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Abstract. The field of intelligent tutoring systems has been using the well 

known knowledge tracing model, popularized by Corbett and Anderson 

(1995) to track individual users’ knowledge for 15 years. Surprisingly, 

models currently in use do not allow for individual learning rates nor 

individualized estimates of student background knowledge. Corbett and 

Anderson, in their original articles, were interested in trying to add 

individualization to their model which they accomplished but with mixed 

results. Since their original work, the field has not made significant 

progress towards individualization of knowledge tracing models in fitting 

data. In this work, we introduce an elegant way of formulating the 

individualization problem entirely within a Bayesian networks framework 

that learns individualized as well as skill specific parameters in a single 

step. With this new model we are able to show a reliable improvement in 

knowledge estimation and data prediction. The novelty of the model is 

the ability to learn model parameters with the assumption that different 

students have different initial background knowledge probabilities. We 

evaluate the individualized model and standard knowledge tracing 

model with empirical results of predicting real student data. The 

implication of this work is the ability to enhance existing intelligent 

tutoring systems to more accurately estimate when a student has 

reached mastery of a skill. Adaptation of instruction based on 

individualized knowledge and learning speed is discussed as well as the 

open research questions facing those that wish to exploit student and 

skill information in their user models. 

Keywords: Knowledge Tracing, Bayesian Networks, Data Mining, Prediction, 

Intelligent Tutoring Systems 

1 Intro 

Our initial goal was simple; to show that with more data about students’ prior 

knowledge, we should be able to achieve a better fitting model and more accurate 

prediction of student data. The problem to solve was that there existed no Bayesian 

network model to exploit per user prior knowledge information. Knowledge tracing is 
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the predominant method used to model student knowledge and learning over time. 

This model, however, assumes that all students share the same incoming prior 

knowledge and does not allow for per student prior information to be incorporated. 

The model we have engineered is a modification to knowledge tracing that increases 

its generality by allowing for multiple prior knowledge parameters to be specified and 

lets the Bayesian network determine which prior parameter value a student belongs to 

if that information is not known before hand. The improvements we see in predicting 

real world data sets are palpable, with the new model predicting student responses 

better than standard knowledge tracing in 36 out of the 42 problem sets with the use 

of external data to inform a prior per student that applied to all problem sets. Equally 

encouraging was that the individualized model predicted better than knowledge 

tracing in 30 out of 42 problem sets without the use of any external data. Correlation 

between actual and predicted responses also improved significantly with the 

individualized model. 

1.1 Knowledge Tracing 

Knowledge tracing has become the dominant method of modeling student knowledge.  

It assumes that each skill has 4 parameters; a guess rate, learn rate, slip rate and a 

background prior on the probability that the skill was known before hand. This 

method was first introduced by Atkinson in 1972 [1]. Corbett and Anderson 

introduced this method to the intelligent tutoring field in 1995 [2]. It is currently 

employed by the cognitive tutor, used by hundreds of thousands of students, and 

many others. 

It might strike the uninitiated as a surprise that the dominant method of modeling 

student knowledge in intelligent tutoring systems, knowledge tracing, does not allow 

for students to have different learn rates even though it seems likely that students 

differ in their rate of learning. Similarly, knowledge tracing assumes that all students 

have the same probability of knowing the skill at their first opportunity.   

Corbett and Anderson were interested in implementing the learning rate and 

knowledge individualization that was originally described as part of Atkinson’s 

knowledge tracing model. They accomplished this but with limited success. They 

created a two step process for their model where the four parameters of the model 

were learned in the first step and the individual weights for each student were applied 

in the second step with a form of regression. Various factors were also identified for 

influencing the individual priors and learn rates [3]. The results [2] of their model 

showed that while the individualized model’s predictions correlated better with the 

actual test results, their standard non individualized knowledge tracing model 

predicted test performance with greater overall accuracy. More recent work, however, 

has found utility in the contextual individualization of the guess and slip parameters 

[4]. In this paper, we hope to reinvigorate the field to further explore models that 

explicitly model the assumption that students differ in their background knowledge, 

learning rate and possibly their propensity to guess or slip as originally suggested by 

Atkinson. 
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1.2 The ASSISTment System 

Our dataset consisted of student responses from The ASSISTment System, a web 

based math tutoring system for 7th-12th grade students that provides preparation for 

the state standardized test by using released math problems from previous tests as 

questions on the system. Tutorial help is given if a student answers the question 

wrong or asks for help. The tutorial help assists the student learn the required 

knowledge by breaking the problem into sub questions called scaffolding or giving 

the student hints on how to solve the question.  

2 The Model 

Our model uses Bayesian networks to learn the parameters of the model and predict 

performance. Reye [3] showed that the formulas used by Corbett and Anderson in 

their knowledge tracing work could be derived from a Hidden Markov Model or 

Dynamic Bayesian Network (DBN).. Corbett and colleagues later released a toolkit 

[4] using non individualized knowledge tracing to allow researchers to fit their own 

student models with DBNs.  

2.1 The Prior Per Student model vs. standard Knowledge Tracing 

The model we present in this paper focuses only on individualizing the prior 

knowledge parameter. We call it the Prior Per Student (PPS) model. The only 

difference between our model and Knowledge Tracing (KT) is the ability to represent 

a different prior knowledge parameter for each student.  
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Figure 1. The topology and parameter description of Knowledge Tracing and PPS 

The two model designs are shown in Figure 1. Initial knowledge and prior knowledge 

are synonymous. The individualization of the prior is achieved by adding a student 

node. The student node can take on values that range from one to the number of 

students being considered. The conditional probability table of the initial knowledge 

node is therefore conditioned upon the student node value. The student node itself 

also has a conditional probability table associated with it which determines the 

probability that a student will be of a particular value. The parameters for this node 

are fixed to be 1/N where N is the number of students. The parameter values for this 

node are not relevant since the student node is an observed node that corresponds to 

the student ID and need never be inferred. 

This model can be easily changed to model individual learning rates by 

connecting the student node to the subsequent knowledge nodes thus training an 

individualized P(T) conditioned upon student as shown in Figure 2. Knowledge 

Tracing is a special case of this prior per student model and can be derived by setting 

all the priors to the same values or by specifying that there is only one student. This 

equivalence was confirmed empirically. 
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Figure 2. Graphical depiction of our individualization modeling technique applied 

to the probability of learning parameter. This model is not evaluated in this paper but 

is presented to demonstrate the simplicity in adapting our model to other parameters. 

2.2 Parameter Learning and Inference 

There are two distinct steps in knowledge tracing models. The first step is learning the 

parameters of the model from all student data. The second step is tracing an individual 

student’s knowledge given their respective data. All knowledge tracing models allow 

for initial knowledge to be inferred per student in the second step. The PPS model 

allows for multiple priors to be learned along with the other parameters of the model 

in step one. We believe that if there is variance among student priors for a given skill, 

PPS will allow for more accurate guess and slip parameters to be learned. For 

example, if a student’s knowledge is known to be zero and she answers the first 

question correctly, that performance can properly be attributed to the probability of 

guess. Similarly, if a student is known to have perfect knowledge and answers the 

first question incorrectly, that performance can properly be attributed to the 

probability of slip. However, if only a single prior is used to represent all students, the 

prior ends up being approximately the mean of all student priors, which in this two 

student example would be 0.50. With a prior of 0.50, the parameter learning 

procedure may struggle attributing either student’s performance to a guess or slip. In 

our model each student has a student number identified by the student node. This 

number is presented during step one to associate a student with his or her prior. In 

step two, the individual student knowledge tracing, this number is again presented 

along with the student’s respective data in order to associate that student with the 

individualized prior learned in the first step.  

3 External Validity: Student Performance Prediction  

In order to test the real world utility of the prior per student model, we used the last 

question of each of our problem sets as the test question. For each problem set we 

trained two separate models: the prior per student model and the basic knowledge 

tracing model. Both models then made predictions of each student’s last question 

response and those responses tallied and compared to the students actual responses. 
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3.1 Dataset description 

Our dataset consisted of student response to problem sets that satisfied the following 

constraints: 

 Items in the problem set must have been given in a random order 

 A student must have answered all items in the problem set in one day 

 There are at least four items in the problem set of the exact same skill 

 Data is from Fall 2008 to Spring 2010 

 

Forty-two problem sets matched these constraints. Only the items within the 

problem set with the exact same skill tagging were used. The size of our resulting 

problem sets ranged from four items to thirteen. There were 4,354 unique students in 

total with each problem set having an average of 312 students ( = 201) and each 

student completing an average of three problem sets ( = 3.1). 

Table 1. Sample of data format from a five item problem set 

Student ID 1
st
 response 2

nd
 response 3

rd
 response 4

th
 response 5

th
 response 

750 0 1 1 1 1 

710 0 1 1 1 0 

714 1 1 0 1 0 

 

In Table 1, each response represents either a correct or incorrect answer to the 

original question of the item. Scaffold responses are ignored.  

3.2 Prediction procedure 

 Each problem set was evaluated individually by first constructing the appropriate 

sized Bayesian network for that problem set. In the case of the individualized model, 

the size of the constructed student node corresponded to the number of students with 

data for that problem set. All the data for that problem set, except for responses to the 

last question, was organized into an array to be used to train the parameters of the 

network using the Expectation Maximization (EM) algorithm. The initial values for 

the learn rate, guess and slip parameters were set to different values between 0.05 and 

0.90 chosen at random. After EM had learned parameters for the network, student 

performance was predicted. The prediction was done one student at a time by entering 

as evidence to the network, the responses for the particular student except for the 

response to the last question. This enabled individual inferences of knowledge to be 

made about the student at each question including the last question. The probability of 

the student answering the last question correctly was computed and saved to later be 

compared to the actual response. 

3.3 Approaches to setting the individualized prior knowledge values 

In the prediction procedure, due to the number of parameters in the model, care had to 

be given to how the individualized priors would be set before the parameters of the 



Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing  

7 

network were learned with EM. There were two decisions we focused on: 1) what 

initial values should the individualized priors be set to 2) whether or not those values 

should be fixed or adjustable during the EM parameter learning process. Since it was 

impossible to know the ground truth prior knowledge for each student for each 

problem set, we generated three heuristic strategies for setting these values, each of 

which will be evaluated in the results section. 

3.3.1 Setting initial individualize knowledge to random values 

One strategy was to treat the individualized priors exactly like the learn and guess and 

slip parameters by setting them to random values to then be adjusted by EM during 

the parameter learning process. This strategy effectively learns a prior per student per 

skill. This is perhaps the most naïve strategy that assumes there is no means of 

estimating a prior from other sources of information and no better heuristic for setting 

prior values. To further clarify, if there are 600 students there will be 600 random 

values between 0 and 1 set for each student. EM will then have 600 parameters to 

learn in addition to the learn, guess and slip parameters. For the non individualized 

model, the singular prior was set to a random value and was allowed to be adjusted by 

EM. 

3.3.2 Setting initial individualized knowledge based on 1
st
 response heuristic 

This strategy was based on the idea that a student’s prior is largely a reflection of their 

performance on the first question with guess and slip probabilities taken into account. 

If a student answered the first question correctly, their prior was set to one minus an 

ad-hoc guess value. If they answered the first question incorrectly, their prior was set 

to an ad-hoc slip value. Ad-hoc guess and slip values are used because ground truth 

guess and slip values cannot be known and because these values must be used before 

parameters are learned. The accuracy of these values could largely impact the 

effectiveness of this strategy. An ad-hoc guess value of 0.15 and slip value of 0.10 

were used for this heuristic. Note that these guess and slip values are not learned by 

EM and are separate from the performance parameters. The non-individualized prior 

was set to the mean of the first responses and was allowed to be adjusted while the 

individualized priors were fixed. This strategy will be referred to as the “cold start 

heuristic” due to its bootstrapping approach. 

3.3.3 Setting initial individualized knowledge based on global percent correct 

This last strategy was based on the assumption that there is a correlation between 

student performance on one problem set to the next. This is also the closest strategy to 

a model that assumes there is a single prior per student that is the same across all 

skills. For each student, a percent correct was computed, averaged over each problem 

set they completed. This was calculated using data from all of the problem sets they 

completed except the problem set being predicted. If a student had only completed the 

problem set being predicted then her prior was set to the average of the other student 

priors. The single KT prior was also set to the average of the individualized priors for 
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this strategy. The individualized priors were fixed while the non-individualized prior 

was adjustable. 

3.4 Performance prediction results 

The prediction performance of the models was calculated in terms of mean absolute 

error (MAE). The mean absolute error for a problem set was calculated by taking the 

mean of the absolute difference between the predicted probability of correct on the 

last question and the actual response for each student. This was calculated for each 

model’s prediction of correct on the last question. The model with the lowest mean 

absolute error for a problem set was deemed to be the more accurate predictor of that 

problem set. 

Table 2. Prediction accuracy and correlation of each model and initial prior strategy 

  Most accurate predictor (of 42) Avg. Correlation 

L0 Strategy PPS KT PPS KT 

Percent correct heuristic 36 6 0.3457 0.1933 

Cold start heuristic 30 12 0.3014 0.1726 

Random parameter values 26 16 0.2518 0.1726 

 

Table 2 shows the number of problem sets that PPS predicted more accurately than 

KT and vice versa in terms of MAE for each prior strategy. This metric was used 

instead of average MAE to avoid taking an average of averages. With the percent 

correct heuristic, the PPS model was able to better predict student data in 36 of the 42 

problem sets. The binomial with p = 0.50 tells us that the probability of 36 success or 

more in 42 trials is << 0.05, indicating a result that was not the product of random 

chance. The cold start heuristic, which used the 1
st
 response from the problem set and 

two ad-hoc parameter values, also performed well - better predicting 30 of the 42 

problem sets. According to the binomial the chance of 30 or more successes out of 42 

< 0.05 making this result also statistically significantly reliable.  

 The correlation between the predicted probability of last response and actual 

last response using the percent correct strategy was also evaluated for each problem 

set. The PPS model had a higher correlation coefficient than the KT model in 32 out 

of 39 problem sets. A correlation coefficient was not able to be calculated for the KT 

model in three of the problem sets due to a lack of variation in prediction across 

students. This occurred in one problem set for the PPS model. The average correlation 

efficient across all problem sets was 0.1933 for KT and 0.3457 for PPS using the 

percent correct heuristic. Surprisingly, the correlation of the random parameter 

strategy using PPS was better than KT since the PPS random parameter strategy 

represents a prior per student per skill which could be considered an over 

parameterization of the model. Moreover, no effort is made to inform a reasonable 

prior per student, rather the values are set randomly. This is evidence to us that the 

PPS model may outperform KT in prediction under a wide variety of conditions. 
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3.4.1 Response sequence analysis of results 

We wanted to further inspect our models to see under what circumstances they 

correctly and incorrectly predicted the data. To do this we looked at response 

sequences and counted how many times for PPS and KT, their respective prediction 

of the last question was right or wrong (rounding their probability of correct). For 

example: student response sequence [0 1 1 1] means that the student answered 

incorrectly on the first question but then answered correctly on the following three. 

The PPS and KT models were given the first three responses in addition to the 

parameters of the model to predict the fourth. If PPS predicted 0.68 and KT predicted 

0.72 probability of correct for the last question, they would both be counted as 

predicting that instance correctly. We did this for the 11 problem sets of length four. 

There were 4,448 total student response sequence instances among the 11 problem 

sets. Tables 3 and 4 show the top sequences in terms of number of instances where 

both models predicted the last question correctly (Table 3) and incorrectly (Table 4). 

Tables 5-6 show the top instances of sequences where one model predicted the last 

question correctly but the other did not. 

Table 3. Predicted correctly by both 

Instances Response sequence 

1167 1 1 1 1 

340 0 1 1 1 

253 1 0 1 1  

253 1 1 0 1 

251 1 1 1 0 
 

Table 4. Predicted incorrectly by both 

Instances Response sequence 

251 1 1 1 0 

154 0 1 1 0 

135 1 1 0 0  

106 1 0 1 0 

72 0 0 0 1 
 

 

Table 5. Predicted correctly by PPS only 

Instances Response sequence 

175 0 0 0 0 

84 0 1 0 0 

72 0 0 1 0  

61 1 0 0 0 

24 1 1 0 1 
 

Table 6. Predicted correctly by KT only 

Instances Response sequence 

75 0 0 0 1 

54 1 0 0 1 

51 0 0 1 1  

47 0 1 0 1 

16 1 0 0 0 
 

 

 Table 3 shows the most frequently correctly predicted sequences, that happen 

to also be the top occurring sequences overall. The top sequence, where students 

answer all questions correctly, accounts for more than 1/3 of the sequences and is 

never predicted incorrectly by either model. The top 2-5 sequences predicted correctly 

by both have only one incorrect response, interestingly the incorrect response appears 

at an incremented position for each sequence. Table 4 shows that the sequence where 

students answer all questions correct except the last question is never predicted 

correctly by either model. In order to correctly predict this question individual 

learning rates may need to be modeled. PPS is able to predict the sequence where no 

problems are answered correctly, shown in Table 5. In no instances does KT predict 

the last question of sequences [0 1 1 0] or [1 1 1 0] correctly. This sequence analysis 

may not generalize to other datasets but it provides a means to identify areas the 
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model can improve in and where it is most weak. Figure 3 shows a graphical 

representation of the distribution of sequences predicted by KT and PPS versus the 

actual distribution of sequences. This distribution combines the predicted sequences 

from all of the four item problem sets.  

 

 

Figure 3. Actual and predicted sequence distributions of PPS and KT 

The average residual of PPS is smaller than KT but as the chart shows, it is not by 

much. This suggests that while PPS has been shown to provide reliably better 

predictions, the increase in performance prediction accuracy may not be substantial. 

4 Conclusion 

In this work we have shown how individualization of the initial knowledge parameter 

in knowledge tracing can be accomplished with a simple technique and how that 

technique can easily be applied to model individualization of other parameters such as 

learn rate. The model we have presented allows for individualized and non 

individualized parameters of the model to be learned in a single step. We have also 

shown that the prior per student model, that individualizes initial knowledge, can be 

exploited to predict student data more accurately than standard knowledge tracing, 

which models a prior per skill.  
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5  Discussion 

We hope this paper is the beginning of a resurgence in attempting to better 

individualize and thereby personalize a students’ experience in intelligent tutoring 

systems.  

We would like to know when using a prior per student is not a good idea. If 

all students had the same prior per skill then there would be no utility in modeling an 

individualized prior. On the other extreme, if student priors for a skill are highly 

varied then individualized priors are best since it allows the variation in that 

parameter to be captured.   

 Should we model the variations in prior among students as a discrete or a 

continuous probabilistic value? We have chosen in this model to represent the 

different priors as continuous probabilistic values but we point out that our cold-start 

strategy is an example of a bi-modal prior model since a student is assigned to a fixed 

prior based on their first response. While this heuristic worked, we suspect there are 

significantly superior representations. Ritter has recently shown that clustering of 

skills can drastically reduce the parameter space of Knowledge tracing while still 

maintaining high prediction accuracy [5]. Perhaps a similar approach can be 

employed to find clusters of student priors instead of learning the prior of each 

individual student. 

 Our work here has focused on just one of the four parameters in knowledge 

tracing. We are particularly excited to see if by explicitly modeling the fact that 

students have different rates of learning we can achieve higher levels of prediction 

accuracy. A student’s learning could be indicative of motivational issues and if 

known, could prompt a type of tutor intervention personalized to the student. Guess 

and slip individualization is also possible, however, a potential pitfall with 

individualization is over parameterization and thus loosing the generality that allows 

for predictions to be made based on past and sometimes sparse observations. 

We have shown that for a single skill there is a benefit in modeling students’ 

variation in background knowledge and that utilizing prior information from other 

problem sets resulted in a marked improvement. We have shown that choosing a prior 

per student representation over the prior per skill representation of knowledge tracing 

is beneficial in fitting our dataset, however, an improved model is likely one that 

incorporates the student’s prior with the skill’s prior. How to design this model that 

properly treats the interaction of these two pieces of information is an open research 

question for the field. 

 In this work we focused on knowledge tracing, however, we know it is not 

the only model of learning. For instance, Draney, Wilson and Pirolli [7] have 

introduced a model they argue is more parsimonious than Knowledge tracing due to 

its fewer number of parameters. Additionally, EM is not the only method for fitting 

model parameters. Pavlik et al [8] have reported using different algorithms, as well as 

brute force, for fitting parameters with greater success than EM with their models. We 

also point out that more standard models used in educational measurement such as the 

Rasch model and item response theory have had large uses in and outside of the ITS 

field for estimating individual student and question parameters. We know there is 

value in these other approaches and strive as a field to learn how best to exploit 

information about students, questions and skills in our user models. 
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