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ABSTRACT
The vast user-provided image tags on the popular photo
sharing websites may greatly facilitate image retrieval and
management. However, these tags are often imprecise and/or
incomplete, resulting in unsatisfactory performances in tag
related applications. In this work, the tag refinement prob-
lem is formulated as a decomposition of the user-provided
tag matrix D into a low-rank refined matrix A and a sparse
error matrix E, namely D = A + E, targeting the optimal-
ity measured by four aspects: 1) low-rank : A is of low-rank
owing to the semantic correlations among the tags; 2) con-
tent consistency : if two images are visually similar, their tag
vectors (i.e., column vectors of A) should also be similar; 3)
tag correlation: if two tags co-occur with high frequency in
general images, their co-occurrence frequency (described by
two row vectors of A) should also be high; and 4) error spar-
sity : the matrix E is sparse since the tag matrix D is sparse
and also humans can provide reasonably accurate tags. All
these components finally constitute a constrained yet convex
optimization problem, and an efficient convergence provable
iterative procedure is proposed for the optimization based
on accelerated proximal gradient method. Extensive exper-
iments on two benchmark Flickr datasets, with 25K and
270K images respectively, well demonstrate the effectiveness
of the proposed tag refinement approach.
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1. INTRODUCTION
With the rapid advance in the technology of digital imag-

ing, there is an explosive growth in the amount of available
image data in our daily lives. This trend urgently neces-
sitates the development of effective retrieval technology for
large volume of images [1].

Considering the elementary features undertaken in the ap-
proaches, a distinction can be generally made between con-
tent based image retrieval (CBIR) [2] and text based image
retrieval (TBIR) [1]. The features adopted by CBIR are ex-
tracted from visual information, e.g., image color, texture
and shape of the objects involved in the images. Although
CBIR has been extensively studied for more than a decade,
there exist three limitations which restrict its practicabil-
ity [3]. Firstly, the precision of CBIR is usually unsatisfac-
tory because of the semantic gap between low-level visual
features and high-level semantic concepts. Secondly, the ef-
ficiency of CBIR is usually low due to the high dimension-
ality of visual features. Thirdly, the query form of CBIR
is unnatural for image search owing to the possible absence
of appropriate example images. In contrast, TBIR solely
adopts the text information to carry through the image in-
dexing and search. Compared with the visual information,
text is essentially a kind of representation for image content
from the view of human-being concepts and provided with
the characteristics in terms of low dimension and easy de-
scription. TBIR is a straightforward solution to conquer the
disadvantages of CBIR.

The text information used in TBIR can be acquired from
image title [4], surrounding text [4, 5] and user tag [3, 6].
Thereinto, user tags are more consistent with semantic con-
cepts and effective to describe image contents. Especially
with the prevalence of photo sharing websites such as Flickr
and Piscasa, which host vast of digital images with user-
provided tags, tag based image retrieval has become poten-
tially popular and practical in extensive applications. Nev-
ertheless, the performance of tag based image retrieval is
still far from satisfactory suffering from the inferior quality
of image tags. Figure 1 illustrates a representative image for
flying eagle downloaded from Flickr and its associated tags.
We can observe that only “fly” and “bird” truly describe the
visual content of the image, while other tags are imprecise.
Meanwhile, some additional tags are missing, such as “sky”
and “eagle” that are highly associated with the given image.
The reason causing this phenomena is that the current im-
age tagging on the photo sharing websites solely relies on the
user inputs, which often prohibits accurate and comprehen-
sive textual description of image visual content. Refining



Figure 1: Framework of image tag refinement towards low-rank, content consistency, tag correlation and
error sparsity. The column-wise user-provided tag matrix D (Note that D is sub-sampled from a larger real
user-provided tag matrix for ease of display), where white grid represents the association of a tag with image
and black one represents non-association, is decomposed into a low-rank matrix A (the refined tag matrix and
here rank(A) = 13) and a sparse matrix E (tagging error in user-provided tags and sparse error is ‖E‖0 = 72 in
this illustration) by considering the properties of content consistency and tag correlation.

tags is thus highly desirable for tag based image retrieval
and other related applications.

In this paper, to address the aforementioned imprecise and
incomplete issues of user-provided image tags, we propose a
novel refinement approach aiming to improve the quality
of tags. The approach is motivated by the following four
observations of image tags from large volume social images.

• Low-rank. The existing work on text information
processing [7] has demonstrated that the semantic space
spanned by text keywords can be approximated by a
smaller subset of salient words derived from the origi-
nal space. As one kind of text information, image tags
are consequently subject to such low-rank property.

• Content consistency. From large-scale image dataset,
we can observe that visually similar images often re-
flect similar themes and thus are typically annotated
with similar tags. Content consistency describes the
relationships between content level and semantic level.
Being an important prior, this observation has been
widely explored in visual category learning [8, 9].

• Tag correlation. Semantic tags associated with im-
ages do not appear in isolation, instead often appear
correlatively and naturally interact with each other at
the semantic level. As another important prior, tag
correlation characterizes the relationships within se-
mantic level and is often the preliminary assumption
of multi-label and contextual learning algorithms [10,
11].

• Error sparsity. With the general knowledge that the
human-beings share most of the common concepts in
the semantic space, the tagging results for one image

are reasonably accurate to certain level. Moreover,
one image usually is labeled with only couple of tags.
Such observations lead to the characteristics of error
sparsity for image tag matrix.

Figure 1 shows the framework of our problem formulation
and solution. Given the user-provided image tag matrix
D, to comprehensively characterize the above four factors,
we cast the tag refinement task into a convex optimization
problem, which simultaneously minimizes the matrix rank
and priors as well as error sparsity. Concretely, the nuclear
norm, �1 norm and trace operation are employed to model
the properties regarding tag low-rank, error sparsity, content
consistency and tag correlation, respectively. The results
are the low-rank matrix A which encodes the refined image
tags, and the sparse matrix E which represents the tagging
errors in user-provided tags. To obtain the results effectively,
we also propose an efficient convergence provable iterative
procedure to accomplish the optimization.

The novelties and main contributions of this paper are
summarized as follows.

• We propose a new tag refinement formulation in form
of convex optimization which comprehensively consid-
ers the tag characteristics from the points of view of
low-rank, error sparsity, content consistency and tag
correlation.

• Compared with existing works, the low-rank and er-
ror sparsity are firstly integrated into the optimization
procedure for image tag refinement. With the assis-
tance of constraints of content consistency and tag cor-
relation, the proposed approach is capable of correct-
ing imprecise tags and enriching the incomplete ones.



• We propose to use an accelerated proximal gradient
method to speedup the optimization, which facilitates
the proposed approach to be workable on large-scale
image datasets.

The rest of the paper is organized as follows. Section 2
reviews the related work on image tag refinement. In Sec-
tion 3, we introduce the formulation details of our proposed
refinement approach. Section 4 describes an efficient iter-
ative procedure for the solution to tag refinement. Exper-
imental results on two Flickr image datasets are reported
and analyzed in Section 5. Finally, we conclude the paper
with future work discussion in Section 6.

2. RELATED WORK
Many efforts have been devoted to the research on im-

age tag refinement. As a pioneer work, Jin et al. [12] uti-
lized WordNet to estimate the semantic correlation among
the annotated keywords and remove weakly correlated ones.
This method, however, can only achieve limited success as
it totally ignores the visual content of the images. In [3, 13],
Wang et al. proposed a content based approach within the
random walk with restart (RWR) framework for image an-
notation refinement where the visual similarity and word co-
occurrence conditioned on visual similarities are both con-
sidered. In addition, a similar work was proposed by Jia et
al. in [14], where the textual similarities of tags and visual
similarities of images are fused in a multi-graph reinforce-
ment framework. Liu et al. [15] proposed to rank the image
tags according to their relevance with respect to the asso-
ciated images by tag similarity and image similarity in a
random walk model. In [16], Xu et al. proposed to do tag
refinement from topic modeling point of view. A new graph-
ical model named as regularized latent Dirichlet allocation
(rLDA) is presented to jointly model the tag similarity and
tag relevance. These works are typical based on reranking-
and-removing strategy, which focuses on selecting a coherent
subset of keywords from the automatically annotated key-
words. On the other side, the tags associated with the social
images are often imprecise and incomplete. These works are
thus not applicable in directly addressing the problems with
inferior image tags, which is compelling to further extension
on proposed algorithmic framework.

The most related work to our image tag refinement scheme
is the improved version of [15] proposed by Liu et al. in [17]
recently. In this work, the authors formulated image tag re-
finement as an optimization framework based on the consis-
tency between visual similarity and semantic similarity in so-
cial images. An iterative bound optimization algorithm was
applied to discover the improved tag assignment. Despite
this work has shown encouraging results, it is not scalable
to large-scale applications due to its high computation-cost.

3. TAG REFINEMENT TOWARDS LOW-
RANK, CONTENT-TAG PRIOR AND
ERROR SPARSITY

Denote the image collection I = {x1, x2, . . . , xn}, where n
is the size of the image set. All initial tags appearing in the
collection form a tag set T = {t1, t2, . . . , tm}, where m de-
notes the total number of unique tags. The initial tag mem-
bership for the whole image collection can be represented by
a binary matrix D ∈ {0, 1}m×n whose element Dij indicates

the presence of tag ti in image xj , i.e., Dij = 1 if ti is asso-
ciated with image xj , otherwise Dij = 0. To represent the
final refined results, we define the matrix A whose element
Aij ≥ 0 denotes the confidence score of assigning tag ti to
image xj , given by tag refinement approach.

For a given tag matrix D, the essential purpose of image
tag refinement is to uncover the tag error matrix E, such
that,

D = A + E, (1)

where matrix A is the ultimate refined tag matrix. As afore-
mentioned as well as introduced later, this decomposition of
the matrix D into A and E shall target four properties,
which correspond to four items for the objective to opti-
mize. More specifically, we use Tl(A) to characterize the
rank of the matrix A, Tc(A) and Tt(A) to measure the im-
age content consistency and tag correlation of the refined tag
matrix A, respectively, and Te(E) to measure the sparsity of
the tagging error matrix E. Then the image tag refinement
problem is generally formulated as follows:

min
A,E

Tl(A) + λ1Te(E) + λ2[Tc(A) + Tt(A)],

subject to D = A + E .
(2)

In the following subsections, we elaborate on how to define
these four items.

3.1 Low Rank and Error Sparsity
As we have discussed, the image tags are subject to low-

rank property, and the semantically correlated tags in se-
mantic space usually appear in images synchronously. Mean-
while, the tag error matrix is sparse for two reasons: 1)
the number of annotated tags is essentially sparse compared
with the relatively large tag number, and 2) humans gen-
erally share the similar semantic concepts and may provide
reasonably accurate tags.

Motivated by the latest research on robust principal com-
ponent analysis (RPCA) [18], we can formulate this prob-
lem as a matrix decomposition problem. In [18], it has been
shown that a low-rank matrix A from D = A+E with gross
but sparse errors E can be derived by solving the following
optimization problem

minimize ‖A‖∗ + λ‖E‖1 ,

subject to D = A + E .
(3)

Here, ‖ · ‖∗ represents the nuclear norm of a matrix (the
sum of its singular values), ‖ · ‖1 is the �1 norm denoting
the sum of the absolute values of matrix entries, and λ is
a positive weighting parameter. In our formulation, matrix
D is the initial user-provided tags, A and E represent and
characterize the low-rank refined tag matrix and sparse error
matrix, respectively. Because it is hard to identify the model
and control gross amount of the labeling error in the user-
provided tags, this optimization strategy is suitable for our
problem. Therefore, in our approach, the low-rank and error
sparsity are modeled by nuclear norm (Tl(A) = ‖A‖∗) and �1
norm (Te(E) = ‖E‖1) according to the definition of Eq. (3).

3.2 Content Consistency for Tag Refinement
Based on the assumption of content consistency that vi-

sually similar images often reflect similar themes and thus
are typically annotated with similar tags, the content con-
sistency can be formulated as follows.



Given two images xi and xj associated with tag vectors
ai and aj , where ai and aj are the i-th and j-th column
vectors of the refined tag matrix A, we calculate the vi-
sual similarities between images. Let G = {I, W c} be an
undirected weighted graph with vertex set I and similarity
matrix W c ∈ IRn×n. Each element of the symmetric matrix
W c measures, for a pair of vertices, its similarity. In our
formulation, the similarity matrix W c is defined based on
k-nearest-neighbor (k-NN) graph

wc
ij =

{
exp(−‖xi − xj‖2/σ2

c ) if j ∈ Nkc(i) or i ∈ Nkc(j) ,
0 otherwise ,

(4)
where Nkc (·) denotes the index set for the kc nearest neigh-
bors of an image measured by Euclidean distance. In our
approach, we empirically set kc = 0.001n and σc as the me-
dian value of the entries in W c. To solve this problem, we
define the diagonal matrix P c as

P c
ii =

∑
j �=i

wc
ij , ∀ i . (5)

Then, the content consistency among the images can be en-
forced by solving the following optimization

min
A

n∑
i=1

n∑
j=1

‖ai − aj‖2wc
ij . (6)

By following the graph embedding terminologies in [19], this
formulation can be regarded as a kind of dimensionality re-
duction where A encodes the low-dimensional representa-
tions of the image set I.

The term Tc(A) in Eq. (2) can then be rewritten as follows
based on Eq. (5) and (6)

Tc(A) = Tr[A(P c −W c)AT ] , (7)

where Tr(·) denotes the trace operation on a matrix.

3.3 Tag Correlation for Tag Refinement
Similar to the formulation for image content consistency,

we can construct the regularization item regarding the cor-
relation among image tags. The difference from content
consistency is that the k-NN graph for tag correlation is
constructed by tag similarity. In this work, we adopt a con-
currence based method to estimate the tag similarity, which
is analogous to the principle of Google distance [20]. We
first estimate the semantic distance d(ti, tj) between tags ti

and tj as

d(ti, tj) =
max[log q(ti), log q(tj)]− log q(ti, tj)

log R−min[log q(ti), log q(tj)]
, (8)

where q(ti) and q(tj) are the numbers of images containing
tag ti and tag tj respectively and q(ti, tj) is the number of
images containing both tags ti and tj . Such numbers can be
obtained by performing search “tags only” on Google image
website using the tags as queries. In addition, R is the total
number of the images in Google image. Then, the semantic
similarity between ti and tj in matrix W t is defined as

wt
ij = exp[−d(ti, tj)

2/σ2
t ] , (9)

where σt is empirically set as the median value of the entries
in W t = [wt

ij ]. Similar to the case of content consistency, we
calculate the diagonal matrix P t. The regularization term

of tag correlation for refinement is thus represented as

Tt(A) = Tr[AT (P t −W t)A] . (10)

4. OPTIMIZATION VIA ACCELERATED
PROXIMAL GRADIENT

Based on the definitions of the terms regarding low-rank,
error sparsity, content consistency and tag correlation, we
rewrite the objective function in Eq. (2) as follows.

min
A,E

‖A‖∗ + λ1‖E‖1+

λ2{Tr[A(P c −W c)AT ] + Tr[AT (P t −W t)A]} ,

subject to D = A + E .
(11)

Note that the regularization terms of content consistency
and tag correlation share the same weight λ2 stemming from
the consideration of tradeoff between optimization efficiency
and performance accuracy. To solve this problem, we can in-
tuitively employ the traditional Lagrange multiplier method.
Unfortunately, this method will be generally computation-
intensive. Considering Eq. (11) is convex and often compu-
tationally expedient to relax the equality constraint, we here
pursuit an effective iterative procedure to solve this opti-
mization based on the accelerated proximal gradient (APG)
method with O(k−2) convergence rate.

4.1 General Accelerated Proximal Gradient
To better introduce the solution to our problem, in this

subsection, we firstly present a brief introduction on accel-
erated proximal gradient method and then give two basic
propositions for the solution.

Given the following unconstrained convex problem

min
X∈H

F (X)
.
= μg(X) + f(X) , (12)

where H is a real Hilbert space endowed with an inner prod-
uct 〈·, ·〉 and a corresponding norm ‖ · ‖, μ > 0 is a re-
laxation parameter. Both g(X) and f(X) are convex and
f(X) is further Lipschitz continuous ‖∇f(X1)−∇f(X2)‖ ≤
Lf‖X1 − X2‖, where Lf is the Lipschitz constant. Instead
of directly minimizing F (X), proximal gradient algorithms
minimize a sequence of separable quadratic approximations
to F (X), denoted as Q(X, Y ), formed at specially chosen
points Y

Q(X, Y )
.
= f(Y )+〈∇f(Y ), X−Y 〉+ Lf

2
‖X−Y ‖2 +μg(X) .

(13)
Let G = Y − 1

Lf
∇f(Y ), then

X = arg min
X

Q(X, Y )

= arg min
X

{
μg(X) +

Lf

2
‖X −G‖2

}
.

(14)

To solve Eq. (12), one may repeatedly set Xk+1 = arg minX Q(
X, Yk) with Yk chosen based on X0, . . . , Xk. The conver-
gence of this iteration depends strongly on the points Yk at
which the approximations Q(X, Yk) are formed. The natural
choice Yk = Xk can be interpreted as a gradient algorithm
and results in a convergence rate no worse than O(k−1) [21].
However, the work in [22] has showed that instead setting

Yk = Xk +
bk−1−1

bk
(Xk −Xk−1) for a sequence {bk} satisfy-

ing b2
k+1 − bk+1 ≤ b2

k can improve the convergence rate to



O(k−2). The general proximal gradient method is described
in Algorithm 1.

Algorithm 1: General Proximal Gradient Method

while not converged do

Yk ← Xk +
bk−1−1

bk
(Xk −Xk−1).

Gk ← Yk − 1
Lf
∇f(Yk).

Xk+1 ← arg minX

{
μg(X) +

Lf

2
‖X −Gk‖2

}
.

bk+1 ←
1+
√

4b2
k
+1

2
, k← k + 1.

end

The main motivation for forming the separable quadratic
approximation in Algorithm 1 is that in many cases of in-
terest, the minimizer Xk+1 has a simple or even closed-form
expression. Before presenting the details, we first introduce
a soft-thresholding operators. For x ∈ R and ε > 0, the
soft-thresholding operation is defined as

Sε[x]
.
=

⎧⎨
⎩

x− ε if x > ε ,
x + ε if x < −ε ,
0 otherwise .

(15)

By extending this operator to vector and matrix, we then
have [23]

Proposition 1. If H is an Euclidean space endowed with
the Frobenius norm ‖ · ‖F and g(·) is �1 norm, then Xk+1 is
given by soft-thresholding the entries of Gk as

Xk+1 = Sε[Gk] = arg min
X

ε‖X‖1 +
1

2
‖X −Gk‖2F . (16)

Proposition 2. if H is an Euclidean space endowed with
the Frobenius norm and g(·) is the matrix nuclear norm,
then Xk+1 is given by soft-thresholding the singular values
as

Xk+1 = USε(Σ)V T = arg min
X

ε‖X‖∗ +
1

2
‖X−Gk‖2F , (17)

where UΣV T is the singular value decomposition (SVD) of
Gk.

Based on Eq. (11) and (12), we can obtain the objective
function F (X) for our relaxed problem as

F (X)
.
= μ‖A‖∗ + μλ1‖E‖1

+
μλ2

2
{Tr[A(P c −W c)AT ] + Tr[AT (P t −W t)A]}

+
1

2
‖D − A− E‖2F ,

(18)
then g(X) and f(X) are respectively defined as

g(X) = μ‖A‖∗ + μλ1‖E‖1 ,

f(X) =
μλ2

2
{Tr[A(P c −W c)AT ] + Tr[A(P t −W t)AT ]}

+
1

2
‖D − A− E‖2F ,

(19)

where X =

(
A
E

)
and the term 1

2
‖D − A − E‖2F penal-

izes violations for the equality constraint of Eq. (11). In the
next subsections, we will show that f(X) in Eq. (19) satis-
fies Lipschitz continuous condition and present the iterative
solution of A and E based on the definitions in Eq. (19).

4.2 Proof of Lipschitz Continuity
Observing terms in Eq. (11), we can have that ‖A‖∗ and
‖E‖1 are convex [22]. Moreover, because P c − W c and
P t−W t in the regularization terms regarding content consis-
tency and tag correlation are the Laplacian matrices which
are positive semidefinite, the terms Tr[A(P c −W c)AT ] and
Tr[AT (P t −W t)A] are therefore convex with respect to A.
Consequently, the linear combination of convex terms, namely
the objective function for our problem, is also convex.

Based on the definition in Eq. (19) and let Rc = P c−W c

and Rt = P t −W t, we can calculate ∇f(X) as

∇f(A) = μλ2(ARc + RtA) + A + E −D ,

∇f(E) = A + E −D .
(20)

Given X1 = (A1 E1)
′ and X2 = (A2 E2)

′ , we have

‖∇f(X1)−∇f(X2)‖F

=

∥∥∥∥ μλ2(�ARc + Rt�A) +�A +�E
�A +�E

∥∥∥∥
F

,
(21)

where �A = A1 − A2 and �E = E1 −E2. Then we have

‖∇f(X1)−∇f(X2)‖2F
≤ [4σ2

max(μλ2R
c) + 4σ2

max(μλ2R
t) + 6]‖�A‖2F + 6‖�E‖2F

≤ L2
f

∥∥∥∥ A1 − A2

E1 − E2

∥∥∥∥
2

F

,

(22)
where σmax(·) represents the maximum singular value of a
matrix. Therefore, the Lipschitz constant is

Lf =
√

4σ2
max(μλ2Rc) + 4σ2

max(μλ2Rt) + 6 . (23)

As the objective function is convex, we are able to use it-
erative optimization similar to Algorithm 1 to achieve the
globally optimal solution [22].

4.3 Optimizing Low-Rank Refined Matrix
From Eq. (13), (14) and (20), we can infer the optimal

solution of X as following

Xk+1 = arg min
X

Q(X, Yk)

= arg min
X

f(Yk) + 〈∇f(Yk), X − Yk〉

+
Lf

2
‖X − Yk‖2F + μg(X) ,

(24)

where X =

(
A
E

)
and Y =

(
Y A

Y E

)
. When solving Ak+1,

E is assumed to be constant and set as Ek. The solution of
Ak+1 is thus simplified as

Ak+1 = arg min
A

f(Yk) +
Lf

2
‖A− Y A

k ‖2F + μg(A)

+ 〈μλ2(Y
A
k Rc + RtY A

k ) + Y A
k + Y E

k −D, A− Y A
k 〉 .
(25)

Let OA
k = μλ2(Y

A
k Rc + RtY A

k ) + Y A
k + Y E

k −D, we have

Ak+1 = arg min
A

Lf

2
‖A− Y A

k +
1

Lf
OA

k ‖2F + μ‖A‖∗

+ μλ1‖Ek‖1 + f(Yk)− 1

2Lf
‖OA

k ‖2F .

(26)

In Eq. (26), the term μλ1‖Ek‖1 + f(Yk) − 1
2Lf
‖OA

k ‖2F is



constant for the optimization of A. Therefore,

Ak+1 = arg min
A

μ

Lf
‖A‖∗ +

1

2
‖A− (Y A

k −
1

Lf
OA

k )‖2F ,

(27)
and GA

k = Y A
k − 1

Lf
OA

k . According to Proposition 2 (Eq. (17)),

this optimization can be solved by singular value threshold-
ing algorithm as

Ak+1 = US μ
Lf

[S]V T , (28)

where USV T is the SVD of GA
k .

4.4 Optimizing Sparse Error Matrix
Similar to the deduction procedure of A, the optimal so-

lution of E with fixed A set as Ak+1 is inferred as

Ek+1 = arg min
E

Q(E,Yk)

= arg min
E

f(Yk) + 〈Y A
k + Y E

k −D, E − Y E
k 〉

+
Lf

2
‖E − Y E

k ‖2F + μg(E) .

(29)

Let OE
k = Y A

k + Y E
k −D, we have

Ek+1 = arg min
E

Lf

2
‖E − Y E

k +
1

Lf
OE

k ‖2F + μ‖Ak+1‖∗

+ μλ1‖E‖1 + f(Yk)− 1

2Lf
‖OE

k ‖2F .

(30)
In Eq. (30), the term μ‖Ak+1‖∗ + f(Yk) − 1

2Lf
‖OE

k ‖2F is

constant for the optimization of E. Therefore,

Ek+1 = arg min
E

μλ1

Lf
‖E‖1 +

1

2
‖E − (Y E

k −
1

Lf
OE

k )‖2F .

(31)
Let GE

k = Y E
k − 1

Lf
OE

k , then the solution Ek+1 can be ob-

tained according to Proposition 1 (Eq. (16))

Ek+1 = Sμλ1
Lf

[GE
k ] . (32)

As we empirically set an upper bound for μ in the opti-
mization, the formulation (and solution) is robust to grossly
corrupted data, e.g., Gaussian error.

4.5 Implementation Issues
Based on the aforementioned analysis and deduction, we

summarize the procedure for tag refinement via accelerated
proximal gradient method in Algorithm 2. To speedup the
convergence rate, we vary μ in the procedure starting from
a large initial value μ0 and decreasing it geometrically with
each iteration until it reaches the floor μ̄, rather than ap-
plying the proximal gradient algorithm directly to Eq. (18).
We observe that this greatly reduces the number of itera-
tions and therefore, the number of SVD computations. The
general proof of convergence of Algorithm 2 can follow the
general case in [22]. A “grid-search” strategy [26] can be
employed to set λ1 and λ2. We set λ1 ∈ {2−6, 2−4, . . . , 24}
and λ2 ∈ {2−10, 2−8, . . . , 20}. Various pairs of (λ1, λ2) val-
ues were tried and the one with the best performance was
picked. In the experiments, μ0 was empirically initialized as
1.0 and δ = 10−9. The decreasing rate η was set as 0.9.

As one tag unassociated with an image in the user-provided
tag matrix does not simply imply that it is definitely irrele-
vant while perhaps because of missing tags. Therefore, it is

natural to re-initialize D by a simple tag propagation step
before tag refinement. The user-provided tags for each im-
age are propagated based on its k nearest neighbors mea-
sured by visual features. Given image xi and its tag vector
pi where element pij = 1 means tj is associated with xi

whereas pij = 0 if tj is not associated, its k-NN set of im-
ages is denoted as Mi = {(xl

i, p
l
i), l = 1, . . . , k} where pl

i is
the tag vector of image xl

i. The propagated tag vector vi for
image xi is defined as

vi =

k∑
l=0

exp(−‖xi − xl
i‖2/σ2)

c
pl

i , (33)

where c =
∑k

l=0 exp(−‖xi−xl
i‖2/σ2) is a normalization con-

stant. The parameter σ is set as the same as σc in Eq. (4)
and k is empirically set as 0.1n where n is the average num-
ber of images for each tag. Note that x0

i = xi is the image
xi itself.

The low-rank matrix A is the final refinement result, where
each entry produces the confidence score for a tag associated
with an image. To identify the ultimate image tags, we rank
the tags of each image based on their confidence scores and
then retain the top m (e.g., m = 5) ones to be the refined
tags associated with an given image.

Algorithm 2: Tag Refinement via Accelerated Proximal
Gradient Method

Input: User-provided tag matrix D ∈ R
m×n, matrix

Rc ∈ R
n×n and Rt ∈ R

m×m for content
consistency and tag correlation, and weighting
parameters λ1, λ2.

A0, A−1 ← 0; E0, E−1 ← 0; b0, b−1 ← 1; μ̄← δμ0.
while not converged do

Y A
k ← Ak +

bk−1−1

bk
(Ak − Ak−1),

Y E
k ← Ek +

bk−1−1

bk
(Ek − Ek−1).

GA
k ← Y A

k − 1
Lf

[μλ2(Y
A
k Rc +RtY A

k )+Y A
k +Y E

k −D],

(U, S, V )← svd(GA
k ), Ak+1 = US μk

Lf

[S]V T .

GE
k ← Y E

k − 1
Lf

(Y A
k + Y E

k −D), Ek+1 = Sμkλ1
Lf

[GE
k ].

bk+1 ←
1+
√

4b2
k
+1

2
, μk+1 ← max(ημk, μ̄).

k ← k + 1.
end
Output: A← Ak, E ← Ek.

5. EXPERIMENTS
To systematically demonstrate the effectiveness of our pro-

posed tag refinement algorithm, we performed thorough ex-
periments on two large volume image datasets: MIRFlickr-
25K [6] and NUS-WIDE-270K [24]. The MIRFlickr-25K and
NUS-WIDE-270K datasets are both collected from Flickr
website. The MIRFlickr-25K dataset contains 25, 000 im-
ages with 1, 386 tags. The second dataset, NUS-WIDE-
270K, comprises a total of 269, 648 images with 5, 018 unique
tags. Note that the tags in the above two collections are
rather noisy and many of them are misspelling or mean-
ingless words. Hence, a pre-processing was performed to
filter out these tags. We matched each tag with entries in a
Wikipedia thesaurus and only the tags with coordinates in
Wikipedia were retained. Moreover, to avoid sample insuffi-
ciency issue in optimization, we further removed those tags



Table 1: Average performances of different algorithms for tag refinement on MIRFlickr-25K
UT RWR TRVSC LR ES LR ES CC LR ES TC LR ES CC TC

F-score 0.221 0.338 0.412 0.423 0.465 0.463 0.477

whose occurrence numbers are below 50. Consequently, 205
and 521 unique tags were obtained in total for MIRFlickr-
25K and NUS-WIDE-270K, respectively.

To calculate the visual similarities between images, each
image was extracted a 428-dimensional feature vector as
the content representation, including 225-dimensional block-
wise color moment features generated from 5-by-5 fixed par-
tition on image, 128-dimensional wavelet texture features
and 75-dimensional edge distribution histogram features [15,
17]. To evaluate the performance of tag refinement, we eval-
uated the performance on 18 tags in MIRFlickr-25K and 81
tags in NUS-WIDE-270K where the ground-truth annota-
tions of these tags have been provided. The F-score, which
was widely used as evaluation metric of tag refinement [13,
15, 16, 17], was calculated to measure the refinement results
for each tag and average them as the final evaluation.

In the experiments, the datasets of MIRFlickr-25K and
NUS-WIDE-270K were both employed to evaluate the per-
formance of tag refinement. In addition, MIRFlickr-25K was
also utilized for the systematic evaluation of refinement per-
formance against the noise rate, namely to study at least
what percentage of tags are required to be annotated such
that the tags are reasonably refinable, which is an important
index for tag/annotation refinement, yet to our best knowl-
edge, none of previous research effort has ever been devoted
to this study.

5.1 Evaluation of Tag Refinement on
MIRFlickr-25K

In this subsection, we demonstrate the convergence prop-
erty of the optimization process. Two types of results are
reported in terms of the value of objective function Eq. (18)
and the refinement performance (F-score) against iteration
times. Figure 2 shows the detailed results. From Figure 2(a),
we can observe that the objective function converges after
about 30 iterations. For this experiment, the relaxation pa-
rameter μ was fixed as 1.0 to avoid the affection from vary-
ing μ in Algorithm 2. Figure 2(b) shows the refinement
performance against iteration times. It is shown that the F-
score increases steadily as the iteration proceeds and finally
reaches a satisfactory result.

Figure 2: Convergence properties of the optimiza-
tion process. (a) Convergence of the objective func-
tion value vs. iteration times with fixed μ = 1.0; (b)
Convergence of the performance F-score vs. itera-
tion times.

To study the tag refinement performance, three algorithms
were employed as the baselines:

• User tagging (UT): i.e., the original user-provided tags.

• Random walk with restarts (RWR): the tag refinement
algorithm based on random walk with restarts pro-
posed in [13].

• Tag refinement based on visual and semantic consis-
tency (TRVSC): the tag refinement algorithm based
on visual and semantic consistency proposed in [17].

The RWR and TRVSC are the two state-of-the-art algo-
rithms for tag refinement task. In addition, we compared
the performance of our approach with different combina-
tions of regularization terms: 1) low-rank and error spar-
sity only (LR ES), 2) low-rank, error sparsity and content
consistency (LR ES CC), 3) low-rank, error sparsity and
tag correlation (LR ES TC), and 4) all regularization terms
(LR ES CC TC). Figure 3 shows the detailed performances
of image refinement for individual tags between our proposed
approach and the baselines. From Figure 3, we can observe
that the performance of tag refinement from our approach
is much superior over those from user-provided tags, RWR
and TRVSC algorithms. Table 1 further lists the average
performances measured by F-score for different tag refine-
ment schemes.

The experiments were performed in Matlab platform on
a server machine with dual quad-core 3.0GHz Intel Xenon
processors and 32GB RAM. Our proposed approach (here
refers to LR ES CC TC, note that the four versions of our
proposed approach with different combinations of regular-
ization terms are quite similar in computational cost) only
cost 1 hour while, in contrast, RWR algorithm cost nearly
22 hours and TRVSC consumed more than 9 hours. Such
results can be explained by analyzing the details of differ-
ent algorithms. For RWR algorithm, it has to calculate
large amount of visual similarity matrices conditioned on all
the tags of each image against all the other images, which
is highly computation-intensive. TRVSC algorithm equally
needs to perform an intensive optimization during the refine-
ment procedure, of which the algorithmic complexity is of
O(mn2), m and n are the total numbers of tags and images,
respectively. Nevertheless, for our approach, the key com-
putational bottleneck is the SVD required by each iteration,
and the computational cost is lower compared with RWR
and TRVSC. In addition, for the singular value threshold-
ing step at each iteration, it is observed that full SVD com-
putation is not always necessary, especially in the first few
iterations when μk is quite large. A partial SVD [25] can be
used to speed up the optimization procedure, and thus the
computational cost can be further alleviated significantly.

Figure 4 further shows the tag refinement results for some
exemplary images produced by our proposed approach. It
can be seen that our proposed approach can effectively cor-
rect and enrich the imprecise and incomplete image tags. For
example, in Figure 4(c), only the tag“architecture”is related
with the image content while other tags are annotated by
users with their personal intentions. After tag refinement,
the weakly related tags are removed and the close-related
tags, e.g., “building” and “house”, are enriched by consider-
ing the content consistency and tag correlation. Moreover,



Figure 3: Detailed performances for individual tags of different approaches on MIRFlickr-25K dataset.

Figure 4: Exemplar tag refinement results from our proposed approach on MIRFlicker-25K dataset.

the enrichment capacity of our proposed algorithm can be
particularly seen from Figure 4(b) and (h), where only one
tag is associated with each image as original annotations,
and the incomplete tags are finally enriched by our proposed
refinement strategy reasonably.

5.2 Evaluation of Tag Refinement on
NUS-WIDE-270K

NUS-WIDE-270K is one of the most representative large-
scale image datasets. The evaluation on this dataset can not
only verify the algorithmic performance, but also check the
efficiency of our proposed approach on large-scale dataset.
In this evaluation, we only compared the performance of our
proposed tag refinement strategy in different optimization
configurations, as the existing RWR and TRVSC algorithms
are hard to be implemented for large-scale datasets due to
their computation-intensive insights discussed above. The
refinement duration on NUS-WIDE-270K is about 6 hours
for our proposed approach (LR ES CC TC). This demon-
strates that the APG based iterative procedure is efficient
for optimization. Figure 5 shows the detailed tag refine-
ment results for individual tags and Table 2 summaries the
average F-score for all tags. The baseline algorithm UT is
evaluated based on user-provided initial tagging results.

Figure 6 displays some exemplary images with their ini-
tial tags and the refined tags. Such examples demonstrate
the capacity of our proposed approach on large-scale image
dataset. From Figure 6(b), (c) and (d), we can see that the
imprecise tags (e.g., girl, excellence and sigma) are removed
by tag refinement. In Figure 6(g) and (h), the missed tags
(e.g., sky, night, people, and portrait) are enriched. From
these results, we particularly observe that the proposed tag

refinement approach is capable of automatic image annota-
tion. There are about 25K images without any initial tags
in NUS-WIDE-270K data collection. Figure 6(a) and (f)
illustrate two unlabeled images with refined tags. We can
see that the added tags are reasonable regarding the image
contents.

5.3 Evaluation of Refinement Performance
against Noise Rate

In this subsection, we systematically evaluate the tag re-
finement capability of our proposed approach at different
tag noise rate and aim to uncover the breakdown point,
where the performance of tag refinement shall decrease sig-
nificantly. This breakdown point is valuable for guiding
users to provide proper amount of tags, such that reason-
ably accurate tags can be recovered by tag refinement algo-
rithms. However, to our best knowledge, no research effort
has ever been devoted to this study. As our proposed ap-
proach is relatively more efficient and more effective, the
experiments were performed based on our proposed tag re-
finement approach. The MIRFlickr-25K dataset and its tags
with ground truth were utilized for these experiments.

Denote the binary tag membership matrix from the ground
truth as Dg . We simulate the tag noises of different rates as
follows. Assume that Dg is with N1 entries of value 1 and
N0 entries of value 0, and the corresponding user-provided
tag matrix is denoted Du. Based on Dg and Du, we can
calculate two statistics TF1→0 and FT0→1. TF1→0 is the
number of entries with value 1 in Dg whereas with value
0 in Du, and FT0→1 represents the number of entries with
value 0 in Dg whereas with value 1 in Du. Then two statis-
tics can be used to compute the ratio of two types of errors
in human tagging. For a given rate (0 ≤ α ≤ 1) of noise,



Table 2: Average performances of different approaches for tag refinement on NUS-WIDE-270K
UT RWR TRVSC LR ES LR ES CC LR ES TC LR ES CC TC

F-score 0.269 - - 0.299 0.321 0.330 0.353

Figure 5: Detailed performances for individual tags of different approaches on NUS-WIDE-270K dataset.

Figure 6: Examples of tag refinement results by our approach on NUS-WIDE-270K dataset.



Figure 7: Detailed tag refinement results with dif-
ferent tag noise rate by our proposed algorithm on
MIRFlickr-25K dataset. (a) Tag refinement perfor-
mance against different noise rate compared with
simulated noisy user-provided tags; (b) Absolute
degradation gradient of the tag refinement perfor-
mance against different noise rate.

we first randomly select N1→0 = αN1 entries of which the
values are changed from 1 to 0. Then, N0→1 = F T0→1

TF1→0
N1→0

entries with value 0 are randomly selected and adjusted as
1.

Our proposed tag refinement approach is then performed
on the noise-added tag matrix. Figure 7(a) shows the tag
refinement performance against different noise rate. From
these results, we can observe that the tag refinement gener-
ally improves the tag quality by comparing with noise-added
tag matrix. By increasing the noise rate, the tag refinement
performance degrades gradually, and this phenomena is fur-
ther detailed by calculating the curve of the absolute values
of the degradation gradients as shown in Figure 7(b). The
degradation gradient gi is defined as gi = ri − ri+1 where
ri and ri+1 are the refinement performance (F-score value)
against i-th and (i+1)-th configurations of noise rates. From
Figure 7(b), we can conclude that our proposed approach is
robust to the noise when increasing the noise rate from 0.1
to 0.8. When α is increased higher than 0.8, the degrada-
tion gradient is significantly increased, which is right at the
breakdown point as marked in Figure 7(b). This breakdown
point means that, given that the ratio of two types of tag-
ging errors is fixed, at least about 20% tags need be correctly
tagged if we expect to achieve reasonably good performance
in tag refinement task.

6. CONCLUSIONS AND FUTURE WORK
Motivated by the fact that the existing user-provided im-

age tags in public photo sharing websites are imprecise and
incomplete, we proposed an efficient iterative approach for
image tag refinement by pursuing the low-rank, content con-
sistency, tag correlation and error sparsity. Extensive exper-
iments on large-scale image datasets, 25K and 270K respec-
tively, well demonstrated the effectiveness and efficiency of
our proposed algorithm.

Our future work shall focus on two directions. First,
more effective visual features shall be integrated in the cur-
rent framework for measuring the image content consistency.
Second, more efficient iterative optimization procedure shall
be further exploited, such that the proposed algorithm can
work on even larger volume image corpus.
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