

A New Nearest Neighbour Searching Algorithm
based on M2M Model

YingPeng Zhang, ZhiZhuo Zhang, and Qiong Chen

Abstract— In this paper, we introduce a generally applicable

algorithm model named Macro-to-Micro Model (M 2M) which is
derived from human thinking pattern. The data structure for the
nearest neighbor problem based on M 2M can be built in O(n)
time. It can also be finished in O(1) time by parallel technology.
Moreover, the insertion, deletion and query operation can be
completed in constant time without the problem of breaking the
balance of tree. And the most noteworthy is that this data
structure and preprocessing operation can be shared with most
M2M algorithm, so that we can hugely improve the efficiency of
the multi-operation problem like image processing and pattern
recognition. We mainly focus on the nearest neighbour (NN)
searching algorithm in this paper. The M2M approach can
achieve the optimal expected time complexity. And the
comparative experiment between M 2M and kd-tree shows the
great advantage of the former.

Index Terms— Macro-to-Micro (M2M), nearest neighbour
searching, closest point problem.

I. INTRODUCTION
 Nearest neighbor searching is the following problem: Given
a set of n data points in a metric space (this paper focus on the
problem in the planar space) and the problem is: which point is
the nearest point to the query point in this data set. This is also
called the closest-point problem. Nearest neighbor (NN)
algorithm is a fundamental algorithm in many application field
including knowledge discovery and data mining (Fayyad et al.
1996) pattern recognition and classification (Cover and Hart
1967; Duda and Hart 1973), machine learning (Cost and
Salzberg 1993）, data compression(Gersho and Gray 1991),
multimedia databases (Flickner et al. 1995), document
retrieval(Deerwester et al. 1990).

 Account for the great influence of NN algorithm, many
researchers are keeping study on it. The seminal paper in this
field is the classic work of Shamos and Hoey [1] in which the
problems are defined and a number of optimal worst case
algorithms for planar point sets are given. Randomized
algorithms for the closest pair problem have been given by
Rabin [2] and Weide [3]; Fortune and Hopcroft [4] have shown
that the speedup of the fast closest pair algorithms was not due

to their randomized nature alone, but also to the model of
computation employed (which allowed floor functions). More
theoretical results were generalized by Bentley et al[5] who
analyzed a grid-base method for distributions satisfying certain
bounded-density assumptions and showed that O(n) preprocess
time and constant query time in the expected case.

YingPeng Zhang is the student in South China University of Technology,

Guangzhou, China 510640 (e-mail: YingPeng.Zhang@gmail.com)
ZhiZhuo Zhang is the student in South China University of Technology,

Guangzhou, China 510640 (e-mail: zzz2010@gmail.com)
 Qiong Chen is the associate professor in South China University of

Technology,Guangzhou, China 510640 (e-mail: csqchen@scut.edu.cn) .

 The approximate algorithm based on quadtrees (Bern et al
[6][7]) uses linear space and provides logarithmic query time.
O(n) space and O(log n) query time are achievable in the
expected case in the use of kd-trees proposed by Friedman et
al[8]. These results were generalized by ARYA et al [9], who
proposed a data structure called BBD-tree and design an
optimal algorithm for approximate nearest neighbor searching
in fixed dimensions.

Our comparison of kd-tree follows an explanation given by
Andrew Moore in his PhD thesis [10], who, along with
Omohundro (1987), pioneered its use in machine learning.
Moore describes sophisticated ways of constructing ball trees
that perform well even with thousands of attributes[11].

In this paper, we propose a generally applicable algorithm
model which is named Macro to Micro Model (M2M), and
develop an efficient NN searching algorithm with the optimal
expected time based on M2M model .The data structure based
on M2M model (the M2M structure) only cost a linear time to
preprocess the data and the other tree structure such as kd-tree,
costs O(nlogn) time. By using the parallel computation, the
time complexity can be reduced to O(1). The operations
including querying, insertion and deletion on other
conventional structure (like kd-tree and quadtree) take O(logn)
time, which may also cause balance problem of the tree.
However, those operations are independent on each point in the
M2M structure and take constant time. A more distinguished
trait of M2M model is that the preprocessing can be shared by
the other algorithms based on M2M model, which greatly
improve the efficiency of some multi-operation problem like
image processing and pattern recognition.

II. MACRO-TO-MICRO MODEL

A. The origin of M2M model
The idea of M2M is derived from human thinking pattern.

When people tackle practical problems, they used to analyze at
macro level at first rather than details. Then go on specifying
the problem’s scale more narrowly in order to exclude some
unnecessary factors until it reach an appropriate micro level to
solve the problem rapidly. With the M2M model, our computer
can have the ability as human to comprehend a problem from a

global vision. In the more abstract view, the process from
macro to micro is achieving the goal of shrinking the search
space. In fact, this idea is inherent in many algorithms of
“Decrease-and-Conquer”. Using M2M model to solve
problems include the following two steps:
1) Preprocess: Data set should be divided into a number of

similar partitions through Macro to Micro levels. This
process is similar to the human developing the view of the
problem.

2) Compute: From macro to micro, shrinking the search
space at every level and using the algorithms based on
M2M to find the solution quickly.

B. Terminology Explanation

Figure 1. Terminology Explanation

Before the further introduction of the data structure based on

M2M model, we firstly explain some terminologies which are
used frequently when describing the M2M model.
1) Level: From the abstract view, different levels present the

different way of data classification according to the
different precision. As the figure1 shows, there are three
levels. Only one part belongs to the first level, 16 ones
belong to the second and 256 belong to the third.

2) Part: From the abstract view, part is defined as subset of
the data points similar to each other. In the M2M model,
the part can be designed as a small square. All the data set
in the square belong to such partition. In addition, the size
of the parts nearly the same in the same level (size is
referred to the cover area in the two-dimension).

3) Last-level, next-level, up-level and down-level: We
define the level according to their parts’ size. The size of
certain level is smaller than its last-level and the size of
certain level is bigger than its next-level as well. Take the
figure1 as example, the first level is the last-level of the
second level. Then the third level is the next-level of the
second level. All the next-levels under the certain level

can call the down-level and all the last-levels upper the
certain level can call the up-level as well.

4) Parent-part, child-part, ancestor-part and
descendant-part: The parent-part of a certain part refers
to the part belonged to the last-level and contain this part.
Similarly, the child part of a certain part is defined as the
part included by this part in the last-level. Just as the
figure1, part A is the parent-part of part B, part C is the
child-part of part B. All the parent-part belonged to certain
part can call the ancestor-part of this part. Similarly, all
the child-part belonged to certain part can call the
descendant-part of this part.

III. THE NEAREST NEIGHBOR ALGORITHM BASED ON M2M
MODEL

A. The data structure based on the M2M model
M2M is an algorithm model. Many algorithms can be

approached based on this model. The data structure to realize
this model is flexible, basing on different situations. However,
there are some basic requirements needed to be satisfied.
1) Given a query point, it should take O(1) time to index the

part which the point belongs to of the given level.
2) Insertion or deletion of a data point should only take O(1)

time.
3) Given the index of the part, it takes O(n) time to visit

every child-part of the given part, where n is the number
of the child-part.

4) Given the index of the part, it takes O(n) time to visit all
the data points of this part, and n is the number of the data
points of this part.

5) Given the index of the part, it takes O(1) time to get the
index of its ancestor-part.

6) The time complexity of preprocessing should be O(n).
And support parallel calculation.

It is clear that the algorithm which satisfies all the
requirements above achieve the trivial lower bounds and is
theoretical optimal.

In order to satisfy those requirements, the following data
structure is used in our nearest neighbour searching algorithm
in the planar case:
1) A 2-dimension array index is applicable for every part in

the same level. Because querying, inserting or deleting an
array element only cost O(1) time, the 1st and 2th
requirements are satisfied.

2) Every part maintains the index list of its child-parts， so
that the 3th requirement can be satisfied through visiting
the child-parts list (alternately, when the number of
child-parts is small, the space of the index list is no longer
needed because of the regular partition).

3) The most micro part maintains a list of the points it
contains. When we want to visit the points in a certain part,
the breadth search tree can be built by taking query part as
the tree root，then we can traversal every point belong to
this part. The time complexity of this process is O(n), that
is, the 4th requirement is also satisfied.

4) Because the partition are regular, it is easy to calculate the
index of parent-part by the index of current part
(accomplished by a multiplication for scaling and a floor
function to find the integer part index).This process is
finish in constant time, so the 5th requirement is satisfied.

5) Because the preprocess is composed of a series of
insertion. As we explain at the 2nd statement above, every
insertion cost O(1) time, therefore the time complexity of
preprocess is O(n) and also support parallel computation
which satisfies the 6th requirement.

In this section, we discuss whether 6 requirements above are
still satisfied when hash table is used for storage instead of
array. We use hash table to maintain a 2-dimension index and
use the Channing strategy for the conflict resolution. And we
give the analysis below:

Let n denote to the number of the unit in the length of level.
So there are parts in this level at most. We set up a hash table
maintain a 2-dimension array which size is (m < n). We
define the load factor α for this hash table as . We assume
that the element being searched for is equally likely to be any of
the elements stored in the table. The number of elements
examined during a successful search for an element p which
index is (x, y) is 1 more than the number of elements that appear
before p in its list. Elements before p in the list were all inserted
after p was inserted. So the expected number of elements
examined is 1 plus the expected number of elements added to
the list after p was added. Let pi denote the ith element inserted
into the table, for i = 1, 2, ... , n, and let ki = key[pi]. For keys ki
and kj , we define the indicator random variable Xij = I{h(ki) =
h(kj)}. Under the assumption of simple uniform hashing, we
have Pr{h(ki) = h(kj)} = 1/ ,So E[Xij] = 1/ . Thus, the
expected number of elements examined in a successful search
is

2n
2m
2 /n m2

2n

2m 2m

2 2

2 2

2 2

2

2 2

2
1 1

2
1 1

2 2
1 1

2 2
1

2
2 2

1 1

2 2
4

2 2

2

2

2

1 1

1 1

1 11

11 ()

11

1 (1
2

11
2

1 / 2 / 2

n n

ij
i j i

n n

ij
i j i

n n

i j i

n

i

n n

i i

E X
n

E X
n

n m

n i
n m

n i
n m

n nn
n m

n
m

n

1)

α α

= = +

= = +

= = +

=

= =

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞

⎡ ⎤= +⎜ ⎟⎣ ⎦
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

= + −

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
⎛ ⎞+

= + −⎜ ⎟
⎝ ⎠

−
= +

= + −

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑

 (1)
Thus, the total time required for a successful search

(including the time for computing the hash function) is O(2 +
α/2 - α/2n) = O(1 + α).

If the number of hash-table slots is proportional to the
number of elements in the table, we have = O() and,
consequently, α = / = O()/ = O(1). Thus, searching
takes constant time on average. Since insertion takes O(1)
worst-case time and deletion takes O(1) worst-case time when
the lists are doubly linked, all dictionary operations can be
supported in O(1) time on average [12].

2n 2m
2n 2m 2m 2m

It satisfies the basic requirements of M2M’s data structure as
well. Further more, the space complexity only depending on the
scale of points set rather than the number of part. Thus, the
strategy we usually used is:
1) Array is used in more macro level considering its fast

random accessing.
2) Hash table is used in more micro level for saving the

storage cost.
In addition, the number of levels of M2M is defined to log(n)

here, but the experiments show that it increases so slowly with
the n growing. The number of levels in the case of 100000
points only equals to 5. Thus, we take it as a constant in this
analysis. Then the space complexity of M2M structure is
presented by its most micro level. As we say above, it is O(n)
with the hash table. The space complexity is the same to other
traditional data structure such as kd-tree and the quadtree.
Empirically, the space cost of M2M structure is a bit more than
the traditional ones when it achieve the optimal efficiency.
 Because there isn’t any dependency of each data points in the
M2M preprocessing, it is convenient to run the preprocess in
parallel, which will improve the efficiency greatly. And we
give the proof below:

let s denote the fraction of total execution time spent in serial
code, t is the real time spent in serial code .according to
Gustafson-Barsis’s law, The maximum speedup ψ achievable
when p equals the number of points n by this program is:

()
() () / () /

n ts
n n p t n n

σ
σ ϕ ϕ

= =
+ +

(1)

(1)
() /

(1)
() /

p p s
tp p

t n
tn n

t n n

p

ψ

ϕ

ϕ

= + −

= + −
+

= + −
+ (2)

Using the parallel technology, the time complexity of
preprocess can be reduced to

()() / (1)
(1)

() /

O nO n Otn n
t n n

ψ

ϕ

= =
+ −

+
(Where t is constant)

It means that the time complexity of preprocessing is O(1) by
using O(n) processor units. According to parallelism folding
principle, it is so convenient to make full use of the existing
computation resource and the time complexity of the algorithm
changes from O(1) to O(n) correspondingly.

It seems that the M2M structure is similar to other data
structure, and we will do a further comparison among them in
sectionⅤ.

B. The approach of nearest neighbour searching algorithm
based on M2M

 The NN algorithm based on M2M has two steps just as other
NN searching algorithm.
1) Preprocess: this process is identical to the common M2M

preprocess mentioned in section A. Traversal all the data
points and make their index in the most micro level. Then
build up the parts from micro level to macro level
indexing to their parent parts.

2) Solution: As M2M is a generally applicable algorithm
model, there is not just one NN algorithm can run on the
same M2M structure. Here, we just present the optimal
one in our experiment. This M2M algorithm has two
process as well:
a) Level Selection: The goal of this process is to find

appropriate level for searching. It starts at the most
macro level ,and go downward to the part contain the
query point (we call it the query part).If the query
part contain other points except query
point ,continue searching the child-part in the
next-level until the child-part is empty or reach the
most micro part. Then enter into the second process.

b) Searching Process: After the level selection, the
searching level has been determined. Next, traversal
all the points in the query part of selected level. A
current nearest point can be found, if the part isn’t
empty, Else, we search the parts surrounding the
query one in an expanding pattern until a point is
found. Once we have one point, we are guaranteed
that there is no need to search any part without
intersection with the circle of radius equal to the
distant to the current nearest point and centered at
the query point. In order to make it easy to
understand, we use a square instead of the circle in
Figures below. Through searching the parts
intersecting the square, a new nearest point may
appear and the square becomes smaller, Finally, all
the parts intersecting the square have been
searched ,and at that time ,the current nearest point is
exactly the nearest neighbour.

Figure 2

Querying part A, current nearest point 1 is found.

Figure 3

Searching bound shrinked, found current
 nearest point 2 in part B

Figure 4

Querying Part C, Searching bound no change

Figure 5

Searching bound shrinked again and all area intersected has
been searched, found point 5 is global nearest point

The best case of our algorithm is that the searching circle is

included by the query part after searching that part. By contrast,
we also can find a worse case in which the algorithm should
compare with all the points in case that all the point distributes
on a circle centered at the query point. But that is exactly the
worse case of kd-tree and quadtree as well.

Calculation of the expected time for NN is difficult, because
the analysis depends critically on the level, and the expected
distribution of the data points presented to the nearest
neighbour algorithm. The analysis for kd-tree is performed in
log(n). Research shows that the expected number of
intersecting hyperrectangles is independent of N, the number of
exemplars [Moore et al. 1991; Friedman et al. 1977]. And
M2M -NN algorithm has the similar propriety. Bentley et al
have proofed that searching process takes O (1) expected time
in uniform distribution in their paper [5]. And we only give an
explanation here.

Let's denote P is the query point and S is the collection of the
searched parts of the top level. As the algorithm works, a
number of points can be inserted into the part r (r S∉) without
any influence on the process of searching the nearest neighbour
of P; In other words ,the time complexity of the algorithm is
independent of the number of the point set . And we show this
conclusion in the experiments below.

C. Empirical Behaviour of M2M-NN
 To learn more about the practical performance of M2M
algorithm, we construct the following experiments of
comparison to the kd-tree coded by Sebastian Nowozin [13]
based on the paper of Andrew W. Moore [10].

In the following experiments, planar points were generated
randomly from uniform distribution. The time was calculated
by the average time cost in 1000 queries.

1) Comparison of preprocessing time :

Figure 6.

Table 1. Comparsion of the preprocesses of kd-tree and M2M

number of point
set (thousand) kd-tree M2M

2 7.227ms 4.395ms
10 46.875ms 23.4ms
50 270.833ms 69.444ms

235 1930.555ms 418.4ms

As figure 6 shows, the experiment result accords with the

theoretical analysis. In the preprocess of kd-tree, selecting a
good pivot costs O(logn) time at every level[Moore et al. 1991;

Friedman et al. 1977]. Therefore, the total time of building tree
is O(nlogn) and we can see it increase nonlinearly with the
number of points growing . However, the preprocess of M2M
only cost O(n) time and it is self-proof by the figure 6.

2) Comparison of the time of searching nearest

neighbour :

Figure 7.

Table 2. Comparsion of the nearest neighbor algorithm base on

kd-tree and M2M
number of point
set (thousand) kd-tree M2M

2 5.216ms 2.739ms
10 5.537ms 5.885ms
50 6.116ms 2.566ms

235 16.406ms 5.233ms

As we have analyzed before, the searching time of kd-tree is
O(logn), M2M approach is approximative to O(1) which also
shown in the figure. In addition, there are several undulation
with the number of points growing, because of the number of
level is changing discontinuously(by floor function).

What is the best way to divide each level, and how many
level is sufficiency remain problems. There is no mature theory
for it up till now. But we come to some conclusions in the
experiment for 10000 data points.

Table 3. Comparsion among different number of part and
different number of level.

P\L 3 4 5

9 474.75 67.86 12.2

16 179.448 17.25 3.444

25 77.6 7.03 2.55

36 42.71 3.9814 2.8777

49 25.447 2.784 2.538
(P: The ratio of the size of the adjacent levels,

 L: The number of level)

Form this table we can catch that along with the increase of

the number of level, the number of points which are compared
to is converge at some value. Considering time and space cost,
5 is a good choice for the number of part.
 The experiments for the performance of insertion and
deletion won’t be carried out here, because the experiment
result of dynamical insertion or deletion is identical to the
preprocessing. As we have explained, the preprocessing is just
composed of n times independent insertion where n is the
number of data points. And deletion is almost the same process
as insertion except which is not adding but removing the index
of points. Therefore the structure after deletion or insertion has
as good performance as after preprocessing.

IV. DISCUSSION

A. The advantage of M2M model
M2M model have following advantages:

1) High parallelism of preprocessing: The preprocessing
of M2M can be run in multi-independent channels at the
same time and solved in constant time with n processor
(where n is the number of the data points). This can
greatly improve the preprocessing efficiency of M2M in
the multi-CPU, multi-kenel or grid computation
environment.

2) Preprocessing sharing: The algorithms based on M2M
model share an identical preprocessing. It is very helpful
in the image process field where many operation need to
be executed on the same image (point set as well) and
many algorithms used in image process can be
approached based on the M2M model. All those
algorithms share one preprocessing, thus the efficiency of
the whole processing is greatly improved.

3) Shrinking the search space: From macro level to micro
level, M2M algorithm shrinks the searching space at every
level. As a result, it can shorten the searching time.

4) Trade-off between the efficiency and the precision: In
most case, M2M algorithm can trade-off between the
efficiency and the precision easily. It’s very useful, for
sometimes people are willing to get a approximate result
in order to reduce the computing time.

5) Trade-off between time efficiency and space cost: The
parameters of M2M such as the number of levels and the
way of partition at each level can be changed on certain
purpose. General speaking, the more sufficiently of the
Macro-Micro levels being divided and the smaller ratio of
the partition between the adjacent levels, the higher cost
of the space may be, but the higher efficiency may get.

B. Other application of M2M model
With the help of M2M modeling, computer can be more

nature, more flexible and more efficient to solve many classical
algorithm problems; and the problems in specific domain (such
as nearest neighbor, convex hull, TSP, cluster, path finding,
collision detection and so on) can be designed the
corresponding M2M algorithm. Thus, tasks in many
application fields (including geography information system,
data mining, pattern recognition, image processing and real

time strategy game) related to those fundamental algorithm can
be better performed. Taking image processing for example, we
can preprocess for a specific point set, and then does a fast
convex hull, a fast nearest neighbor, or a fast area calculation in
this point set.

V. RELATED WORK
1) M2M and Divide-and-Conquer (DAC)

The similarity between them is both of them shrink the scale
of problem through dividing part or separate level technology.
On the other side, there is an obvious difference between them.
That is, DAC divide the problem into sub problem and solve
each of them. But M2M divide the problem into sub-problem
and discard the states which no need to concern. Through
search in difference level, M2M shrinks the search space, but
the problem left is still integral. In a sense, it implements the
Decrease-and-Conquer.
2) M2M and Voronoi diagram

The NN algorithm based on Voronoi diagram is faster than
the approach based on M2M(why?). But the preprocess time of
it is O(nlogn). In fact, maybe we can find a way to build the
Voronoi diagram in O(n) time by using M2M approach.
3) M2M and cell technology

Some researchers have proposed the data structure of regular
partition called “cell technology” [Bentley et al. 1980; Rivest et
al. 1974; Cleary et al. 1979] which can do well in the situation
of uniform distribution. But they didn’t put the regular partition
strategy and hierarchical decomposition of space together. So
the disadvantage of the algorithm as follows:

a) The greater clustering led to a greater degradation of
performance

b) The Algorithm performs poorly in the non-uniform
distribution.

Two problems above are from the same reason: a fixed way
of partition can not do well in all the distribution. To the
contrary, the M2M-NN, choose a suitable level before
searching, so that it has good performance in various
distributions.
4) M2M and other data structure based on hierarchical

decomposition of space
It seems that the M2M data structure is similar to the other

data structure based on a hierarchical decomposition of space,
such as balanced box-decomposition(BBD) tree [SUNIL
ARYA et al. 1998] , quadtree [Bern et al. 1993], kd-tree

[Friedman et al. 1977] or even ball-tree (sometimes called a
metric tree)[Moore et al. 2000; Alexander Gray et al 2001].
(Neighboring spheres may overlap in ball tree whereas
rectangles can abut in other tree structure.) But, there are
essential differences between M2M structure and other tree
structure.

a) The operations like getting the index of a certain part,
inserting or deleting a point, only cost O(1) time in
the M2M structure, but O(log(n)) in quadtree or
kd-tree even ball-tree and BBD-tree.

b) In the M2M structure, every point belongs to all
levels, So that observation on a point can be easily
made in different level. However, in preprocess of
kd-tree, quadtree, every point has been fixed in a
certain part of a certain level. As a result, the points
can not be view at different levels and that is the
reason why there are difficulty to insert and delete
from those data structure.

c) In the M2M structure, the scale of every part in the
same level is similar and comparable.

d) Although M2M structure is a complicated tree
structure as well, it is not necessary to consider the
balance problem. In M2M structure, operating on
one point won’t affect the others and the time cost of
insertion and deletion are O(1) as well. However, the
balance problem is inevitable in KD-tree and
quadtree. As a result, doing an insertion or deletion
is so expensive to them [Moore et al. 1991; Friedman
et al. 1977].

e) The number of child-part can be configured flexibly
according to the consideration of space and time
efficiency.

VI. CONCLUSION
In this paper, we present M2M model and the nearest

neighbour searching algorithm based on M2M model. The
operations of the data structure of M2M model (including
preprocessing, insertion, deletion and searching the nearest
neighbor) are achieve the optimal expected time complexity.
What’s more, the independency of the data in the structure of
M2M model can avoid the balance problem in other tree
structure like kd-tree, BBD-tree or quadtree. And using the
parallel technology, the time complexity of preprocessing can
be reduced to O(1). Finally, the potential advantage of the
M2M structure is the preprocessing can be shared by different
algorithms based on M2M model in the same data set.
 Much further work remains to be done to optimize NN
algorithm based on M2M model.
1) Select the searching level more precisely: If the search

starts at the macro level, the number of the points being
compared may be large. On the other sides, the number of
the part being examined may be large in the micro level.

2) Expand the searching area efficiently: The better
interpretation is circle but it is more complicated to
determine whether a part is inside the area. For that reason,
we use the square instead in our implement.

3) Trade-off between the efficiency and the precision:

Just a little modification, an approximate nearest neighbor
algorithm based on M2M can be designed.

4) Trade-off between time efficiency and space cost:
There is several ways to reduce the space cost, such as
reduce the number of level.

5) Extend algorithm for high dimension: it wouldn’t be
difficult to Extend M2M algorithm for high dimension,
which can refer the theorems in the paper of Bentley et al
[5].

 M2M-NN or even M2M model are newborn. There is still
much room for improvement. And these require a long-term
task for the researchers.

REFERENCES
[1] SHAMOS, M.I, AND HOEY, D. Closest-point problems Proc 16th IEEE

Syrup. Foundatmns of Computer Scwnce, pp. 151-162, Oct 1975.
[2] RABIN, M O. Probabilistic algorithms, in Algorithms and Complexity:

New Dwectmns and Recent Results, J.F. Traub (Ed.), Academic Press,
New York, pp. 21-39, 1976.

[3] WEIDE, B.W. Statistical methods m algorithm design and analysis. Ph.D.
Dissertation, Carnegm-Mellon Umv, Pittsburgh, Pa (Appeared as CMU
Comput Sci. Rep. CMU-CS-78-142), Aug 1978

[4] FORTUNE, S., AND HOPCROFT, J E A note on Rabln's
nearest-neighbor algorithm. Inf. Process. Lett. 8, 1 , 20-23, Jan. 1979.

[5] BENTLEY, J. L.,WEIDE, B. W., AND YAO, A. C. Optimal
expected-time algorithms for closest point problems. ACM Trans. Math.
Softw. 6, 4, 563–580,1980

[6] BERN, M. 1993. Approximate closest-point queries in high dimensions.
Inf. Proc. Lett. 45, 95–99.

[7] BERN, M., EPPSTEIN, D., AND TENG, S.-H. 1993. Parallel
construction of quadtrees and quality triangulations. In Proceedings of the
3rd Workshop Algorithms Data Structures. Lecture Notes in Computer
Science, vol. 709. Springer-Verlag, New York, pp. 188 –199.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACMTransactions on
Mathematical Software, 3(3):209–226, September 1977.

[9] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An Optimal
Algorithm for Approximate Nearest Neighbor Searching Fixed
Dimensions. Journal of the ACM, 45(6):891–923,1998.

[10] An intoductory tutorial on kd-trees, Extract from Andrew Moore's PhD
Thesis: Ecient Memory-basedd Learning for Robot Control PhD. 1991

[11] T. Liu, A. W. Moore, and A. Gray. Efficient exact k-NN and
nonparametric classification in high dimensions. In S. Thrun, L. Saul, and
B. Sch¨olkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms (2 nd E.), MIT Press, McGraw-Hill, New York, USA, 2001.

[13] Sebastian Nowozin. A vanilla k-d tree implementation 2004.

	I. INTRODUCTION
	II. Macro-to-Micro Model
	A. The origin of M2M model
	B. Terminology Explanation
	III. The Nearest Neighbor Algorithm based on M2M Model
	A. The data structure based on the M2M model
	B. The approach of nearest neighbour searching algorithm based on M2M
	C. Empirical Behaviour of M2M-NN

	IV. Discussion
	A. The advantage of M2M model
	B. Other application of M2M model

	V. Related Work
	VI. Conclusion

