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Abstract
In this paper, we show how to reconstruct both 3D shape

and 2D texture of a class of surfaces from a single per-
spective image. We consider the so-called the generalized
cylindrical surfaces that are wrapped with low-rank tex-
tures. They can be used to model most curved building fa-
cades in urban areas or deformed book pages scanned for
text recognition. Our method leverages on the recent new
techniques for low-rank matrix recovery and sparse error
correction and it generalizes existing techniques from pla-
nar surfaces to a much larger class of important 3D sur-
faces. As we will show with extensive simulations and ex-
periments, the proposed algorithm can precisely rectify de-
formation of textures caused by both perspective projection
and surface shape. It works for a wide range of symmetric
or regular textures that are ubiquitous in images of urban
environments, objects, or texts, and it is very robust to par-
tial occlusion, noise, and saturation.

1. Introduction
One of the fundamental problems in computer vision is

to recover from 2D images the 3D shape and pose of objects
in a scene. In the past couple of decades, many effective al-
gorithms and systems have been developed in the structure
from motion (SfM) literature. Most of the methods require
the use of multiple images and rely on correspondence of
feature points, lines, or planes. Nowadays, an increasing
number of applications require us to accurately recover 3D
shape and pose of an object from a single image. For in-
stance, from a single image taken by a mobile phone or an
image on the Internet, we would like to recover the pose and
texture of a building facade for recognition or augmented
reality purposes; or from a single scanned copy, we would
like to rectify the deformation of a book page and recognize
the texts using conventional character recognition systems.

When there is only one image, additional priors are need-
ed in order for the 3D recovery problem to be well defined.
For instance, people have developed effective methods that
make additional assumptions about the shape, say regular or
symmetric [11, 8], or utilize additional information about
the texture on the surface, say homogeneous random tex-

tures [3] or having certain low-rank structures [12], or ac-
tively acquire the shape of the surface using stereo or shape
from lighting techniques [4], or simply make use of the
known flat ground-truth and directly seek the deformation
by optimization and searching techniques [10, 9].

In this paper, we consider the problem of recovering
from a single image the shape and pose of a family of
surfaces called generalized cylindrical surfaces. This is a
very important family of shapes as they describe majori-
ty of curved building facades or deformed texts on curved
surfaces, see Figure 1 for some examples. Such surfaces
also have a very important property: Any generalized cylin-
drical surface is isomorphic to a planar surface.1 All geo-
metric and statistical properties of textures on the surface
are preserved under such an isomorphism. Previous work
has studied how to reconstruct such a surface if the textures
have repetitive symmetric patterns as often seen in build-
ing facades [8, 7] or have a set of dominant parallel lines or
salient boundaries as seen in scanned book pages [2, 6, 5].

While most existing techniques rely on statistical or ge-
ometrical relationships among local feature points or edges
to rectify the surfaces, the recent advances in matrix rank
minimization[1] have enabled people to effectively and ef-
ficiently harness global linear correlation in images. The
work on transform invariant low-rank textures (TILT) [12]
has shown that using such new tools, one can accurately re-
cover the geometry of a planar surface given that the texture
on the surface is low-rank. One distinctive feature of this
new method is its holistic nature: it does not rely on any
local features hence is very stable and robust to all kinds
of nuisance factors in real images (see Figure 8 for some
examples). In addition, the low-rank objective can harness
many types of local or global regularities, including symme-
try, parallelism, and orthogonality hence the method applies
to a wide range of regular structures.

Contributions. In this paper, we show that the same rank-
minimization technique can be applied to effectively rectify
low-rank textures on arbitrary generalized cylindrical sur-
faces. This leads to a very efficient and effective algorithm

1Not every surface has this property. For instance, a sphere cannot be
mapped to a plane without changing the metric on the surface.
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(a) Input Image and Regions (b) Unwrapped Low-rank Texture (c) Input Image and Regions (d) Unwrapped Texture

Figure 1. Unwrapping Textures from Curved Surfaces. Images (a) and (c) are input images; Throughout this paper, windows with red
border are the input region and windows with green border are the converged output of our method; The images (b) and (d) are the textures
in the green window after the surface is unwrapped by our method. (Images in this paper are best viewed in the electronic version.)

Figure 2. A generalized cylindrical surfaceC viewed by a perspec-
tive camera K.

that can accurately recover the 3D shape and 2D texture of
the surface as well as the camera pose. As we will show
with extensive simulations and experiments, the proposed
algorithm works robustly for a fairly large range of view
angle, surface deformation, initialization, and image qual-
ity. It handles both curved building facades and scanned
documents in the same way, and enables a wide range of
applications such as 3D reconstruction, augmented reality,
and object (text) recognition.

2. Problem Formulation
In this section, we describe the mathematical model of

our problem as well as the objective function used to solve
the problem. Before we delve into the detailed mathemati-
cal formulation, Figure 2 illustrates the basic setup: a cylin-
drical surface, denoted as C, and its geometric pose, de-
scribed by a rotation and translation pair (R, T ) ∈ SE(3),
with respect to a perspective camera, with intrinsic parame-
ters K ∈ R3×3.

Model of the Curved Surface. We assume that our sur-
face belongs to the class of generalized cylindrical surfaces.
Mathematically, a surface is called a generalized cylindrical
surface if it can be described as

c(s, t) = tp + h(s) ∈ R3,

where s, t ∈ R,p ∈ R3, p ⊥ h′(s), and h(s) ∈ R3 is
generally a smooth function. So a generalized cylinder is a
special class of ruled surfaces or flat surfaces.

Without loss of generality, we may choose a 3D coordi-
nate frame (X,Y, Z) such that the centerO is on the surface
and Y -axis aligns with the direction of p. We consider a
“rectangular” section of the surface whose X-coordinate is
in the interval [0, Xm] (see Figure 2). Again without loss of
generality, we may assume that the starting point of the sec-
tion isO and the end point is (Xm, 0, 0).2 In this coordinate
frame, the expression of the function h(·) can be simplified
and uniquely determined by a scalar function Z = f(X).
In this paper, we assume that the function can be modeled
by a polynomial up to degree d + 2 (typically we choose
d ≤ 4 unless otherwise stated). So an explicit expression of
the surface can be written as:

Z
.
= fτ (X) = X(X −Xm)

( d∑
i=0

aiX
i
)
, (1)

where we use τ = {a0, . . . , ad} to denote the collection of
parameters. Notice that when all ai’s are zero, the surface
reduces to a planar surface Z = 0, which is considered by
the original TILT paper [12]. We denote the so-defined sur-
face as Cτ , using the subscript τ to indicate its dependency
on the parameters τ .

Model of the Low-rank Texture on the Surface. Now
we assume a 2D function I0(x, y) is defined on the surface
Cτ between the sectionX = 0 andX = Xm which models
a texture wrapped on the surface.3 Without loss of gener-
ality, we may assume that the y coordinate of the texture
function is aligned with the Y -axis, and x is proportional to

2Note that we do not lose any generality by making this assumption as
it helps fix the X-axis of the coordinate frame.

3In our implementation, Xm is always a fixed number, correspond-
ing to the number of pixels of the unwrapped texture image (in the x-
direction). In other words, to generate an texture image, we always uni-
formly take Xm samples along the surface in the x-direction.



(a) Input Image and Regions (b) Initial Input Window I (c) Unwrapped I ◦ gτ (d) Low-rank Part I0 (e) Sparse Part E0

Figure 3. An Example for the Model (6): a deformed low-rank texture I is unwrapped and decomposed into its low-rank part I0 and
sparse part E0 by our algorithm.

the geodesic distance on the surface along the X direction.4

Therefore, if I0(x, y) is a low-rank function as defined in
[12], when the surface Cτ is unwrapped to a planar surface
by an isomorphism, then I0 represents a low-rank texture
defined on that plane.

For any point (x, y) in the texture coordinates, we need
to find its 3D coordinate (Xτ , Yτ , Zτ ) on the cylindri-
cal surface Cτ . Here we use the subscript τ to indicate
the map’s dependency on the parameters τ . Let Lτ

.
=∫Xm

0

√
1 + f ′τ (X)2dX be the geodesic distance from the

origin O to (Xm, 0, 0) on the surface. Then the following
set of equations uniquely determine the isomorphic (wrap-
ping) map between (x, y) to (Xτ , Yτ , Zτ ) that meets above
specifications: x = Xm

Lτ

∫Xτ
0

√
1 + f ′τ (X)2dX,

y = Yτ ,
Zτ = fτ (Xτ ).

(2)

Model of the Camera. Suppose we have a camera with

intrinsic parameters K =

(
fx α ox
0 fy oy
0 0 1

)
∈ R3×3 and its posi-

tion with respect to the surface coordinate frame (X,Y, Z)
is specified by the Euclidean transform (R, T ) where R ∈
R3×3 and T ∈ R3. With this camera, we take an image
I(u, v) of the surface Cτ .

A point (on the surface) with 3D coordinates
(Xτ , Yτ , Zτ ) is mapped to the image pixel coordinates
(u, v) as(

xn
yn

)
=

(
R1,1Xτ+R1,2Yτ+R1,3Zτ+T1

R3,1Xτ+R3,2Yτ+R3,3Zτ+T3
R2,1Xτ+R2,2Yτ+R2,3Zτ+T2

R3,1Xτ+R3,2Yτ+R3,3Zτ+T3

)
, (3)uv

1

 = K

xnyn
1

 =

fxxn + αyn + ox
fyyn + oy

1

 . (4)

Recovery via Robust Rank Minimization. The image
I(u, v) is a transformed version of the low-rank texture
I0(x, y) on the cylindrical surface Cτ . Let us denote the

4When the parameters of the curve change, the geodesic distance also
changes. Nevertheless, such a parameterization always ensures that the
unwrapping be isomorphic (up to a constant scale).

compounded map from the texture coordinate (x, y) to the
image coordinate (u, v) as

gτ (x, y) : (x, y) 7→ (u, v),

which depends on the parameters τ . Then ideally, we have
I ◦ gτ = I0. However, in practice, the image can be a
corrupted version of the low-rank texture, say due to occlu-
sion etc, and this equation may not hold for a small fraction
of the pixels. In other words, a more robust model for the
imaging process is:

I ◦ gτ = I0 + E0 (5)

for some sparse matrix E0. Figure 3 illustrates this model
with a real example.

Therefore, given an image I , our goal is to recover all
the unknown parameters τ (such as the polynomial coef-
ficients), and rectify the image using gτ so as to recover
the low-rank texture I0, despite some sparse errors E0. Be
aware that if the camera calibration K and pose (R, T ) are
unknown or only partially known, they are also part of the
parameters τ that need to be recovered.

Similar to TILT, in order to recover the low-rank compo-
nent I0 and the sparse component E0, we may aim to solve
the following optimization problem:

min
τ,L,S

‖L‖∗ + λ‖S‖1 s.t. I ◦ gτ = L+ S, (6)

where L is the estimate for the low-rank component and S
for the sparse component.

3. Solution and Algorithm Details
Although the objective function of the above optimiza-

tion problem is convex, its constraint I ◦ gτ = L + S is
highly nonlinear. Hence a common strategy is to linearize
the constraint around the current estimate of the parameters
τ and update the estimate iterative by solving the linearized
version repeatedly:

min
∆τ,L,S

‖L‖∗+λ‖S‖1 s.t. I ◦ gτ +J∆τ = L+S, (7)

where J is the Jacobian of the image against the unknown
parameters τ . So, as long as we can evaluate the Jacobian at



Figure 4. Convergence Path for Optimizing (6). We plot the value of the objective function against the number of iterations, as well as
how the texture deforms at different stage of the process.

each iteration, the linearized problem is a convex program.
We could use a similar ADM algorithm for TILT [12] for
solving this convex program and then updating the estimate
of τ ← τ+∆τ for the original problem (6). Figure 4 shows
a representative convergence path of solving the optimiza-
tion (6) for the image in Figure 1(a) with a very challenging
initialization. With a more reasonable initialization, it nor-
mally takes much less (typically 20-30) iterations for the
algorithm to converge. For a window of size 80 × 80, it
takes about 10 to 20 seconds in our Matlab implementation.

3.1. Jacobian against Shape Parameters

Hence, the problem really boils down to how to evaluate
the Jacobian of the image I against all the unknown param-
eters τ . Notice that the dependency of I on τ is all through
the nonlinear map gτ , hence the Jacobian is:

J =
∂I ◦ gτ (x, y)

∂τ
= ∇I · ∂gτ (x, y)

∂τ
, (8)

where ∇I is simply the gradient of the image I w.r.t. the
image coordinates gτ (x, y) = (u, v). It remains to com-
pute:

∂gτ (x, y)

∂τ
=

∂

∂τ

[
fxxn + αyn + ox

fyyn + oy

]
=

[
fx α
0 fy

] [
∂xn
∂τ
∂yn
∂τ

]
.

We continue to compute:

∂xn
∂τ

=
R1,1

∂Xτ
∂τ

+R1,3
∂Zτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)

−
R3,1(R1,1Xτ +R1,2Yτ +R1,3Zτ + T1)

∂Xτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)2

−
R3,3(R1,1Xτ +R1,2Yτ +R1,3Zτ + T1)

∂Zτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)2
,

∂yn
∂τ

=
R2,1

∂Xτ
∂τ

+R2,3
∂Zτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)

−
R3,1(R2,1Xτ +R2,2Yτ +R2,3Zτ + T1)

∂Xτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)2

−
R3,3(R2,1Xτ +R2,2Yτ +R2,3Zτ + T1)

∂Zτ
∂τ

(R3,1Xτ +R3,2Yτ +R3,3Zτ + T3)2
,

where one should notice that by choice Yτ does not depend
on τ .

Since ∂Zτ
∂τ = ∂fτ (Xτ )

∂τ = ∂fτ
∂τ |X=Xτ + f ′τ (Xτ )∂Xτ∂τ . So

we only need to compute ∂fτ
∂τ and ∂Xτ

∂τ . From the definition
of Xτ in (2), we have:∫ Xτ

0

√
1 + f ′τ (X)2dX =

x

Xm
Lτ . (9)

So differentiating both sides of (9) with respect to τ , we
get:

√
1 + f ′τ (Xτ )2

∂Xτ
∂τ

+

∫ Xτ

0

f ′τ (X)√
1 + f ′τ (X)2

∂f ′τ (X)

∂τ
dX

=
x

Xm

∫ Xm

0

f ′τ (X)√
1 + f ′τ (X)2

∂f ′τ (X)

∂τ
dX.

So finally we have

∂Xτ
∂τ

=

x
Xm

∫Xm
0

f ′τ (X)√
1+f ′τ (X)2

∂f ′τ (X)

∂τ
dX−

∫Xτ
0

f ′τ (X)√
1+f ′τ (X)2

∂f ′τ (X)

∂τ
dX√

1 + f ′τ (Xτ )2
,

(10)
where ∂

∂τ against all the parameters {ai} in τ :

∂fτ (X)

∂ai
= X(X −Xm)Xi,

∂f ′τ (X)

∂ai
= (2X −Xm)Xi +X(X −Xm)iXi−1.

By now we have all the ingredients for evaluating the Jaco-
bian (8).

As we see from the above derivation, in order to evaluate
the Jacobian, we need to evaluate two integrals in equation
(10), which do not have closed-form expressions. Fortu-
nately, we only need to compute the Jacobian once for each
iteration at the current estimate τ . So we can simply eval-
uate these two integrals numerically. Compared to the rest
of the algorithms where we need to compute SVD of the
low-rank matrix L repeatedly, the cost for evaluating the t-
wo integrals is almost negligible and it does not affect the
overall efficiency of the algorithm at all.



3.2. Updating Camera Parameters

In the above derivation, we have assumed that the camera
parameters K and (R, T ) are fixed. So we have to know K
and (R, T ) in advance.

Remember that as input to our algorithm, we require the
user to specify a 4-sided polygon on the surface which are
supposed to correspond to a “rectangular” region on the
cylindrical surface as specified in Section 2. Ideally, this
polygon should correspond to a rectangle in 3D, and we
can use the orthogonality of its two sides to impose one lin-
ear constraint on the camera intrinsic parameters. Also, we
can calculate the camera pose (R, T ) from the homography
between the rectangle and the image plane.

However, in practice, the four corners given by the user
can be significantly off from such an ideal rectangular re-
gion. In such situation, we may well not even get a valid
estimation of K, let alone (R, T ). Fortunately focal length
can be fetched from the EXIF information contained in the
image file if it’s taken by a modern digital camera. Fur-
ther if we make fairly realistic assumption such as the pixel
been square and the principle point being at the center of the
image, we can obtain an approximate estimate of K, good
enough for our purpose. Once K is known, the values for
(R, T ) can be derived from the homography between the
rectangular region and the image. Be aware that the initial
estimate of (R, T ) can be incorrect as the initial window
can be far off from a true rectangle in 3D. Hence we need
to adjust them so that the window indeed corresponds to a
rectangular region on the cylindrical surface. Thus, in our
algorithm, we treat (R, T )5 as part of the unknown param-
eters τ and update their estimates at each iteration too. The
Jacobian of the image I against these parameters are fairly
easy to derive and its has been used in the original work of
TILT [12]. Due to the limit of space, we here do not elabo-
rate.

As we will see from extensive simulation and experimen-
tal results, the algorithm has a significantly large region of
convergence for the camera parameters. The initial input
window does not have be very precise in order for the algo-
rithm to converge onto an accurate solution.

4. Simulations and Experiments
In this section, we systematically evaluate the perfor-

mance of the proposed algorithm on both synthetic and real
images. Notice that our problem is highly nonlinear and the
proposed algorithm is greedy in nature. So in order for the
algorithm to be useful in practice, it needs to have a large
range of convergence. We first provide careful simulations

5We parameterize R by Rodrigues formula. To prevent the algorithm
from shrinking to a point or exploding indefinitely, we assume that the
distance between the camera and the surface is a fixed constant, i.e., the z-
coordinate of T is fixed. This assumption is reasonable because it removes
the ambiguity in the scale from a single image.

Figure 5. Convergence Range of the Algorithm: Success rates
(y-axis) of the algorithm versus view angle (left) and curve curva-
ture (right).

to validate the surprisingly large working range of the al-
gorithm, then we test it on a variety of real images. Some
comparisons with other related work and potential applica-
tions are also presented.

4.1. Evaluation on Synthetic Images

In this section, two simulations are carried out to ex-
amine the convergence range of the proposed algorithm.
We synthesize a section of curved surface Cr with a stan-
dard checker-board texture (against a background of ran-
dom noise). Standard ray-tracing techniques are used to
generate all synthetic images of the surface from different
viewpoints. See Figure 5 for examples.

Range of View Angle. First we study the affect of chang-
ing the view direction. We first place the textured cylin-
drical surface Cr in front of the camera. The initial view
direction is aligned with the surface normal, and then rotate
the camera along the X-axis by an angle θ. As the rotation
angle increases, we are simulating the effect of looking up
a curved facade of a skyscraper with increasing tilt.

To enumerate θ, we divide [0, π/2] uniformly into 18 in-
tervals. In each interval i, we select N samples of θ accord-
ing to i.i.d uniform distribution, then test on how many sam-
ples, say Ni, the algorithm converges to the ground truth.
So Ni/N approximates the probability that the algorithm
succeeds in region i.

The plot of success rates is shown in Figure 5 left. From
it, we can see that the algorithm succeeds with θ up to 60◦.
Thus the algorithm tolerates a surprisingly large range of
viewing direction.

Range of Curvature. Finally, we evaluate how “curved”
a surface can be when our algorithm still rectifies it cor-
rectly. In this simulation, we change only one parameter
that controls the curvature of a surface Cτ with fτ (X) =
X(X −Xm)(a0 + a1X). We set a1 to be a small and fixed
value in order to give a realist shape to the curve. Then we
enumerate a0 in the range [0,−0.04] and test the algorith-
m in a similar fashion with the previous simulations. The



(a) Input Image (b) Unwrapped (c) Input Image (d) Unwrapped

(e) Input Image (f) Unwrapped Texture

(g) Input Image (h) Unwrapped Texture

(i) Input Image (j) Top: initial; Bottom: unwrapped

Figure 6. Rectification of Building Facades: Images on the left
column are the input, windows with red border are the original
input, windows with green border are the output of our method;
Images on the right are the recovered low-rank textures (in the
green window after the deformation undone by our algorithm).

result is shown in Figure 5 right.

4.2. Experiments on Real Images

For all experiments, red windows are the input and green
windows are the output.

Rectification of Curved Building Facades. We apply
our algorithm to some representative images of curved
building facades. The results are shown in Figure 6. We
see that our method works well on a very diverse range of
curved surfaces with all kinds of regular textures.

Stability to Initial Windows. One may be curious about
how precise the user needs to specify the initial windows
in order to obtain such good results that we have seen so
far. For instance, what would happen if the user specifies a
window far from a rectangular region on the surface? Using
the same image we have seen in Figure 1(a), we show how
the algorithm performs with different initial input windows
in Figure 7.

(a) Input (b) Unwrapped (c) Input (d) Un-
wrapped

(e) Input (f) Unwrapped (g) Input (h) Unwrapped

Figure 7. Stability to Initial Windows. These examples show the
stability of our algorithm to initial windows. (a)–(f) show three
examples that the algorithm succeeds despite very bad initializa-
tions. (g)-(h) shows the only failed case when the initial window
is too narrow and extreme.

(a) Input Image (b) Unwrapped (c) Input Image (d) Unwrapped

(e) Input Image (f) Unwrapped Texture

(g) Input Image (h) Top: initial; Bottom: unwrapped

Figure 8. Robustness of our Method. This figure includes many
challenging cases. The first one is partially occluded by tree
branches. The second one is heavily over-exposed. The third one
is taken at night and with two contrasting textures. The fourth one
is very hazy. The results demonstrate the robustness of our algo-
rithm to bad image quality.

Robustness to Corruptions. Examples shown in Figure
8 demonstrate the exceptional robustness of the proposed
method: the same algorithm (with exact the same settings)
works equally well for images that are over-exposed under
bright daylight, under-exposed at night, noisy in a foggy
day, or partially corrupted by occlusion.



(a) Symmetry Lattice Detected (b) No Symmetry Lattice Detected

Figure 9. Comparison with Symmetry Detection Method in [8]:
Left: a symmetry lattice detected by [8] on a building facade with
clear repetitive patterns and benign view angle for the image in
Figure 1(a); Right: but failed on a facade with a more general
regular pattern for the image in Figure 3(a).

(a) Input Image (b) Unwrapped (c) Input Image (d) Unwrapped

(e) Input Image (f) Unwrapped (g) Input Image (h) Unwrapped

Figure 10. Rectification of Deformed Texts on Curved Surfaces.

Comparison with Symmetry Detection. Figure 9 shows
the results of [8] on some of the images we have used. As
we see, that method works on facades with clear repeated
patterns, but failed on more general symmetric or regular
patterns such as the one shown in Figure 3 and most of the
images shown in Figure 6 and Figure 8. Many of the failures
are due to lack of symmetry, large perspective distortion, or
significant curvature. Since our method does not rely on
symmetry detection, the results from our method can cer-
tainly benefit symmetry detection methods such as [8] since
symmetry detection on the rectified textures would be an
easier problem.

Rectification of Deformed Texts. Our algorithm not on-
ly works very well on all kinds of curved building facades,
but also works on various deformed texts on curved sur-
faces such as texts on an opened book or labels on a bottle.
Some representative results are shown in Figure 10. Clearly,
our method can significantly improve the recognition per-
formance of OCR engines for such deformed texts. Notice
that from the examples on building facades and texts, our
algorithm works for both convex and concave surfaces e-
qually well.

Figure 11 compares our method with another recen-

Figure 11. Comparison with the Method in [5]: Images on the
left show the results of [5] on two examples: the bottom one is
not precisely rectified. Images on the right show our results on the
same images with similar inputs.

Figure 12. Shape from Low-rank Textures: 3D shape of the sur-
face and camera pose (indicated by small pyramids) from a single
image. Left: image in Figure 6(i) and Right: image in Figure 3(a).

t method for rectifying documents [5]. That method relies
on image segmentation and hence requires the region to be
rectified has strong edges (such as the example shown in
Figure 11 top). However, it does not work so well on images
of texts whose boarders are not so evident (as the example
in Figure 11 bottom shows). Nevertheless, our method re-
lies on the regularity of the texture inside the region. In a
way, our method is rather complementary to that work.

4.3. Applications and Extensions
Shape from (Low-rank) Textures. With all geometric
information recovered from our algorithm, it’s not difficult
to retrieve the camera position (R, T ) and the curved sur-
face shape c(s, t) (from fτ (X)) in 3D that is consistent with
the given image. Some representative results are shown in
Figure 12. Hence, our method will certainly be useful for
reconstructing 3D models of urban scenes where curved fa-
cades are abundant.

Augmented Reality. As we now can precisely estimate
and then undo the distortion of the low-rank texture I0(x, y)
caused by the perspective projection and the curved surface,
we can perform many interesting editing or processing tasks
on the given image and surface. For instance, we can super-
impose virtual objects on the image or replace the texture
of the surface while respecting all the camera and scene ge-
ometry. Please refer to Figure 13 for some illustrative ex-
amples.



Figure 13. Augmented Reality and Image Editing. Super-
impose new textures onto curved facades.

Challenges and Limitations. Although our algorithm
works very robustly under very broad conditions and for
images of a wide range of curved surfaces and textures, it
may fail to generate accurate rectification if the conditions
are too challenging or the polynomial surface model (1) is
no longer valid. Figure 14 shows some of the cases: For the
first example, the region is too large and the surface shape
may have been beyond what can be approximated by the
model – the unwrapping result is not as good as that in Fig-
ure 8 for a smaller region on the same surface. The second
example is a facade consisting of three adjacent planes –
our method approximates such a surface with a smooth sur-
face and the rectification result is reasonable but not perfect.
The third example contains two pieces of smooth surfaces
and our model/algorithm failed to work on such an non-
smooth surface. Hence, one possible topic for future study
is how to extend the method to work on such piecewise-
linear or piecewise-smooth surfaces, or even generalize to
other classes of surfaces beyond generalized cylinders.

5. Conclusions and Discussions

In this paper, we have presented a new method for recti-
fying low-rank textures on a generalized cylindrical surface
from a single perspective image. The method relies on the
new rank minimization techniques and has been evaluated
with extensive simulations and experiments for its effective-
ness and efficiency. Our method can accurately recover the
shape of the surface and the pose of the camera hence it is
very useful for 3D reconstruction of buildings. The recov-
ered undistorted textures can be very useful for many tasks
such as texture editing, synthesis, and text recognition. Our
method currently is limited to handle a smooth cylindrical
surface and in the future, we would like to investigate how
to extend it to piecewise smooth surfaces.
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