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Abstract. By learning a more distributed representation of the input space, clus-

tering can be a powerful source of information for boosting the performance of 

predictive models. While such semi-supervised methods based on clustering 

have been applied to increase the accuracy of predictions of external tests, they 

have not yet been applied to improve within-tutor prediction of student respons-

es. We use a widely adopted model for student prediction called knowledge 

tracing as our predictor and demonstrate how clustering students can improve 

model accuracy. The intuition behind this application of clustering is that dif-

ferent groups of students can be better fit with separate models. High perform-

ing students, for example, might be better modeled with a higher knowledge 

tracing learning rate parameter than lower performing students. We use a bag-

ging method that exploits clusterings at different values for K in order to cap-

ture a variety of different categorizations of students. The method then com-

bines the predictions of each cluster in order to produce a more accurate result 

than without clustering. 
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1 Introduction 

A recent work that involved clustering of the knowledge tracing (KT) space was that 

by Ritter et al. [1]. Their work focused on clustering the parameter space of KT [2] 

and essentially showed that the information compression offered by clustering was 

enough to significantly reduce the parameter space without compromising the per-

formance of the system. Ritter et al. also mention this as their motivation. It thus can-

not be considered an extension to KT per se, but it raises important questions about 

the nature of the parameter space. Trivedi et al. [3] used clustering to make better out-

of-tutor predictions and didn’t deal with knowledge tracing at all. They clustered stu-

dents based on features of tutor usage and then used those features to fit a model to 

predict performance on a test that students are given at the end of the school year. In 

our case, we cluster students based on some tutor usage features and then use these 

distinct clusters to train KT on them. We use a technique by Trivedi et al. [3] that 

exploits the information handed down by varying the granularity of the clustering to 

learn a more distributed representation.  



2 Clustered Knowledge Tracing 

For each student we have a number of features that measure his/her interaction with 

the tutor. Students could be clustered on the basis of these features and once the 

groups have been found the item sequences for these groups of students could be used 

for training KT separately. Below we briefly review the clustering algorithms and the 

bootstrapping method used.  

2.1 Clustering Algorithms used and Strategy for Bootstrapping 

     In our experiments we clustered students based on the features on tutor usage 

based on two algorithms: k-means and spectral clustering [4]. The basic k-means 

algorithm finds groupings in the data by randomly initializing a set of K cluster cen-

troids and then iteratively minimizing a distortion function and updating these KK  

cluster centroids and the points assigned to them. This is done till a point is reached 

such that sum of the distances of all the points with their assigned cluster centroids is 

as low as possible. Clustering methods such as k-means estimate explicit models of 

the data (specifically spherical gaussians) and fail spectacularly when the data is or-

ganized in very irregular and complex shaped clusters. Spectral clustering on the other 

hand works quite differently. It represents the data as an undirected graph and anal-

yses the spectrum of the graph laplacian obtained from the pairwise similarities of the 

data-points. This view is useful as it does not estimate any explicit model of the data 

and instead works by unfolding the data manifold to form meaningful clusters. Usual-

ly spectral clustering is a far more “accurate” clustering method as compared to k-

means except in cases where the data indeed confirms to the model that the k-means 

estimates. This leads to another interesting question – Which of the two works better 

in our scenario? This question is more interesting than just the comparison of two 

algorithms. If the per-user-per-skill KT parameters are arranged in approximately 

spherical clusters then the k-means algorithm might do better and vice versa.  Note 

that this should happen even though we are clustering tutor usage features and not the 

per-user-per-skill KT parameters themselves. This is because student groupings in the 

feature space should correspond to the groupings found in the KT parameter space 

unless the features collected are irrelevant. An exploration of this correspondence 

could be used to collect or engineer better features. These features should also be 

more useful for out-of-tutor predictions as well.  

     Using the methodology due to Trivedi et al. [3] we use clustering for bagging pre-

dictors. Using the features from tutor usage we initially employ clustering to find K 

student groups. Corresponding to each group identified we train KT models separate-

ly, thus getting K different models (Trivedi et al. call each such model trained on one 

cluster a “cluster model”). All of these models together will make one set of predic-

tions on the test data (all of the cluster models together for a given K are called a 

“prediction model” PMK). This process is schematically described in Fig. 1. The 

number of clusters K is then varied and the above process is repeated iteratively from 

K -1 to 1 (K = 1 corresponds to KT trained on the entire dataset, this should serve as 



the baseline KT). By this process we get a set of K different predictions. These pre-

dictions are then averaged to get a single final prediction.   

3 Empirical Validation  

In this section we present results of experiments to evaluate the performance of “Clus-

tered Knowledge Tracing” as described above and compare it with the baseline. Both 

k-means and spectral clustering are used. Specifically we used the classical k-means 

with random initialization and for spectral clustering we used self-tuned spectral clus-

tering with a fully connected graph of data-points. 

3.1 Dataset Description 

The data comes from the 2010 KDD Cup competition on educational data mining. We 

used the Algebra 2005-2006 and the Bridge to Algebra 2006-2007 datasets. These 

represent two different Algebra tutoring systems which are part of the Cognitive Tu-

tor family of tutors [5]. The number of students 

in the Algebra set was 575 with 813,661 total 

logged responses over 387 skills. There were 

1,146 students in the Bridge to Algebra set with 

3,656,871 total logged responses over 470 

skills. These datasets included skill information 

for each response and no response was tagged 

with more than one skill. The Cognitive Tutor 

divides its online curriculum into units. Skills 

which appear in different units, even if they 

have the same name, are considered different 

skills. Within units there are many problems 

which students try to solve. Each problem con-

sists of many sub questions called steps. Steps 

are the level at which the responses in this da-

taset were logged. Our training and test set is 

the same as defined by the competition organiz-

ers [6]. We stick to the competition’s train and 

test set format so that comparisons can be made 

between the error levels we find and the error 

levels of other published work with this dataset. The various tutor features that were 

used to cluster the students were: number of skills completed, total number of data-

points, user prior, user learn rate, user guess, user slip, number of EM iterations, Log 

likelihood improvement, percent correct, average response time. In experiments, stu-

dents were clustered using all these features and also only using the user tutor features 

(user prior, user learn rate, user guess, user slip). These user specific KT parameters 

were generated like in [6] by training a separate KT model per student based on all of 

that student’s data in the training set (across all skills).  

Figure 1. Construction of a Prediction 

Model for a given K. In each case a 

new PMK is obtained and thus a pre-

diction on the test data.  



3.2 Results of the Bagging Strategy to Knowledge Tracing 

For both datasets we report results using all the features described above and also by 

only using the user features. The results while using all features are with both kmeans 

and spectral clustering, and while using the user features are only by kmeans. We 

report the results for both the individuals prediction models (i.e. the model obtained 

by training KT on each cluster for a given K i.e. PMK) and the ensembled results (re-

sults obtained by averaging from PM1 to PMK).  For results we report the RMSE de-

fined per user. The justification to use the RMSE per user is that it equally weighs the 

benefit to each student without biasing it to students who have contributed more data 

points.  

     Initially we tried spectral clustering for the purpose of bootstrapping. This was 

motivated by the fact that spectral clustering is generally better than k-means cluster-

ing as discussed in section 2.1. Fig 2 shows the results for bagging using spectral 

clustering considering all the features on both the datasets. We see the declining trend 

in error when the results are ensembled and also notice that the individual prediction 

models don’t do too well showing that clustering alone does not help but blending the 

predictions does. Fig 3 indicates that a similar result is repeated in the same scenario 

with k-means (all features) in the algebra dataset. Such a result is not observed in the 

bridge dataset however. In fact in the bridge dataset both the various PMk and the 

ensembled results do worse than the baseline (which is PM1 i.e. KT trained on the 

entire dataset). But in further experiments we see that we can do better even on the 

bridge dataset if we consider only the user features. For the algebra dataset the base-

line (i.e PM1) RMSE is 0.32185, which represents standard KT with no clustering. 

The best result in the Algebra dataset for spectral (Fig 2) is obtained on averaging the 

first ten prediction models (0.31706). The best result for k-means (Fig 3) on this da-

taset is 0.31696, also after averaging the first ten prediction models. The result is sur-

prising as kmeans seems to do better than spectral clustering in this case. Perhaps this 

might be explained by the intuition in section 2.1. The trend however is reversed in 

the Bridge to algebra data-set, however we still note that the ensemble using spectral 

clustering does better than the baseline for all the K’s considered in this dataset. Giv-

en that k-means appeared to do well in one dataset and also given its speed, the above 

procedure was repeated in both the datasets with k-means using only the user specific 

features. We also cluster to a much higher K and see that the error trend line only 

decreases as K is increased as is shown in Fig 4. Here again, for the Algebra dataset, 

PM1 has an RMSE of 0.32185. The best prediction accuracy on averaging is attained 

at K = 20 where the RMSE is 0.3149. This accuracy is even better as was reported 

earlier considering both the clustering methods indicating that the user features are 

much richer for clustering the students. When only the user features are considered a 

similar error profile is also observed in the bridge to algebra dataset too (PM1 RMSE 

= 0.28397 and RMSE of the average from PM1 to PM30 is 0.28225). Except for the 

case when kmeans was run on the bridge to algebra set considering all the features, all 

the improvements are statistically significant over the baseline (p < 0.05). In another 

experiment in which all the above models are combined, the best accuracy that we 

obtain for the algebra dataset is 0.31506 and 0.2827 for the bridge to algebra dataset. 



Like we noted earlier, we report the RMSE per user. However even if we considered 

the RMSE on the leaderboard we get a statistically significant improvement over the 

baseline with PM1 being 0.32408 and the best prediction being 0.32318. 

 

Fig. 1. Results on the Algebra (L) and the Bridge to Algebra (R) datasets with spectral cluster-

ing when all the features are considered. The red line shows the ensembled results after averag-

ing from PM1 to PMK while the black one shows the results for each Prediction Model (PMK).  

 

Fig. 2. Algebra (L) and the Bridge to Algebra (R) with k-means clust. considering all features.  

 

Fig. 3. Algebra (L) and the Bridge to Algebra (R) with k-means clust. considering user features. 
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4 Discussion and Future Work 

While various extensions to the base KT model have focused on adding new features 

to the base model, in this work we took a slightly different view. Instead of trying to 

model new parameters we try to learn a more distributed representation of the KT 

input space. We achieve this by using clustering for bootstrapping. In extensive vali-

dation we show that our strategy indeed works very well. We report an improvement 

in prediction accuracy in most cases. We also report that the user features are much 

richer for clustering than the features of interaction of a student with a tutor. We be-

lieve that this leads to an interesting research problem. Often, the interaction of stu-

dents with a tutor is measured and recorded as features. These features should be such 

that if students were clustered on this feature space, the clustering should correspond 

to one on the KT parameter space. If it is not the case then it indicates that the task of 

feature generation in the tutor is noisy and could be improved in a more principled 

manner. An improvement in methodology here would be greatly useful in getting 

features that would be most helpful in making better out-of-tutor predictions. An in-

teresting problem would be to consider a case study in which the various clusters are 

analyzed and an attempt is made to interpret them on the basis of the associated KT 

parameters. Such a study could be quite useful, especially in making some data driven 

inferences and pedagogy. Lastly, this exploration concerning the KT input space, 

especially concerning learning a more distributed representation could be quite useful 

even when used in conjunction with KT variants such as [6] that are known to be 

stronger predictors than the base KT.  
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