In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Artificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

Syntactic and Functional Variability of a Million
Code Submissions in a Machine Learning MOOC

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas
Stanford University

Abstract. In the first offering of Stanford’s Machine Learning Massive
Open-Access Online Course (MOOC) there were over a million program-
ming submissions to 42 assignments — a dense sampling of the range of
possible solutions. In this paper we map out the syntax and functional
similarity of the submissions in order to explore the variation in solu-
tions. While there was a massive number of submissions, there is a much
smaller set of unique approaches. This redundancy in student solutions
can be leveraged to “force multiply” teacher feedback.

Fig. 1. The landscape of solutions for “gradient descent for linear regression” repre-
senting over 40,000 student code submissions with edges drawn between syntactically
similar submissions and colors corresponding to performance on a battery of unit tests
(red submissions passed all unit tests).

1 Introduction

Teachers have historically been faced with a difficult decision on how much per-
sonalized feedback to provide students on open-ended homework submissions



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

such as mathematical proofs, computer programs or essays. On one hand, feed-
back is a cornerstone of the educational experience which enables students to
learn from their mistakes. On the other hand, giving comments to each student
can be an overwhelming time commitment [4]. In contemporary MOOCs, char-
acterized by enrollments of tens of thousands of students, the cost of providing
informative feedback makes individual comments unfeasible.

Interestingly, a potential solution to the high cost of giving feedback in mas-
sive classes is highlighted by the volume of student work. For certain assignment
types, most feedback work is redundant given sufficiently many students. For
example, in an introductory programming exercise many homework submissions
are similar to each other and while there may be a massive number of submis-
sions, there is a much smaller variance in the content of those submissions. It
is even possible that with enough students, the entire space of reasonable solu-
tions is covered by a subset of student work. We believe that if we can organize
the space of solutions for an assignment along underlying patterns we should be
able to “force multiply” the feedback work provided by a teacher so that they
can provide comments for many thousands of students with minimal effort.

Towards the goal of force multiplying teacher feedback, we explore variations
in homework solutions for Stanford’s Machine Learning MOOC that was taught
in Fall of 2011 by Andrew Ng (ML Class), one of the first MOOCs taught. Our
dataset consists of over a million student coding submissions, making it one of the
largest of its kind to have been studied. By virtue of its size and the fact that it
constitutes a fairly dense sampling of the possible space of solutions to homework
problems, this dataset affords us a unique opportunity to study the variance of
student solutions. In our research, we first separate the problem of providing
feedback into two dimensions: giving output based feedback (comments on the
functional result of a student’s program) and syntax based feedback (comments
on the stylistic structure of the student’s program). We then explore the utility
and limitations of a “vanilla” approach where a teacher provides feedback only
on the k most common submissions. Finally we outline the potential for an
algorithm which propagates feedback on the entire network of syntax and output
similarities. Though we focus on the ML Class, we designed our methods to be
agnostic to both programming language, and course content.

Our research builds on a rich history of work into finding similarity between
programming assignments. In previous studies researchers have used program
similarity metrics to identify plagiarism [1], provide suggestions to students’
faced with low level programming problems [2] and finding trajectories of student
solutions [3]. Though the similarity techniques that we use are rooted in previous
work, the application of similarity to map out a full, massive class is novel.

2 ML Class by the numbers

When the ML Class opened in October 2011 over 120,000 students registered. Of
those students 25,839 submitted at least one assignment, and 10,405 submitted
solutions to all 8 homework assignments (each assignment had multiple parts



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

3 Regularized Logistic

30000 Optional Regression problems
£ problems 5
£ © 25000 s 28
83 2g
S o 2
g 220000 38 2
= 8 5
8] E o
5 ¢ 15000 £% 15
% 8 - o
5 & 10000 22 1
£E N
EE =
35 s000 ER
0 0
1 6 11 16 21 26 31 36 41 1 10 19 28 37
Problems 1 through 42 (ordered chronologically) Problems 1 through 42 (ordered chronologically)

(a) (b)

Neural network
backpropagation

1|

0 5 10 15 20 25 30 35 40 45

Number of
problems (of 42)

Average number of lines (over
all submissions to a problem)

(c)

Fig. 2. (a) Number of submitting users for each problem; (b) Number of submissions
per user for each problem; (c¢) Histogram over the 42 problems of average submission
line counts.

which combined for a total of 42 coding based problems) in which students were
asked to program a short matlab/octave function. These homeworks covered top-
ics such as regression, neural networks, support vector machines, among other
topics. Submissions were assessed via a battery of unit tests where the student
programs were run with standard input and assessed on whether they produced
the correct output. The course website provided immediate confirmation as to
whether a submission was correct or not and users were able to optionally re-
submit after a short time window.

Figure 2(a) plots the number of users who submitted code for each of the 42
coding problems. Similarly, Figure 2(b) plots the average number of submissions
per student on each problem and reflects to some degree its difficulty.

In total there were 1,008,764 code submissions with typical submissions being
quite short — on average a submission was 16.44 lines long (after removing
comments and other unnecessary whitespace). Figure 2(c) plots a histogram of
the average line count for each of the 42 assignments. There were three longer
problems — all relating to the backpropagation algorithm for neural networks.

3 Functional variability of code submissions

First, we examine the collection of unit test outputs for each submitted assign-
ment (which we use as a proxy for functional variability). In the ML Class, the



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

=

ORNWARUONN®OO

35000

30000

25000

20000

15000

Number of
problems (of 42)

10000

given unit test output class

5000

Number of submissions resulting in a

Regularized
Logistic regression
HHH ﬂﬂﬂ [l
Q

o 99 =3 o
288 =1 S

U

o
S o
® S

=1

1400 :I

1600 =1
000

2400

2600 /

1200
~ 2800

ARSI 1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49

Number of distinct unit test output classes (over al

Top 50 most “popular” unit test output classes for

submissions to a problem) gradient descent for linear regression problem
(a) (b)
1 TR +

5 oo W
~ &
£ 09 i
E ¢
o2
£ 5085 +
k! é
S
37
g gors
53
s~ 07
kit
T 065 ¢
e

0.6

1 10 100 1000 10000 100000

Number of submissions

()

Fig. 3. (a) Histogram over the 42 problems of the number of distinct unit test outputs;
(b) Number of submissions to each of the 50 most common unit test outputs for the
“sradient descent for linear regression” problem; (¢) Fraction of distinct unit test out-
puts with k or fewer submissions. For example, about 95% of unit test outputs owned
fewer than 10 submissions.

unit test outputs for each program are a set of real numbers, and we consider two
programs to be functionally equal if their unit test output vectors are equal.!

Not surprisingly in a class with tens of thousands of participants, the range
of the outputs over all of the homework submissions can be quite high even in
the simplest programming assignment. Figure 3(a) histograms the 42 assigned
problems with respect to the number of distinct unit test outputs submitted
by all students. On the low end, we observe that the 32,876 submissions to the
simple problem of constructing a 5 x 5 identity matrix resulted in 218 distinct
unit test output vectors. In some sense, the students came up with 217 wrong
ways to approach the identity matrix problem. The median number of distinct
outputs over all 42 problems was 423, but at the high end, we observe that the
39,421 submissions to a regularized logistic regression problem produced 2,992
distinct unit test outputs!

But were there truly nearly 3,000 distinct wrong ways to approach regularized
logistic regression? Or were there only a handful of “typical” ways to be wrong
and a large number of submissions which were each wrong in their own unique
way? In the following, we say that a unit test output vector v owns a submission

! The analysis in Section 4 captures variability of programs at a more nuanced level
of detail



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

1
09 IR A

08 | ot memmmemmmmmmmmoemomioTtes
- Regularized Logistic Regression

07 | .7
06 1
0.5 8 Regularized Logistic
04 6 regression, PCA
03 4 {_1_
; E]

0.2
o1 o I []

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

0
1 6 11 16 21 26 31 36 41 46 User coverage with 50 annotated unit test output
Top-k unit test output classes classes (over all submissions to a problem)

(a) (b)

Number of
problems (of 42)

Fraction of students covered by
annotating top-k unit test output classes

Fig.4. (a) Number of students covered by the 50 most common unit test outputs
for several representative problems; (b) Histogram over the 42 problems of number of
students covered by the top 50 unit test outputs for each problem. Observe that for
most problems, 50 unit test outcomes is sufficient for covering over 90% of students.

if that submission produced v when run against the given unit tests. We are
interested in common or “popular” outputs vectors which own many submissions.

Figure 3(b) visualizes the popularity of the 50 unit class output vectors which
owned the most submissions for the gradient descent for linear regression prob-
lem. As with all problems, the correct answer was the most popular, and in the
case of linear regression, there were 28,605 submissions which passed all unit
tests. Furthermore, there were only 15 additional unit test vectors which were
the result of 100 submissions or more, giving some support to the idea that we
can “cover” a majority of submissions simply by providing feedback based on a
handful of the most popular unit test output vectors. On the other hand, if we
provide feedback for only a few tens of the most popular unit test outputs, we
are still orphaning in some cases thousands of submissions. Figure 3(c) plots the
fraction of output vectors for the linear regression problem again which own less
than k submissions (varying k on a logarithmic scale). The plot shows, for exam-
ple, that approximately 95% of unit test output vectors (over 1,000 in this case)
owned 10 or fewer submissions. It would have been highly difficult to provide
feedback for this 95% using the vanilla output-based feedback strategy.

To better quantify the efficacy of output-based feedback, we explore the no-
tion of coverage — we want to know how many students in a MOOC we can
“cover” (or provide output-based feedback for) given a fixed amount of work for
the teaching staff. To study this, consider a problem P for which unit test output
vectors S = {s1,..., s} have been manually annotated by an instructor. This
could be as simple as “good job!”, to “make sure that your for-loop covers special
case X”. We say that a student is covered by S if every submitted solution by
that student for problem P produces unit test outputs which lie in S. Figure 4(a)
plots the number of students which are covered by the 50 most common unit
test output vectors for several representative problems. By and large, we find
that annotating the top 50 output vectors yields coverage of 90% of students
or more in almost all problems (see Figure 4(b) for histogrammed output cov-
erage over the 42 problems). However, we note that in a few cases, the top 50
output vectors might only cover slightly over 80% of students, and that even at



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

90% coverage, typically between 1000-2000 students are mot covered, showing
limitations of this “vanilla” approach to output-based feedback.

Thus, while output-based feedback provides us with a useful start, the vanilla
approach has some limitations. More importantly however, output based feed-
back can often be too much of an oversimplification. For example, output-based
feedback does not capture the fact that multiple output vectors can result from
similar misconceptions and conversely that different misconceptions can result
in the same unit test outputs. Success of output-based feedback depends greatly
on a well designed battery of unit tests. Moreover, coding style which is a crit-
ical component of programming cannot be captured at all by unit test based
approaches to providing feedback. In the next sections, we discuss a deeper anal-
ysis which delves further into program structure and is capable of distinguishing
the more stylistic elements of a submission.

4 Syntactic variability of code submissions

In addition to providing feedback on the functional output of a student’s pro-
gram, we also investigate our ability to give feedback on programming style. The
syntax of code submission in its raw form is a string of characters. While this
representation is compact, it does not emphasize the meaning of the code. To
more accurately capture the structure of a programming assignment, we compare
the corresponding Abstract Syntax Tree (AST) representation.

This task is far more difficult due to the open ended nature of programming
assignments which allows for a large space of programs. There were over half a
million unique ASTs in our dataset. Figure 5(b) shows that homework assign-
ments had substantially higher syntactic variability than functional variability.
Even if a human labeled the thirty most common syntax trees for the Gradient
Descent part of the Linear Regression homework, the teacher annotations would
cover under 16% of the students. However, syntactic similarity goes beyond bi-
nary labels of “same” or “different”. Instead, by calculating the tree edit distance
between two ASTs we can measure the degree to which two code submissions
are similar. Though it is computationally expensive to calculate the similarity
between all pairs of solutions in a massive class, the task is feasible given the dy-
namic programming edit distance algorithm presented by Shasha et al [5] . While
the algorithm is quartic in the worst case, it is quadratic in practice for student
submission. By exploiting the [5] algorithm and using a computing cluster, we
are able to match submissions at MOOC scales.

By examining the network of solutions within a cutoff edit distance of 5,
we observe a smaller, more manageable number of common solutions. Figure 1
visualizes this network or landscape of solutions for the linear regression (with
gradient descent) problem, with node representing a distinct AST and node sizes
scaling logarithmically with respect to the number of submissions owned by that
AST. By organizing the space of solutions via this network, we are able to see
clusters of submissions that are syntactically similar, and feedback for one AST
could potentially be propagated to other ASTs within the same cluster.



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

1.20E+00

Return a 5x5 identity matrix
LOOEH00 | oooeeome it e e

7
6 4
=2
=5 %
g Eg
S ) ¢ Z 800E-01
;.: 5 4 Regularized § E
29 st i a2 &
g g 3 Logistic regression 25 6ooe01
25 2 48 . ) .
° 2 x Linear Regression (Evaluate cost function)
= B8 a00e01 e
. LT 85 aeor | omm e egrossions
€ | ae==—T : . .
0 }%E 2.00E-01 /, Linear Regression (Gradient Descent)
O P P PP P LSS s ’
O O O O O O O O O O [ra=}
L RO N S i i N Y £ 0.00E+00
Number of distinct abstract syntax trees (over all 1 6 n 16 2 2 31
submissions to a problem) Top-k abstract syntax trees
(a) (b)

1.00E+00
Log distribution for pairs
1.00€-01 that agree on unit tests

.

Log distribution for pairs
that disagree on unit tests

1.00€-02

1.00€-03

Log probability

1.00E-04

1.00E-05
1.00E-06
1 41 81 121 161 201

Edit distance between pairs of
submissions

(c)

Fig. 5. (a) Histogram of the number of distinct abstract syntax trees (ASTs) submitted
to each problem.; (b) Number of students covered by the 30 most common ASTs for
several representative problems; (c) (Log) distribution over distances between pairs
of submissions for pairs who agree on unit test outputs, and pairs who disagree. For
very small edit distances (<10 edits), we see that the corresponding submissions are
typically also functionally similar (i.e., agree on unit test outputs).

Figure 1 also encodes the unit test outputs for each node using colors to dis-
tinguish between distinct unit test outcomes.? Note that visually, submissions
belonging to the same cluster typically also behave similarly in a functional sense,
but not always. We quantify this interaction between functional and syntactic
similarity in Figure 5(c) which visualizes (log) distributions over edit distances
between pairs of submissions who agree on unit test outcomes and pairs of sub-
missions who disagree on unit test outcomes. Figure 5(c) shows that when two
ASTs are within approximately 10 edits from each other, there is a high proba-
bility that they are also functionally similar. Beyond this point, the two distri-
butions are not significantly different, bearing witness to the fact that programs
that behave similarly can be implemented in significantly different ways.

5 Discussion and ongoing work

The feedback algorithm outlined in this paper lightly touches on the potential
for finding patterns that can be utilized to force multiply teacher feedback. One

2 Edge colors are set to be the average color of the two endpoints.



In Proceedings of the 1st Workshop on Massive Open Online Courses at the 16th Annual Conference on
Atrtificial Intelligence in Education (2013). Memphis, TN. http://www.moocshop.org

clear path forward is to propagate feedback, not just for entire programs, but
also for program parts. If two programs are different yet share a substantial
portion in common we should be able to leverage that partial similarity.

Though we focused our research on creating an algorithm to semi-automate
teacher feedback in a MOOC environment, learning the underlying organization
of assignment solutions for an entire class has benefits that go beyond those ini-
tial objectives. Knowing the space of solutions and how students are distributed
over that space is valuable to teaching staff who could benefit from a more nu-
anced understanding of the state of their class. Moreover, though this study is
framed in the context of MOOCsS, the ability to find patterns in student submis-
sions should be applicable to any class with a large enough corpus of student
solutions, for example, brick and mortar classes which give the same homeworks
over multiple offerings, or Advanced Placement exams where thousands of stu-
dents answer the same problem.

References

1. D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer programs.
In ACM SIGCSE Bulletin, volume 31, pages 266—270. ACM, 1999.

2. B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other
programmers do: suggesting solutions to error messages. In Proceedings of the 28th
international conference on Human factors in computing systems, pages 1019-1028.
ACM, 2010.

3. C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. Modeling how students
learn to program. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education, pages 153-160. ACM, 2012.

4. P. M. Sadler and E. Good. The impact of self-and peer-grading on student learning.
Educational assessment, 11(1):1-31, 2006.

5. D. Shasha, J. T.-L. Wang, K. Zhang, and F. Y. Shih. Exact and approximate
algorithms for unordered tree matching. IEEE Transactions on Systems, Man, and
Cybernetics, 24(4):668—-678, 1994.





