{\text{vol}(V)}
\]

we have
\[
\phi(C) \cdot \frac{1}{\delta} \phi(A)
\]

The algorithm runs a small number of global s-t maxflow computations.
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]
On input cut S, this algorithm outputs cut C such that, for any target cut A with

$$\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \frac{\text{vol}(S)}{\text{vol}(V)} + \delta \frac{\text{vol}(\overline{S})}{\text{vol}(V)}$$

we have

$$\phi(C) \cdot \frac{1}{\delta} \phi(A)$$

The algorithm runs a small number of global s-t maxflow computations.
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]
On input cut S, this algorithm outputs cut C such that, for any target cut A with

\[
\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \frac{\text{vol}(S)}{\text{vol}(V)} + \delta \frac{\text{vol}(\bar{S})}{\text{vol}(V)} \geq \delta \geq \Box (1)
\]

we have

\[
\phi(C) \cdot \frac{1}{\delta} \phi(A) \cdot O(\phi(A))
\]

The algorithm runs a small number of global s-t maxflow computations.

\[\text{IN OUR CASE: } \text{vol}(V), \text{vol}(\bar{S}) \to \infty\]
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]

On input cut S, this algorithm outputs cut C such that, for any target cut A with

\[
\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \frac{\text{vol}(S)}{\text{vol}(V)} + \delta \frac{\text{vol}(\tilde{S})}{\text{vol}(V)} \geq \delta \geq \Box(1)
\]

we have

\[
\phi(C) \cdot \frac{1}{\delta} \phi(A) \cdot O(\phi(A))
\]

The algorithm runs a small number of global s-t maxflow computations.

IN OUR CASE:

\[
\text{vol}(V), \text{vol}(\tilde{S}) \rightarrow \infty
\]
Cut-Improvement Algorithms

[Lang, Rao ‘93][Andersen, Lang ‘08]

On input cut S, this algorithm outputs cut C such that, for any target cut A with

$$\frac{\text{vol}(S \cap A)}{\text{vol}(A)} \geq \frac{\text{vol}(S)}{\text{vol}(V)} + \delta \frac{\text{vol}(\tilde{S})}{\text{vol}(V)} \geq \delta \geq \square(1)$$

we have

$$\phi(C) \cdot \frac{1}{\delta} \phi(A) \cdot O(\phi(A))$$

The algorithm runs a small number of global s-t maxflow computations.

IN OUR CASE:

$$\text{vol}(V), \text{vol}(\tilde{S}) \rightarrow \infty$$
Global Solution to Cut-Improvement

Input Cut \mathcal{S}

Graph \mathcal{G}

\mathcal{S}
Global Solution to Cut-Improvement

Graph G

Source node

Input Cut \mathcal{S}

Sink node

$\bar{\mathcal{S}}$
Global Solution to Cut-Improvement

Input Cut \mathcal{S}

Source node

Sink node

Graph G

Source node

Sink node

$\alpha \cdot d(v)$

$\alpha \cdot \frac{\text{vol}(S)}{\text{vol}(\overline{S})} \cdot d(u)$
Global Solution to Cut-Improvement

Graph G

Input Cut S

Source node

Sink node

Cut capacity = $\alpha \cdot \text{vol}(S)$

Cut capacity = $\alpha \cdot \frac{\text{vol}(S)}{\text{vol}(\overline{S})} \cdot d(u)$
Global Solution to Cut-Improvement

Cut capacity = $\alpha \cdot \text{vol}(S)$

Solve parametric flow problem:
\[
\max \alpha \\
\text{s.t. total source/sink capacity can be routed}
\]
Global Solution to Cut-Improvement

Input Cut \mathcal{S}

Cut capacity = $\alpha \cdot \text{vol}(\mathcal{S})$

PROBLEM: optimal (and nearly-optimal) flow solutions are inherently global
Localization of Cut-Improvement

QUESTION: Can the cut-improvement algorithm be localized?

PESSIMISTIC CONJECTURE: NO.
Localization is an exclusive feature of random-walk-based algorithms.
Localization of Cut-Improvement

QUESTION: Can the cut-improvement algorithm be localized?

PESSIMISTIC CONJECTURE: NO.
Localization is an exclusive feature of random-walk-based algorithms.

NB: Global computation also required for exact random-walk marginals.
Localization of Cut-Improvement

QUESTION: Can the cut-improvement algorithm be localized?

PESSIMISTIC CONJECTURE: NO.

Localization is an exclusive feature of random-walk-based algorithms.

NB: Global computation also required for exact random-walk marginals.

HOW DOES RANDOM WALK APPROACH ACHIEVE LOCALIZATION?
Localization of Cut-Improvement

QUESTION: Can the cut-improvement algorithm be localized?

PESSIMISTIC CONJECTURE: NO. Localization is an exclusive feature of random-walk-based algorithms.
Localization of Random-Walk

Marginals are computed by "pushing" probability mass from vertices:

Argument applies to PageRank random walk, but can be generalized to other walks.
Localization of Random-Walk

Marginals are computed by "pushing" probability mass from vertices:

Argument applies to PageRank random walk, but can be generalized to other walks.
Localization of Random-Walk

Marginals are computed by "pushing" probability mass from vertices:

Argument applies to PageRank random walk, but can be generalized to other walks.
Localization of Random-Walk

Marginals are computed by "pushing" probability mass from vertices:

Localization is achieved by pushing mass only if current mass at vertex is larger than a certain threshold.
Modification of Flow Problem Achieves Localization

Input Cut S

$\alpha \cdot d(v)$

Source node

$\alpha \cdot \epsilon \cdot d(u)$

Sink node

Graph G

\bar{S}

Cut capacity = $\alpha \cdot \text{vol}(S)$

Every sink-side node has a large capacity to the sink: $\epsilon = \Box(1)$
Modification of Flow Problem Achieves Localization

Cut capacity = $\alpha \cdot \text{vol}(S)$

$\epsilon = \square(1)$

Cut capacity = $\alpha \cdot \epsilon \cdot \text{vol}(\bar{S})$

CONSEQUENCE: There exist local optimal solutions:

$$\text{vol(Explored)} \cdot \frac{\alpha \text{vol}(S)}{\alpha \epsilon} = \frac{\text{vol}(S)}{\epsilon}$$
Modification of Flow Problem Achieves Localization

Input Cut

\[S \]

\[\text{Cut capacity} = \alpha \cdot \text{vol}(S) \]

\[\epsilon = \Box(1) \]

\[\text{Cut capacity} = \alpha \cdot \epsilon \cdot \text{vol}(\overline{S}) \]

CONSEQUENCE: There exist local optimal solutions: \(\text{vol(Explored)} \cdot \frac{\text{vol}(S)}{\epsilon} \)

LAST OBSTACLE: Is this modification still able to solve cut-improvement problem?
Optimization Interpretation

GLOBAL CUT-IMPROVEMENT on input S:

$$\min_{C \subseteq V} \frac{\phi(C) \left(\frac{\text{vol}(C \cap S)}{\text{vol}(S)} - \frac{\text{vol}(C \cap \bar{S})}{\text{vol}(\bar{S})} \right)}{\text{vol}(C \setminus S)}$$

NB: can be solved by maxflow thanks to maxflow-mincut theorem.
GLOBAL CUT-IMPROVEMENT on input S:

\[\min_{C \subseteq V} \frac{\phi(C)}{\frac{\text{vol}(C \cap S)}{\text{vol}(S)} - \frac{\text{vol}(C \cap \bar{S})}{\text{vol}(\bar{S})}} \]

NB: can be solved by maxflow thanks to maxflow-mincut theorem.
Optimization Interpretation

GLOBAL CUT-IMPROVEMENT on input S:

$$\min_{C \subseteq V} \frac{\phi(C)}{\frac{\text{vol}(C \cap S)}{\text{vol}(S)} - \frac{\text{vol}(C \cap \bar{S})}{\text{vol}(\bar{S})}}$$

NB: can be solved by maxflow thanks to maxflow-mincut theorem.

LOCALIZED CUT-IMPROVEMENT – RESTRICT FEASIBLE SETS C:

$$\min_{C \subseteq V} \frac{\phi(C)}{\frac{\text{vol}(C \cap S)}{\text{vol}(S)} - \frac{\text{vol}(C \cap \bar{S})}{\text{vol}(\bar{S})}}$$

s.t. $\frac{\text{vol}(C \cap S')}{\text{vol}(C)} \geq \Box(\epsilon)$.

OVERLAP LOWER BOUND
Optimization Interpretation

LOCALIZED CUT-IMPROVEMENT – RESTRICT FEASIBLE SETS \mathcal{C}:

$$\min_{C \subseteq V} \frac{\phi(C')}{\frac{\text{vol}(C \cap S)}{\text{vol}(S)} - \frac{\text{vol}(C \cap \bar{S})}{\text{vol}(\bar{S})}}$$

s.t. \(\frac{\text{vol}(C \cap S)}{\text{vol}(C')} \geq \square(\epsilon). \)

RESULT:
This problem is solved exactly by the localized parametric flow problem.
Future Directions

• Combine local flow and random-walk algorithms in stronger ways

OPEN QUESTION: Does there exist a local version of cut-matching game?

It would yield **unconditional polylog approximation** to local graph clustering.

• Exploit optimization interpretation to design more local algorithms.
Future Directions

• Combine local flow and random-walk algorithms in stronger ways

OPEN QUESTION: Does there exist a local version of cut-matching game?

It would yield unconditional polylog approximation to local graph clustering.

• Exploit optimization interpretation to design more local algorithms.

THE END – THANK YOU!