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Abstract. Although de novo motifs can be discovered through mining
over-represented sequence patterns, this approach misses some real mo-
tifs and generates many false positives. To improve accuracy, one solution
is to consider some additional binding features (i.e. position preference
and sequence rank preference). This information is usually required from
the user. This paper presents a de novo motif discovery algorithm called
SEME which uses pure probabilistic mixture model to model the motif’s
binding features and uses expectation maximization (EM) algorithms
to simultaneously learn the sequence motif, position and sequence rank
preferences without asking for any prior knowledge from the user. SEME
is both efficient and accurate thanks to two important techniques: the
variable motif length extension and importance sampling. Using 75 large
scale synthetic datasets, 32 metazoan compendium benchmark datasets
and 164 ChIP-Seq libraries, we demonstrated the superior performance
of SEME over existing programs in finding transcription factor (TF)
binding sites. SEME is further applied to a more difficult problem of
finding the co-regulated TF (co-TF) motifs in 15 ChIP-Seq libraries. It
identified significantly more correct co-TF motifs and, at the same time,
predicted co-TF motifs with better matching to the known motifs. Fi-
nally, we show that the learned position and sequence rank preferences
of each co-TF reveals potential interaction mechanisms between the pri-
mary TF and the co-TF within these sites. Some of these findings were
further validated by the ChIP-Seq experiments of the co-TFs.
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1 Introduction

Motif finding is an important classical bioinformatics problem. Given a set of
biopolymer sequences (DNA or proteins), the motif finding problem aims to
identify the recurring patterns (motifs) in them. Motif finders can generally be
classified into two approaches: combinatorial searching and probabilistic mod-
eling. The former approach enumerates the consensus patterns which are over-
represented in the set of sequences. Using indexing data structures (e.g suffix
tree [22], suffix array [16], and hash table [23]), it can efficiently identify short
consensus motifs. Weeder [22], Trawler [7], YMF [29], DREME [2] are a few
examples representing this line of approach. On the other hand, (most) proba-
bilistic modeling approaches represent motifs using position weighted matrices
(PWM) [28]. A PWM represents a length-w DNA motif as a 4×w matrix. It is
more informative than a consensus pattern but it is also more difficult to com-
pute. The high computational complexity of probabilistic modeling approach is
a formidable bottleneck for its practical use. Expectation maximization [3] and
Gibbs sampling [25] are the two most common approaches to find a PWM but
they require long running time. Recently, some hybrid algorithms combined both
approaches to get a good balance between accuracy and efficiency (e.g. [27], [17]
and [15]).

By only examining the over-representation of sequence patterns, the previ-
ous generation motif finders often miss some real motifs and generate many false
positives. On the other hand, additional information for the input sequences are
found to be helpful to improve motif finding. For example, some transcription
factor (TF) binding motifs (e.g. TATA-box) are localized to certain intervals
with respect to the transcription start site(s) (TSS) of the gene. In this case, the
position information can help to filter spurious sites. In protein binding microar-
ray (PBM) [4] data, the de Bruijn sequences are ranked by their binding affinities
and we expect the correct motif occurs in the high ranking sequences; such data
has a rank preference. In the ChIP-Seq data [30], the ChIPed TF’s motif (ChIPed
TF is the TF pulled down in the ChIP experiment) prefers to occur in sequences
with high ChIP intensity and also near the ChIP peak summits (thus having
both position and rank preference). Hence, if we know the position preference
and the sequence rank preference of the TF motifs in the input sequences, we
can improve motif finding. In fact, many existing motif finders already utilize
such additional information. MDscan [18] only considers high ranking sequences
to generate its initial candidate motifs. Other programs allow users to specify
the prior distribution of position preference or sequence rank preference [3, 22, 2,
15, 12] or add such preferences as a prior knowledge component in their scoring
functions [5, 21, 17, 13, 9]. However, the users may not know the correct prior(s)
to begin with. Even worse, different motifs may have different preferences. For
example, in ChIP-Seq experiments, some motifs prefer to occur in high ranking
sequences and at the center of the ChIP peak summit while others do not.

To resolve such problem, we propose a novel motif finding algorithm called
SEME (Sampling with Expectation maximization for Motif Elicitation). SEME
assumes the set of input sequences is a mixture of two models: a motif model



and a background model. It uses EM-based algorithm to learn the motif pattern
(PWM), position preference and sequence rank preference at the same time;
instead of asking users to provide them as inputs. SEME does not assume the
presence of both preferences but automatically detect them during the motif
refinement process through statistical significance testing. We also observe that
EM algorithms are generally slow in analyzing large scale high throughput data.
Speeding up EM using suffix tree was recently proposed [24] but the technique
cannot be applied when one wants to also learn the position and sequence rank
preferences. To improve the efficiency, SEME developed two EM procedures.
The two EM procedures are based on the observations that the correct motifs
usually have a short conserved pattern in it and majority of the sites in the input
sequences are non-motif sites. For the first EM procedure, called extending EM
(EEM), starts by finding all over-represented short l-mers and then attempts
to include and refine the flanking positions around the l-mers within the EM
iterations. This way, SEME recovers the proper motif length within a single
run thus saving a substantial amount of time by avoiding multiple runs with
different motif length (as done in many existing motif finders [3, 22, 17, 15, 12]).
The second EM procedure, called the re-sampling EM (REM), tries to further
refine the motif produced by EEM. It is based on a theorem similar to importance
sampling [11], which stated that the motif parameters can be learned unbiasedly
using a biased subsampling. By this principle, we can sample more sites which
are similar to the EEM’s motif and less sites from the background. This way,
REM is able to learn the correct motifs using significantly less background sites.
In our implementation, REM is capable to produce the correct TF motifs using
approximately 1% of the sites normally considered in a normal EM procedure.

Using 75 large scale synthetic datasets, we show that SEME is better both
in terms of accuracy and running time when compared to MEME, a popular
EM-based motif finding program [3]. We found that MEME is unable to find
motifs with gap regions while SEME’s EEM procedure can successfully extend
the motifs to include them. In the real experimental datasets, we perform com-
parison using 32 metazoan compendium datasets and 164 ChIP-Seq libraries.
SEME consistently outperformed seven existing motif finding programs that we
compare with. In general, we found that SEME not only finds more TF motifs
but also gives more accurate results (as evaluated using either PWM divergence,
AUC score or STAMP’s p-value [20]). When we compare the programs to find
co-regulated TF (co-TF) motifs1 from 15 ChIP-Seq datasets, the superior perfor-
mance of SEME is more pronounced. We propose that SEME’s ability to learn
the underlying motif binding preference is crucial in its performance. We further
confirmed the correctness of the position and sequence rank preference of the
coTF motifs learned by SEME on three ChIP-Seq datasets. The actual ChIP-
Seq data of the predicted co-TFs clearly shows that SEME managed to infer
the correct preferences. We also show that such preferences provide biological
insights on the mechanism of the ChIPed TF–coTF interactions.

1 Other TFs which bind nearby and function together with the ChIPed TF



2 SEME Algorithm

SEME uses a probabilistic framework known as the two component mixture
model (TCM) which is first proposed by MEME [3]. It assumes that the ob-
served data is generated by two independent components: a motif model and
a background model. Given an ordered list X of equal length DNA sequences,
each site Xi in X is associated with a DNA sequence X(seq)

i and two integers:
the rank of the sequence containing Xi (X(rank)

i ) and the position of the site
Xi in the sequence (X(pos)

i ). We use an indicator variable Zi to indicate if Xi

is from the motif model or the background model, i.e., denote Zi = 1 if Xi is
from the motif model and 0 otherwise. The likelihood of an observed site Xi is
written as:

Pr(Xi) = Pr(Xi|Zi = 1)Pr(Zi = 1) + Pr(Xi|Zi = 0)Pr(Zi = 0) (1)

We use a näıve bayesian approach to combine three types of preferences (se-
quence, position, rank):

Pr(Xi|Zi) = Pr(X(seq)
i |Zi)Pr(X(pos)

i |Zi)Pr(X(rank)
i |Zi) (2)

For sequence preference, we model the motif site sequence with a position weight
matrix (PWM) Θ, and the background sequence with a 0-order markov model
θ0. Θ is a 4×w matrix where Θj,a is the probability that the nucleotide a occurs
at position j. For any length-w sequence Xi, the probability that Xi is generated
from the motif model and the background model are as follows.

Pr(X(seq)
i |Zi = 1) = Pr(X(seq)

i |Θ) =
w∏
j=1

Θ
j,X

(seq)
i,j

(3)

Pr(X(seq)
i |Zi = 0) = Pr(X(seq)

i |
−→
θ0) =

w∏
j=1

θ
0,X

(seq)
i,j

(4)

where X(seq)
i,j is the nucleotide in the j-th position of the site Xi.

The position and sequence rank preferences are modeled using multinomial
distributions. The position preference models the preference of the motif site
to certain positions. Similarly, the sequence rank preference tries to model if
the motif site prefers the sequences with certain range of ranks assuming input
sequences are ordered by some criteria. To this end, we discretize both the po-
sitions and sequence ranks into K bins. The probability a binding site occurs at
the k-th position bin is denoted as αk, for k = 1, . . . ,K, while the background
distribution is assumed to be uniform. Precisely, for every Xi, we have

Pr(X(pos)
i = k|Zi = 1) = αk;Pr(X(pos)

i = k|Zi = 0) =
1
K

Similarly for sequence rank preferences, the probability a motif site occurs at
the k-th sequence rank bin is denoted as βk and,

Pr(X(rank)
i = k|Zi = 1) = βk;Pr(X(rank)

i = k|Zi = 0) =
1
K



Let Pr(Zi = 1) be λ. The parameters of the mixture model in SEME are
Φ = (λ,Θ,θ0,{α1, ..., αK}, {β1, ..., βK}). We estimated these parameters by max-
imizing the log likelihood

∑n
i=1 logPr(Xi|Φ) using expectation maximization

(EM) procedure. Given a set of sequences X, the classical EM algorithm is as
follows. It first gives an initial guess of the parameter Φ(0). Then, it iteratively
performs two steps: E-step and M-step. Given Φ(t−1), the t-th iteration of the
E-step estimates Z(t)

i = Pr(Zi|Φ(t−1), X). Then, given Z(t)
i , the t-th iteration of

the M-step computes Φ(t) = arg maxΦ
∑n
i=1 logPr(Xi, Z

(t)
i |Φ). The E-step and

M-step are iterated until Φ(t) is converged.
In this work, we developed four phases in the SEME pipeline (see Fig-

ure 1). To search for a good starting point, SEME first enumerates a set of
over-represented short l-mers (phase 1) and extends each short l-mer to a proper
length PWM motif by the extending EM (EEM) procedure (phase 2). The PWM
reported by the extending EM procedure will approximate the true motif when
its starting l-mer captures the conserved region of the motif. To further re-
fine EEM’s PWM motif, SEME applies the re-sampling EM (REM) procedure
(phase 3). It is an importance sampling version of the classical EM algorithm
which greatly speed up the EM iterations. Finally, the refined PWM motifs are
scored and filtered for redundancies (phase 4). Below, we briefly describe these
four phases (see the Supplementary section 3 for details).

SEME Pipeline

Require: A set of input DNA sequences (fasta format)
Ensure: Return a set of non-redundant motifs M
1: Identify a set of over-represented short l-mers Q in X ;
2: for every q ∈ Q do
3: Extend q to full length PWM motif ΘEEM using extending EM procedure;
4: Refine ΘEEM to a more accurate PWM ΘREM using re-sampling EM proce-

dure;
5: Add ΘREM to candidate motif set M ;
6: end for
7: Compute empirical scores (AUC or Z-score) for all the PWMs in M ;
8: Sort all the PWMs in M and filter lower scoring redundant PWMs in M ;

Fig. 1. Algorithm description for SEME Pipeline.

Identifying Over-represented l-mers. In the first phase, SEME computes
the frequencies of all short l-mers (l = 5 by default) in the input sequences and
the background. If no background sequences are provided, a 1st-order markov
model will be learned from the input sequences as the background model. We
output all l-mers whose frequencies in the input sequences are higher than in
the background to the next phase.

Extending EM. For each l-mer q obtained from the first phase, the aim of
the extending EM (EEM) procedure is to extend the l-mer to a longer mo-
tif which maximizes the likelihood of observing the sites with q. In this phase,



the EEM procedure only needs to study the sites containing the l-mer q, i.e.,
Y = {Xi ∈ X | X(seq)

i matches (N)w−|q|q(N)w−|q|} (“N” is a wild char), and w is
the maximum length of a motif. For example, if l-mer is “GGTCA” and the pre-
defined longest possible motif length is 10, then EEM considers only those sites in
X matching the string pattern “NNNNNGGTCANNNNN”. The EEM procedure
first initializes the parameters Φ(0) = (λ(0), Θ(0), θ

(0)
0 , {α(0)

1 , . . . , α
(0)
K }, {β

(0)
1 , . . . , β

(0)
K })

where λ(0) is the estimated percentage of Y not from background, Θ(0) is PWM
representing q, θ(0)0 is the frequency of A,C,G,T in Y excluding the conserved
l-mer q, α(0)

i = β
(0)
i = 1/K for i = 1, . . . ,K (uniform distribution). Then, it

performs E-step (expectation) and M-step (maximization) iteratively.

Extending EM

Require: l-mer q, maximum allowed motif length w , input sequences X
Ensure: final extended PWM Θ(t)

1: Y := {Xi ∈ X | X(seq)
i matches (N)w−|q|q(N)w−|q|};

2: Initialize the parameter set Φ(0) for the mixture model;
3: t:=1;
4: repeat
5: E-step: ∀Xi ∈ Y , compute the expectation of Z

(t)
i using the parameter set

Φ(t−1) in the last iteration;
6: M-step: update the parameter set Φ(t) by maximizing log likelihood

Pr(Y,Z(t)|Φ);
7: if length of Θ(t) < w; then
8: Find a position j which maximizes the log likelihood increment in Equation5

and denote J to be the corresponding nucleotide distribution of position j;

9: if J is significantly different from the background distribution
−→
θ0

(t) using
Chi-square test; then

10: Use J as the distribution in position j of PWM Θ(t);
11: end if
12: end if
13: t:=t+1;
14: until PWM Θ(t) converges;
15: The columns representing the l-mer q in Θ(t) are diluted;

Fig. 2. Pseudocode for Extending EM procedure.

In each iteration of the M-step, the EEM procedure will also try to include one
additional column into Θ(t) if such extension improves the likelihood. Precisely,
for each position j = 1, . . . , 2w − |q| not in Θ(t), we show that the maximum
increment of the log likelihood before and after including the position j is G(j)
where

G(j) = sup
J

∑
Xi∈Y

Z
(t)
i log(

Pr(X(seq)
i,j |J)

Pr(X(seq)
i,j |θ

(t)
0 )

) (5)

where J is any probability distribution over the nucleotides {A,C,G,T}.



Re-sampling EM

Require: the extended PWM Θ(EEM), sampling rate µ, input sequences X
Ensure: Final refined PWM Θ(t)

1: Initialize the parameter set Φ(0) for the mixture model;
2: XQ :={Xi ∈ X |Q(Xi) = 1} according to the probability Pr(Q(Xi) = 1) =
min{4wµPr(Xi|Θ(EEM)), 1};

3: t:=1;
4: repeat
5: E-step: ∀Xi ∈ XQ, compute Z

(t)
i using the parameter set Φ(t−1) in the last

iteration;
6: M-step: update Φ(t) by maximizing the weighted log likelihoodP

Xi∈XQ

logPr(Xi,Zi|Φ)
Pr(Q(Xi)=1)

;

7: if the position distribution of {Z(t)
i } is significantly different from uniform

distribution then
8: include position preference in the model;
9: end if

10: if sequence rank distribution of {Z(t)
i } is significantly different from uniform

distribution then
11: include sequence rank preference in the model;
12: end if
13: t:=t+1;
14: until Θ(t) converge;

Fig. 3. Pseudocode for Re-sampling EM procedure.

While the length of Θ(t) is less than w, we extend the PWM Θ(t) to in-
clude position j which brings the largest G(j). To avoid over-fitting, the se-
lected column also has to be tested (Chi-square) significantly different from the
background frequency θ0. The EEM procedure ends when PWM Θ converges.
Finally, the columns in Θ representing the l-mer q will be further diluted (by
setting all [1.0, 0.0, 0.0, 0.0] columns representing “A” to [0.5, 0.5

3 ,
0.5
3 ,

0.5
3 ]—other

nucleotides are handled similarly) before Θ is returned as the output of the EEM
procedure. In Supplementary section 1.1, we confirmed that EEM consistently
recovers the correct motif length.

Re-sampling EM. The EEM procedure identifies an approximate motif model
Θ(EEM) with a proper motif length. This motif can be further refined using
the classical EM algorithm to improve accuracy. However, when the input data
X is big, this step will be slow. Using the idea of importance sampling, we
proposed the re-sampling EM (REM) procedure which reduces the running time
by running EM algorithm on a subsample of the original data.

Let Q(·) be the sampler function,where Q(Xi) = 1 if the sequence Xi is
sampled; and 0 otherwise. In the Supplementary Theorem 1 (Supplementary
section 3.4), we show that the log likelihood function logPr(X,Z|Φ) can be
unbiasedly approximated by∑

Xi∈X
logPr(Xi, Zi|Φ) = EXQ

[
∑

Xi∈XQ

logPr(Xi, Zi|Φ)
Pr(Q(Xi) = 1)

] (6)



where each sampled site is weighted by a factor 1
Pr(Q(Xi)=1) . The theorem

implies that we need only run the EM algorithm on XQ. Moreover, in the M-
step of the original EM, instead of maximizing logPr(X,Z|Φ), we maximize∑
Xi∈XQ

logPr(Xi,Zi|Φ)
Pr(Q(Xi)=1) .

Although Equation 6 is true for any arbitrary sampler function Q(·), running
EM using different Q(.) yields different sampling efficiencies. For example, we
can use a uniform random sampler, i.e., Pr(Q(Xi) = 1) = µ for every Xi ∈ X,
where µ ∈ [0, 1] is the sampling ratio. This function is expected to only cover
100µ% of the correct motif sites from X which prohibits the use of small µ. In
our work, we employ the idea of importance sampling. Our sampling function
Q(.) satisfies Pr(Q(Xi) = 1) = min{4wµPr(Xi|Θ(EEM)), 1}, where w is motif
length. This sampling function gives higher probabilities for the sites that are
more consistent to Θ(EEM) thus it is expected to sample more from the correct
motif sites and less from the background. (assuming Θ(EEM) models more of
the correct motif site signal than the background signal). This strategy is useful
since we avoid most of the background sites in X. In fact, our simulation reveals
that the REM procedure can achieve nearly 60% recall rate (of the correct motif
sites) at the sampling ratio as small as 2−10(≈ 0.001) and 90% recall rate at the
sampling ratio of 2−5(≈ 0.031) (see Supplementary section 1.2). We choose a
default sampling ratio of 0.01 in all experiments of this paper.

The position and sequence rank preferences are assumed to be non-existent
at the beginning of the REM iterations (i.e., Pr(Xi|Zi) = Pr(X(seq)

i |Zi) ). The
position and/or sequence rank preferences are considered only when the position
and/or sequence rank distributions of {Z(t)

i } are significantly different from the
uniform distribution (by Chi-square test). This strategy allows SEME to tell
users which preference is really important for the predicted motif. Figure 3 is
the pseudocode for this procedure.

Sorting and Redundancy Filtering. The PWMs output by REM are eval-
uated and sorted by empirical ROC-AUC (the area under the receiver-operator
characteristic curve) or over-representation Z-score (representing the motif abun-
dance) with the input data (details on each scoring are in the Supplementary
section 4). The first score is preferred for the case when input sequences are
short and most of sequences contain at least one motif site (e.g., ChIPed TF
motif finding); for the other cases, we suggest to use the Z-score. We eliminate
redundant PWMs from the sorted list as follows. When the sites of a PWM motif
overlap with those of another PWM motif by more than 10%, we will treat the
PWM motif with the lower score as redundant and remove it.

3 Result

3.1 Profiling two novel EM procedures

SEME significantly outperforms MEME in recovering the planted
PWM. To analyze SEME’s performance, we extract all seventy-five motifs of



Fig. 4. The empirical performance of SEME on synthetic datasets. (a) The
accuracy of SEME’s PWM (both EEM step’s (unrefined) PWM and the REM’s (final)
PWM are listed). We quantify accuracy using the commonly used Area-Under-ROC
Curve (AUC) score and PWM divergence (PD) . We show that EEM’s predicted PWM
is already significantly stronger than random; indicating the goodness of EEM’s PWM
as starting point for the subsequent REM step. The scores also show that SEME’s
PWMs are significantly better when compared to MEME’s. (b) Based on the perfor-
mances of SEME and MEME on the Pax4 motif dataset, we observe that MEME has
serious difficulties in mining PWMs with long gap region within them. (c) The running
time of SEME is shown against increasing input size. We observe that CUDA-MEME,
the GPU enabled version of MEME, still runs slower than SEME running on normal
CPU (it takes 1 day to handle ≈ 6000 sequences while SEME takes around 1 hour for
10000 sequences).

lengths > 9 in JASPAR[31] vertebrate core database. For each such motif, we
generated a training dataset of 1000 random sequences of length 400bp where
500 of them have a motif instance. The instances are planted uniformly across
all positions and sequences.

For each dataset, we run SEME (EEM only), SEME (EEM + REM), and
MEME (the classical EM-based motif finder) and obtain the top 5 predicted
PWMs from each program. To test the goodness of the predicted PWMs, we
compare the PWM divergence between the predicted PWMs and the actual
planted PWMs. We also generate independent testing sequences with length
400bp (1000 positive sequences with one implanted motif site, 1000 negative se-
quences without motif site), and compute the ROC-AUC value for each predicted
PWM. Figure 4(a) shows the comparison result. As expected, the random PWMs
have the worst AUC values while the actual planted PWMs have the best AUC
values. EEM’s predicted PWMs have significantly better discriminative capabil-
ity (AUC) and similarity (less PWM divergence) to the actual planted PWM as
compared to random PWMs. This indicates that EEM’s PWMs are good start-
ing points for the subsequent REM procedure. REM’s predicted PWMs further
improve the AUC score and are similar to the actual planted PWM (as indicated
by the small PWM divergence).

Figure 4(a) also shows that SEME outperforms MEME. In fact, SEME is
better than MEME in 42 out of 75 experiments (the cases with positive AUC
differences in Figure 4(b)). The cases where SEME performed worse have rel-
atively small AUC score differences (less than 0.04). We examined the Pax4



dataset in which SEME gains the highest improvement against MEME. The
implanted JASPAR Pax4 motif is a diverged PWM of length 30. SEME suc-
cessfully extended and recovered the full Pax4 motif; thanks to the ability of its
EEM procedure to handle long gaps in its extension step. In contrast, MEME
failed to model the long gaps due to their starting point finding procedure which
assumes that all of the PWM positions are equally important.

SEME is more suitable in handling large scale data. We further generated
7 large datasets to observe the capability of SEME in handling large scale data.
Each dataset consists of different number of sequences (from 500 to 10000, each
of length 400bp). Figure 4(c) showed that the original MEME program cannot
process more than 2000 sequences within one day, hence we also used the GPU-
accelerated version of MEME, CUDA-MEME[19] (run on two Intel X5670 CPUs
and two Fermi M2050 GPUs with 48GB RAM). SEME was run as normal CPU
program. SEME is still around 60 times faster than CUDA-MEME which runs
on the highly parallelized GPU system. In addition, SEME can process up to
10000 sequences (a typical dataset size for ChIP-Seq experiments) in 1 hour
while the CUDA-MEME took more than one day to process 6000 sequences.

3.2 Comparing TF motif finding in large scale real datasets

We compare the performance of SEME with other existing motif-finding pro-
grams on two large scale TF binding site data. We also study the ability of
SEME in uncovering the hidden position and/or sequence rank preferences in
the input dataset when they are present.

The Metazoan Compendium datasets. The first benchmark is a metazoan
compendium dataset published by Linhart et.al[17]; consisting of 32 datasets
based on experimental data from microarray, ChIP-chip, ChIP-DSL, and DamID
as well as Gene Ontology data[1]. A list of the promoter sequences of many tar-
get genes (1000bp upstream and 200bp downstream the Transcription Start Site
(TSS)) are used as the positive input for each motif-finding program and pro-
moter sequences of other non-target genes are used as background sequences.
The performance of six existing motif-finding programs, namely AlignACE [25],
MEME [3], YMF [29], Trawler [7], Weeder [22], and Amadeus [17], were com-
pared in the original benchmark study [17]. Each program’s predicted PWMs
are evaluated by the PWM divergence. Only PWMs with medium and strong
matching with the known motifs (PWM divergence < 0.18) are considered to be
successfully detected [17].

The result of this comparison is shown in Figure 5(a). We find that SEME
successfully detected the correct motifs in 21 datasets whereas the second best
program, Amadeus, succeeded in 18. Weeder and Trawler found correct PWMs
in 11 and 12 datasets, respectively. SEME also found more accurate motifs than
the rest; it found 12 motifs with PWM divergence < 0.12. SEME further detected
a significant position preference for the correct motifs for many datasets in this
benchmark: most of them tend to bind nearer to the TSS position (see the
Supplementary section 1.4 for details).



Fig. 5. The performance of SEME compared to existing motif finding pro-
grams from large scale real data (a) Comparison result on the metazoan com-
pendium datasets. Four PWM motifs returned by each motif finding program are then
compared to the known Transfac motifs using PWM divergence (PD) (as in [17]) and
further classified into three matching categories (strong, medium, weak) corresponding
to different PD cut-offs (0.12,0.18,0.24). (b) Comparison result on 164 ChIP-Seq li-
braries over four different measurements? AUC, PPV (Positive Predictive Value), ASP
(Average Site Performance) and SPC (Specificity). The result shows that most mo-
tif finders perform similarly well in detecting ChIPed TF (but SEME is consistently
better than all of them). (c) Comparison result for Co-TF motif finding on 15 ChIP-
Seq libraries. The quality of reported PWMs is classified into three categories (strong,
medium, weak) corresponding to different STAMP p-value cut-offs (0.0001, 0.01, 0.05).
SEME reported the most number of co-TF’s motif which match the known PWM with
STAMP p-value ≤ 0.0001 (strong match, blue bar). Overall, SEME also found the most
number of co-TF motif (61) as compared to the second best program, Amadeus (48).

ChIP-Seq experimental datasets: Discovery of the ChIPed TF motif
from ChIP-Seq data. The second benchmark is a collection of large scale
ChIP-Seq experimental data which consists of 164 published ChIP-Seq libraries
from the ENCODE project[8] and our lab over different cell-lines and TFs[6, 33,
14]. ChIP-Seq usually reports more than 10000 target sequences with narrower
target regions (100bp). We compute the Area Under ROC Curve , Positive Pre-
dictive Value, Average Site Performance and Specificity scores of each program’s
predicted PWM. The formula for the above scores are given in the Supplemen-
tary section 4. From each library, the 100bp sequences around the top 10000
ChIP-Seq peaks were selected (sorted by ChIP intensity) as our input data.
MEME and Weeder only use the top 2000 peaks due to their long running time.
Peaks with odd numbered ranks were used for training while the even numbered
peaks were used as positive testing data. The negative dataset is generated a 1st-
order Markov model trained using the same number of 100bp random sequences
extracted from the regions 1000bp away from the ChIP-Seq peaks.

We compared SEME with 7 popular de novo motif finding programs for ChIP
data: MEME, Weeder, Cisfinder, Trawler, Amadeus, ChIPMunk and HMS. Each
program’s top 5 motifs are evaluated using the four statistics measurements on
the test data. For each scoring, the best of the 5 motifs will be used to represent



Fig. 6. Automatic learning of the position and sequence rank preference
from the input data. Instead of requiring the user to input the expected co-TF motif
preference distribution (position and/or sequence rank distribution), SEME learns such
distributions directly from the input data. We show that most of the time, SEME can
learn the correct distributions of each TF (as compared to real binding sites distribution
in the rightmost column, defined by the ChIP-Seq and the known PWM of the TF). For
position distribution, the x-axis is +/-200bp from ChIP-seq peak summit (the black
dash line), and the y-axis is the fraction of binding sites in a given position. For rank
distribution, the x-axis is the rank of ChIP-seq peak (left : high ChIP intensity, right
: low ChIP intensity), and the y-axis is the fraction of binding sites in a given rank.
The ChIP-seq peak rank distributions (MCF7 ER ChIP, LNCaP AR ChIP) of FoxA1
and the position distribution of Myc are tested to be insignificant by SEME.

the performance of a program. Figure 5(b) shows the average performances of
the motif finders. Again, we find that SEME is consistently better than all other
programs (1st rank in Area Under ROC Curve , Positive Predictive Value and
Specificity, and 3rd rank in Average Site Performance).

Discovery of co-TF motifs from ChIP-Seq data. We note that most mo-
tif finders show good performance in finding the ChIPed TF motifs. This is
expected since the ChIPed TFs are highly enriched[33]. Compared to finding
ChIPed TF motifs in ChIP-Seq datasets, the problem of finding co-TF motifs
in the ChIP-Seq datasets is much more challenging. The co-TF motif instances
are less abundant and most are not located exactly at the ChIP-Seq peaks. Nev-



ertheless, finding the co-TF(s) could potentially uncover previously unknown
TF-TF interaction.

For co-TF motif comparison, we used 15 ChIP-Seq libraries whose co-TFs
have been characterized (the list of co-TFs for each ChIP-Seq is in Supplemen-
tary section 2.5). We extracted 400bp sequences around the ChIP-Seq peaks and
compared the top 20 de novo motifs of each program to the known co-TF motifs
in the JASPAR and Transfac database; we cannot use the previous statistical
measurements since co-TFs may not occur in all ChIP-Seq peaks. Furthermore,
the ChIPed TF binding sites need to be masked before we start the co-TF motif
finding. SEME and ChIPMunk can do this automatically and, for other pro-
grams without auto-masking mode, the input sequences were masked by the top
2 motifs reported from their ChIPed motif finding results.

STAMP program[20] was used to compute the p-value of the match between a
predicted co-TF motif against the known co-TF motif. STAMP p-value provides
a better match measurement compared to PWM divergence since it removes the
motif length bias [20]. We separated the p-value of the PWM matching into three
significance levels: (1) weak match (0.05 ≥ p-value > 0.01), (2) medium match
(0.01 ≥ p-value > 0.0001) and (3) strong match (p-value ≤ 0.0001). Figure 5(c)
shows the performances for different motif-finding programs in finding the co-TF
motifs from the 15 datasets. SEME recovered 61 known co-TF motifs; compared
to Amadeus and MEME which find 48 and 44 co-TF motifs, respectively. 31 out
of the 61 co-TF motifs of SEME belong to the strong match category (Amadeus
only found 20) and another 27 are in the medium match category. This indicates
that SEME’s predicted co-TF PWMs are highly accurate.

To study the biological significance of the learnt preferences, we further study
the output of three datasets, involving the ER, AR, FoxA1, Oct4 and c-Myc
TFs, in details (see Figure 6). The real binding site of each TF is defined to
be the site around +/-100bp around the TF’s ChIP-Seq peak whose known
PWM score is better than a cutoff that yields FDR= 0.01. If multiple matches
occur, only the best scoring site is chosen. Comparison between SEME’s learnt
distributions (Figure 6, middle columns) and the real binding site distributions
(Figure 6, rightmost columns) indicates that SEME is able to learn the correct
co-TF position and sequence rank preferences. We also found that the motif
positions of FoxA1, a known co-TF of ER, is not enriched exactly at the ER
ChIP-Seq peak in the MCF7 data; instead it is found in the flanking regions
near the ER peaks. Interestingly, in the LnCAP AR ChIP-Seq dataset (FoxA1 is
also a known co-TF of AR), we found that FoxA1 binds very closely to AR—it
is enriched at the AR ChIP-Seq peak summits. This observation is consistent
with the previous report that FoxA1 can physically interact with AR [10]. This
observation also indicates the different roles FoxA1 assumes when working with
AR and ER[26]. In the ChIP-Seq data of Oct4 from mouse’s ES cell, SEME
found the motif of c-Myc enriched within Oct4’s low intensity peaks regions. We
conjectured that, in these regions, Oct4 indirectly bind the DNA through c-Myc
(hence explaining the ChIP-Seq’s low intensity). An earlier report showed that
Oct4, along with Sox2, Nanog, and Stat3 form an enhancer module while c-Myc



along with n-Myc, E2F1 and Zfx form a promoter module in the ES cell[6]. In
fact, interaction between these enhancer and promotor modules had also been
reported previously[32].

These examples indicate that the position and sequence rank distribution
learnt by SEME are reasonably accurate and users could use them to infer the
nature of the interaction between the ChIPed TF and the co-TF(s). In this man-
ner, SEME can be used to generate biological hypothesis for further experimental
validations. Moreover, the highly diverse preferences that we observe highlight
the difficulty for users to provide the correct prior in the first place.

4 Conclusion

This paper developed a novel algorithm called SEME for mining motifs using
mixture model and EM algorithm. We presented three important contributions:
(1) automatic detection and learning of the position and sequence rank prefer-
ences of a candidate motif. (2) ability to estimate the correct TF motif length
(with possible gaps within) and (3) using importance sampling for efficiency
while still able to estimate the EM parameters unbiasedly. As a result, we showed
that SEME is substantially better, both in terms of accuracy and efficiency, com-
pared to the existing motif finding programs.

Moreover, in the task of finding co-TF motif in the ChIP-Seq data, SEME not
only report more accurate co-TF motifs than other programs but also correctly
estimated the position and sequence rank distribution of each co-TF’s motif. We
showed that such information provides useful insights on the interaction between
the ChIPed TF and the predicted co-TFs. SEME does have a few limitations.
Firstly, it assumes that the target motif contains conserved 5-mer region. In cases
without such 5-mer, SEME also allows user to provide custom seeds. Secondly,
SEME is more suitable for large scale input (≥ 100 sequences) since it needs
enough samples to determine whether we should do extension (EEM) or include
additional binding preferences (REM).
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