
W1J.4.pdf OFC 2019 © OSA 2019

Achieving Ultralow-Latency Optical Interconnection for

High Performance Computing (HPC) Systems by Joint

Allocation of Computation and Communication Resources

Ruijie Luo1,2, Yufang Yu1,2, Nan Hua1,2, Zhizhen Zhong1,2, Jialong Li1,2, Xiaoping Zheng1,2, Bingkun Zhou1,2
1. Beijing National Research Center for Information Science and Technology（BNRist）, Beijing, 100084, P. R. China

2. Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China

{huan, xpzheng}@mail.tsinghua.edu.cn

Abstract: We propose joint allocation of computation resource and optical transmission time slices

to realize ultralow-latency optical interconnection in time-synchronized HPC systems. Results show

that over 80% reduction in buffering time is achieved at high load.
OCIS codes: (060.4250) Networks; (060.4256) Networks, network optimization;

1. Introduction

To fulfill the rapid increasing requirements of scientific computing such as climate modeling, earth subsurface

modeling and phase-field simulation, high performance computing (HPC) systems are being built at the scale of

hundreds of thousands of computing/storage nodes [1, 2]. It is a big challenge to build low-latency high-bandwidth

interconnection network between such huge amounts of HPC nodes. Current designs for HPC interconnection

networks are based on electronic packet switching (EPS), which suffers from the weakness in capacity, end-to-end

latency and energy consumption due to the electronic processing and buffering at intermediate switching nodes. Thus,

the EPS interconnection network becomes a bottleneck for improving the performances of HPC systems [2, 3].

Introducing optical circuit switching (OCS) technologies into HPC systems provides the potential benefits of

breaking through the bottlenecks of EPS by enabling low-latency optical bypass. In literatures [2] and [3], researchers

have proposed OCS-involved interconnection architectures in HPC systems to enhance network capacity and reduce

end-to-end latency. However, these architectures are not able to provide fine-grained connections, which will lead to

the shortage of optical channels and inefficient network utilization. Recently, researchers in works [4, 5] have proposed

a fine-grained optical time slice switching (OTSS) method, which can provide abundant fine-grained low-latency

optical channels based on network time synchronization [6] for HPC systems. However, the mismatch between traffic

patterns and communication resources leads to extra buffering time and longer run-time for all jobs.

In this paper, we propose an OTSS-based joint allocation of computation and communication resources (JACC)

method for ultralow-latency optical interconnection in HPC systems. To reduce the total run-time for HPC, we propose

an integer programming (IP) model to minimize the mismatch between the job schedule and time slices transmission.

The simulation and experiment results show that over 80% buffering time can be reduced at high load and 50-ns-level

end-to-end latency is achieved.

2. JACC method for HPC system

Figure 1 presents the OTSS-based HPC architecture. HPC jobs are broken down into small tasks and each of the tasks

are executed on a single computing group. There are dependency relationships [7] between tasks which require the

tasks to run in sequence, and the backward tasks should wait until receiving the results of the forward tasks. The

transmission tasks aim to transmit the result of the forward computation tasks. The job schedule on computing groups

will form a traffic matrix which consists of transmission tasks for the HPC interconnection network. According to the

OTSS method, periodic time slices will be allocated for the transmission tasks.

Fig. 1. OTSS-based HPC architecture Fig. 2 JACC method

1

Source Group

D
e
s
ti
n
a
ti
o
n
 G

ro
u
p

 ... Time

No Traffic High TrafficLow Traffic

One
Cycle

...

1

Job 1

Task1 (G8)

Task2 (G1)...

Job 2

Task3 (G8)

Task4 (G3)...

...

Computing Jobs & Tasks

...

Switching network

G1 G2 G3 G8

Job
Scheduling

T
ra

n
s
m

is
s
io

n

S
c

h
e
d

u
li
n

g

Computing
Groups

 Traffic Matrix Transmission Schedule

T1 T2 T3 T4 T5

2
3

4
5

6
7

8

2 3 4 5 6 7 8

(Time slices)

Src. Group

Comm.
Resources

Buffering time

 Traditional Schedule

Task1

Reduced run-time Computation
task

Available
comm. resource

Unavailable
comm. resource

Transmission
task

Task2Waiting
timeDst. Group

Time

Trans. time

 JACC Schedule
Src. Group

Comm.
Resources

No buffering time

Task2Dst. Group
Time

Trans. time

Task1

This work was supported in part by projects under NSFC grants No. 61871448 and 61621064.

JMAYFI
2019 The Author(s)

W1J.4.pdf OFC 2019 © OSA 2019

In traditional scheduling method, the mismatch between job schedule and transmission schedule may lead to extra

buffering time for transmission tasks as shown in Fig. 2. To reduce the end-to-end latency, the JACC method jointly

allocates the computation and transmission tasks to minimize the buffering time, and further reduces the total run-

time of the HPC jobs.

3. Integer programming model for JACC

To minimize the total run-time of the HPC jobs, we propose an IP model for JACC. Based on the fact that the

transmission delays between computing groups (100-ns-level) are far less than the length of time slices (100-us-level),

we ignore the transmission delay in our model for simplicity. Moreover, the computing times of the tasks are also

organized into time slices.

 Given:

G(N, E) : the HPC switching network topology, where

N and E denote the set of nodes and links, respectively.

tm : denotes the mth computation task.

T : set of computation tasks, tm∈ 𝑇.

eij : denotes the edge from node i to node j (i, j ∈ 𝑁).

D(tm) : set of time slices required for executing task tm.

cg: denotes the serial number of a computing group.

CG : set of computing groups, cg ∈ 𝐶𝐺.

ε(x) : the step function which takes the value of one if

x is more than zero, otherwise takes the value of zero.

R : set of dependency relationships of the tasks.

TS(R) : set of time slices required in the transmission

tasks between the related tasks in R.

(tm, tn) : denotes the transmission task between task tm

and task tn, where tm is the forward task and tn is the

backward task ((tm, tn)∈ 𝑅, tm∈ 𝑇, tn∈ 𝑇).

TN : set of time slices in one cycle.

ts : denotes the serial number of a time slice in one

cycle.

k : denotes the time slices required in transmission

task (tm, tn) (k = TS(tm, tn)).

 Variables:

, , sC mt cg t : binary decision variable, which takes the value of one if computing group cg runs task tm in time slice ts.
(,), ,L m n

ij

t t k ts

e : binary decision variable, which takes the value of one if the transmission task (tm, tn) occupies time slice ts

on link eij.

Z : an integer variable, which represents the serial number of the time slice when the last task is finished.

 Optimize:

 Minimize , , s , , s+1
,

max (((C C)))m m
m

t cg t t cg t
t T cg CG ts TN

Z ts
     

   (1)

 Constraints:

, , sC 1, ,m
m

t cg t
t T

ts TN cg CG
 

    (2) , , sC 1, ,mt cg t m
cg CG

ts TN t T
 

    (3)

, , s
cg

C (),mt cg t m m
CG ts TN

D t t T
   

    (4) , , s , , s+1(C C) 2,m mt cg t t cg t m
cg CG ts TN

t T
   

     (5)

(,), ,

(,)

L 1, ,m n

ij
m n

t t k ts
ije

t t R

e E ts TN
 

    (6) (,), , (,), , 1(L L) 2, ,(,)m n m n

ij ij

t t k ts t t k ts
ij m ne e

ts TN

e E t t R

 

     (7)

, , s

(,), , (,), ,

, , s

C 01,

L L 1, C 0

0,

(,) , ,

m

m n m n

ij ji n

t i cg t

t t k ts t t k ts

e e t i cg t
j N j N

m n

else
t t T cg CG ts TN




  




   


   

  (8)

, , s

(,), , (,), ,

, , s
N

n

C 0
,

(L L) , C 0

0,
(,)

m

m n m n

ij ji n

t i cg t
ts TN

t t k ts t t k ts

e e t i cg t
ts TN j j N ts TN

m

k

k

else
t t R


 


     





   


 



    (9)

, , s , , s+1 , , s+1 , , s((C C) s) k ((C C)), (,)n nm mt cg t t cg t t cg t t cg t m n
cg CG ts TN cg CG ts TN

t ts t t R 
       

           (10)

(,), , (,), , 1
, , s , , s+1((C C) s) ((L L)), (,) ,m n m n

m m ij ij

t t k ts t t k ts
t cg i t t cg i t m ne e

ts TN ts TN j N j N

t ts t t R cg CG  
 

     

           (11)

(,), , (,), , 1
, , s , , s-1((C C)) ((L L)), (,) ,m n m n

n n ij ij

t t k ts t t k ts
t cg i t t cg i t m ne e

ts TN ts TN j N j N

ts ts t t R cg CG  
 

     

           (12)

The optimization objective function in (1) aims to minimize the total run-time for all jobs. Constraints (2) and (3)

guarantee no conflict in computation resources and the atomicity of tasks. Constraint (4) ensures that all tasks can be

finished. Constraint (5) guarantees the continuity in time for computing. Constraint (6) ensures no conflict in

communication resources. Constraint (7) guarantees the continuity in time for communication. Constraints (8) and (9)

allocate the routing paths and time slices for all the transmission tasks. Constraint (10) ensures the dependency

between tasks, which infers that the backward tasks will not be executed until receiving the results of the forward

tasks. Constraint (11) ensures that the transmission tasks start after the forward computation tasks are finished.

Constraint (12) ensures that the transmission tasks are finished before the backward computation tasks start.

4. Simulations and experiments

W1J.4.pdf OFC 2019 © OSA 2019

To evaluate the latency performance of the proposed JACC method, we conduct a simulation under a 16-nodes fat-

tree topology, which is simplified from Tianhe Express-2 HPC system [8]. Under the constraints of the JACC IP

model, we calculate the average buffering time of the HPC system. The lengths of time slices for transmission and

computation are both set to 100 us. As shown in Fig. 4, the proposed JACC method reduces over 80% average

buffering time at high load compared with the traditional one.

Fig. 3. Simplified Tianhe Express-2 topology for simulation Fig. 4. Average buffering time vs. load

A prototype experiment is carried out to evaluate the performances of the JACC method as shown in Fig. 5. The

experiment system consists of four computing groups, two level-1 switches (SW1 and SW3) and one level-2 switch

(SW2). Four computing jobs which contain 8 tasks have to be scheduled into the computing groups. Traditional job

scheduling method will cause link congestion between SW1 and SW2 leading to a 100-us buffering time. The JACC

method optimizes task allocation and successfully avoids link congestions. The DSO screen shots in Fig. 5 present the

transmission time slices and show that 57.52-ns end-to-end latency with zero buffering time is achieved through JACC.

Fig. 5 Prototype experiment of JACC

5. Conclusions

We propose an OTSS-based JACC method for ultralow-latency optical interconnection in HPC systems. An IP model

for JACC is proposed to minimize the mismatch between the job schedule and time slices transmission. In this way,

the end-to-end latency brought by buffering time can be significantly reduced. The simulation and prototype

experiment results show that over 80% of the buffering time can be reduced at high load, and the 50-ns-level end-to-

end latency is achieved without buffering in the intermediate switching nodes.

6. References

[1] H. Fu, et al., SCIS, 59(7): 072001, 2016. [5] N. Hua, et al., in Proc. ONDM, 1-4, 2017.

[2] J. Barker, et al., in Proc. Conf. on Supercom., SC’05:16-38, 2005. [6] R. Luo, et al., in Proc. OFC, M2E.6, 2018.

[3] M. Cyriel, et al., in Proc. High Perf. Interconnects, 29-35, 2005. [7] P. Brucker, “Scheduling Algorithms”, Springer, 2007.
[4] N. Hua and X. Zheng, US Patent 9,608,763, 2017. [8] X. Liao, et al., SCST 30(2): 259-272, 2015.

G1

Computing

Groups

Level 1

Switches

Level 2

Switches

G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16
10 20 30 40 50

0

50

100

150

200

250

300

350

400

A
v

e
ra

g
e

 b
u

ff
e

ri
n

g
 t

im
e

 (
u

s
)

Network load (%)

 Traditional method

 JACC method

Over 80% reduction

Central Controller

DSO

Server 4(Group 4)

Server 1(Group 1)

5m
PLZT SW

Controller

2X2 PLZT SW

 SW2

PLZT SW

Controller

2X2 PLZT SW

 SW3

PLZT SW

Controller

2X2 PLZT SW

 SW1

5
m

PD

PD

EDFA

EDFA

5m

PD

Experimental Setup

5m

Server 2
(Group 2)

Port 1

Port 2

Port 3

Port 4

Server 3
(Group 3)

Group 1

Level 1

switches

Group 2

Level 2

switches

Group 3 Group 4

Computing

groups

 DSO

EDFAs
PLZT SWs

PLZT SW
Controller

 Central
Controller

Servers

Fibers PDs

Waiting time Computation Communication Buffering time

Job 1

Group 1
Group 2
Group 3
Group 4

Job 2

Job 3 Job 4

Task 1 Task 2 Task 3 Task 4

Task 5 Task 6 Task 7 Task 8

Group 2
Group 3
Group 4

Group 1Task 1 Task 5

Task 3 Task 7

Task 2
Task 4

Task 6
Task 8

Task 3

Task 1

Task 7
Task 4
Task 2

Task 5

Task 6
Task 8

JACC schedule Traditional schedule

Buffering time caused
by link congestion

Experimental
Jobs

Job Schedules

Experimental
schedule

DSO screen shots

HPC interconnection network

Port 1

Port 2

Port 3

T3->T4 T7->T8

 T1->T2 T5->T6

One cycle

T3->T4 T7->T8

End-to-end latency:
57.52 ns

Port 4

Port 1

Port 3

T3 -> T4Trans. time slice

Zero buffering time

State of task 3

1 2 3 4 5 6 7 8 9 10 11 12 13 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

 SW1 SW3

 SW2

Link congestion in

traditional schedule

T: Task

