Annotation-Free and One-Shot Learning for Instance Segmentation of Homogeneous Object Clusters

Zheng Wu[†], Ruiheng Chang[†], Jiaxu Ma[†], Cewu Lu[†], Chi-Keung Tang[‡]

[†]Shanghai Jiao Tong University [‡]HKUST

Email: <u>14wuzheng@sjtu.edu.cn</u>

Jul. 18th 2018 @ IJCAI

Background

Background

homogeneous object clusters (HOC)

- objects of the same class
- densely distributed, highly occluded

Background

Mask R-CNN

COCO: ~ 900k instances

Mask R-CNN

thousands of **annotated** images of pingpong balls

+

Can we do it cheaply?

Our Pipeline

End-to-End Training

instance segmentation model

Structural Constraint

End-to-End Training

instance segmentation model

Structural Constraint

Illumination Transformation

End-to-End

11

Illumination Transformation

(a)

(b)

detail removing: apply large kernel Gaussian smoothing

$$V_{syn} = V_{syn} - \text{mean}(V_{syn}) + blur(V_{real})$$
$$V_{real} = V_{real} - \text{mean}(V_{real}) + blur(V_{real})$$

(d)

12

End-to-End Training

Dataset

- 10 classes
- 200 images in total
- 18.3 instances per image
- different backgrounds and lighting condition

Baselines

Single: images containing single object as training data

Random: randomly synthesized images as training data

Random+illumination: applies illumination transformation method to transform the synthetic data generated in **Random**

Random+structure: uses the method proposed in "Structural Constraint" section to generate structurally realistic training data

Experiments

Table 1: Results on mAP^r @0.5 on our dataset. All numbers are percentages %.

	badminton	battery	clothespin	grape	milk	hexagon nut	orange	ping pong	tissue	wing nut	mAP
Single	12.1	23.2	4.4	19.3	8.2	17.5	17.6	14.2	13.1	21.1	15.1
Random	40.6	50.9	38.4	50.8	26.7	52.9	63.8	67.2	83.9	32.9	50.8
Random+illumination	44.6	48.7	34.3	41.6	26.0	46.3	54.9	64.2	68.9	39.4	46.9
Random+structure	34.2	39.3	52.6	72.7	31.3	62.8	90.3	81.7	90.7	23.7	57.9
Ours	53.0	69.5	67.7	72.5	52.6	73.6	90.0	81.2	90.4	48.4	69.9

Table 2: Results on mAP^r @[0.5:0.95] on our dataset. All numbers are percentages %.

	badminton	battery	clothespin	grape	milk	hexagon nut	orange	ping pong	tissue	wing nut	mAP
Single	8.7	21.2	2.0	16.8	5.0	15.2	16.0	11.8	9.9	18.8	12.5
Random	33.1	44.7	29.3	44.8	20.9	43.4	56.3	59.5	68.4	27.7	42.8
Random+illumination	36.5	43.2	28.4	37.2	20.8	38.3	50.4	56.4	56.8	35.5	40.4
Random+structure	29.8	36.5	36.7	66.5	22.0	45.2	83.8	76.4	80.4	20.7	49.8
Ours	44.2	60.3	46.2	65.4	41.3	54.8	84.0	75.6	80.4	39.3	59.2

Qualitative Results

Image

Single

Random

Ours

Groundtruth

Thanks Q&A