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Chapter 2: Background 

The current work massively builds on the notion of data clustering.  This fundamental task has been a 

subject for extensive study of computational disciplines such as machine learning and pattern 

recognition and is useful for a variety of applications in many empirical domains.  The review below 

intends to provide a broad perspective on the methods that are elaborated later on.  The original parts 

of our work introduced in later chapters elaborate on two particular data clustering methods, which 

are described in more detail therein.  Chapter 4 below is based on Puzicha, Hofmann & Buhmann's 

(2000) theory of proximity based clustering.  Chapter 5 is based on two closely related data clustering 

methods: the information bottleneck method (IB; Tishby, Pereira & Bialek, 1999) and the information 

distortion method (ID, Gedeon, Parker & Dimitrov, 2003; Pereira, Tishby & Lee, 1993). 

This work is largely inspired as well, though in a less technical level, by computational models of 

analogy – a field of study in cognitive science, on the borderline between linguistics, psychology and 

the computational sciences.  This chapter therefore concludes with an exemplifying discussion of this 

field. 

2.1   Data Clustering 
Data clustering is a computational task, which aims at revealing structure in initially unstructured 

data.  The following definition by Aldenderfer & Blashfield (1984), 

The segmentation of heterogeneous set of elements into a collection of homogenous subsets, 

provides a good notion of what data clustering is about. 

2.1.1  Introduction 

The ability to cluster data might be useful for the functioning of intelligent systems, whether artificial 

or natural.  Two closely related motivations for why intelligent systems are expected to develop data-

clustering capabilities are (after MacKay, 2003, Ch. 20): 

- Prediction: characterizing newly encountered pieces of information as exemplars of identifiable 

distinct classes. 

- Communication: by referring to similar pieces of information by a common cluster label, 

communicating parties can concentrate on what is important to the communicated information, 

while avoiding unneeded details and subtleties. 
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The above two considerations are in fact closely related.  For example, we might expect an intelligent 

system encountering an object to be able to identify it as, say, ‘an animal’, ‘a plant’, or ‘a piece of 

furniture’ and, at a finer level of resolution, as ‘a cat’ or ‘a tiger’.  Such labeling system might play a 

role in classifying data both for the system's own purposes and for communicating this information to 

other parties. 

Data clustering methods approach the above restrictedly from unsupervised perspective.  Likewise, 

the computational mechanisms reviewed and developed throughout this work rely on unlabeled 

training data, while external supervision providing known-to-be “correct labels” is not introduced 

during learning (as is indeed the case in many practical settings). 

2.1.1.1   Practical Applications 

There are many applicative uses for data clustering.  A partial illustrative list is as follows: 

- Object recognition: partitioning of a set of images, recorded sounds, or other composite 

records that are not subject to immediate automated interpretation, into well-distinguished 

classes.  The intended scope of each “well-distinguished class” may vary.  Few examples are:  

 all exemplars of images from the same natural category (e.g., “animals” in one cluster, 

“buildings” in another one and “pieces of furniture” in a third cluster). 

 all exemplars of the same object photographed under different conditions (changing 

illumination, angle etc.) 

 all exemplars of recorded pronunciations of the same word (e.g., names of alphabet 

letters, as in Blatt, Wiseman, & Domany, 1997) 

- Image segmentation: the classifications of image pixels to different textures or to different 

objects (Hofmann & Puzicha, 1998; Boykov, Vexler & Zabih, 1999), e.g. objects in a room or 

organs in an image produced by some medical imaging technique. 

- Information Retrieval and Natural Language Processing: topical categorization of 

documents (Dhillon & Modha, 2001; Slonim & Tishby, 2002); detecting senses and sub-topics 

through word clusters (Pereira, Tishby & Lee, 1993; Brew & Schulte im Walde, 2002; 

Korhonen, Krymolowski & Marx, 2003). 

Forming clusters of semantically similar documents or words is in particular related with the 

applicative part of the current work.  Word clusters illustrate how what can be called “a conceptual 

network”, where each cluster of words sharing a common sense reveals a different concept, emerges 

from unprocessed textual data.  This is accomplished with no supervision, not to mention “deep 

understanding” of the language the analyzed texts are written in.   In our case, as well as in other 
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works such as the two above references on document clustering, clusters are produced with no 

information about the texts except word co-occurrence statistics (the three works on word clustering 

cited above use syntactic information extracted automatically prior to the clustering).  Thus, beyond 

its applicative utility data clustering can be seen as demonstrating, on a very basic level, computation-

based intelligence and the emergence of meaning. 

2.1.1.2   Data Clustering is an Ill-posed Task 

A well-known fact about data clustering is that it is ill posed, or, as Estivill-Castro (2003) puts it: “the 

cluster is in the eyes of the beholder”.  Any definition to the data-clustering problem does not set an 

unambiguous criterion to judging whether, or how well, the problem is solved.  Quite often, several 

partitions exist representing compromises between different biases inherent to the data, so the user 

must be more detailed with regard to the specific goals and the considerations relevant to those goals.  

For instance, image segmentation data is constrained not only by pixels' color or grey scale, but also 

by the spatial proximity of the clustered pixels.  Spatial proximity, however, is irrelevant in most other 

settings.  Being more specific and posing more restrictions does not necessarily turns the data 

clustering into a well-defined problem.  Assuming an axiomatic framework that poses some more 

concrete restrictions, Kleinberg (2003; see Subsection 2.1.4.3 below) shows that the data clustering 

problem is inherently unsatisfiable. 

2.1.2   The Structure of Data Clustering Output 

Basically, a data clustering method is supposed, given a set of elements, to produce a partition of the 

set into clusters.  We use the term clustering configuration to denote any one of all possible partitions 

of the data, among which data clustering methods are supposed to identify the one that optimally 

addresses the data-clustering task.  Each cluster is, by definition, just the set of data elements that 

forms it.  There are, however, methods that provide also supplementary information.  There are 

several methods that specify also a prototypical representation for every cluster, which gives an idea 

about each cluster's characteristics while saving the need to examine its elements.  We elaborate on 

such cases of extended clustering output later on (see 2.1.4.4).  In this subsection, we discuss two 

issues that are part of the clustering output in its more basic form: the number of clusters being 

produced and multi assignments and probabilistic assignments of data elements to clusters. 

2.1.2.1   How Many Clusters 

It is quite clear that the number of clusters, k, is expected to be considerably less than the number of 

clustered elements.  However, determining k exactly is a non-trivial issue, which might depend, for 

instance, on specific user requirements.  There are methods (e.g., Blatt, Wiseman & Domany, 1997) 

that infer k from the data itself, with no directions regarding user preferences.  There are also 
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statistical significance tests comparing configurations of k versus k+1 clusters in order to judge 

whether producing the larger number of clusters is justified (Duda, Hart & Strock, 2001, pp. 557-

559).  Many methods, however, including those adapted in the current work, follow user instructions.  

In these cases, k is usually specified as an additional input parameter.  Alternatively, some methods 

require the user to indicate the value of a method-specific threshold parameter, which indirectly 

determines k, with dependence on the data. 

2.1.2.2   Assignment Probabilities 

In many situations, partitioning the data to homogeneous subsets leaves some elements that do not fit 

perfectly into one of the clusters.  One conceivable solution, sometimes termed “soft” or non-

deterministic clustering, is to allow the assignment of an element to two or more clusters, with 

varying degrees of justification or confidence.  Hence, the clustering output of several methods 

includes detailed information with regard to “level of assignment” ass(c,x) of each element x within 

each cluster c.  A common convention is to restrict the assignment levels to be non-negative, 

ass(c,x) ≥ 0, and to require all assignment levels of an individual element x to sum up to 1: 

∑c ass(c,x) = 1.  Under this convention, the level by which an element is assigned to a cluster can be 

interpreted as ass(c,x) ≡ p(c|x), the probability of the (deterministic) assignment to c to take place, 

given that the assigned element is x.  We call methods with this kind of output probabilistic clustering 

methods.  In this work, we use a probabilistic framework in Chapter 5. 

2.1.3   Data Representation 

Different data clustering methods differ by the type of data representation they are capable of dealing 

with – the format of the input they can take. 

2.1.3.1   Pairwise Representation 

Pairwise clustering methods rely on measures of proximity, i.e. similarity or dissimilarity values, 

between pairs of data elements.  An example for a direct source for similarity values utilizable for 

pairwise clustering is a confusion matrix (e.g., Manos, 1996).  This is a matrix, based on the 

performance of subjects under study, in which both rows and columns correspond to data elements.  

The entry at a row corresponding to an element x and column corresponding to an element x' indicates 

empirical count count(x←x'), or estimated probability p(x|x'), of miss-recognizing an element x' as an 

element x.  More on proximity measures in 2.1.3.3 below. 

2.1.3.2   Feature-based Representation 

Somewhat more typical to actual data than pairwise representation is a representation where, along 

with the set of elements to be clustered, an auxiliary set of features that are considered relevant to the 

desired outcome (relevance features) is present.  In such case, each element is identifiable as a vector 
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with entries that reflect how intensive the element's association with each of the various features is.  

For example, an element x can be represented by the vector of observed co-occurrence counts of x 

with each one of the features y.  Such co-occurrence vectors are widely used, including in this work. 

There are clustering methods that process co-occurrence vectors in their normalized form, i.e., vectors 

of estimated conditional probabilities p(y|x) of each feature y to co-occur with an element x.  The 

normalization factor is the total occurrence count of the element x in the data, over all features with 

which x co-occurs (count(x)).  In a probabilistic setting, the total counts of data elements are often 

normalized themselves to a probabilistic vector of relative frequencies p(x), for each data element x. 

2.1.3.3   Proximity Measures 

Similarity and dissimilarity assessment are practiced both as an independent unsupervised task and as 

pre-processing for other tasks, including data clustering.  It is used within many applications: data 

mining (Das, Mannila & Ronkainen, 1998), image retrieval (Ortega et al., 1998) and document 

clustering (Dhillon & Modha, 2001). 

Dissimilarity can be viewed as distance in the feature space.  The well-known L1 (Manhattan) norm, 

which is the sum of absolute differences between corresponding vector coordinates 

L1 (x, x')   =   ∑ −
i ii xx |'|  , (2.1) 

where corresponding coordinates are indexed by a common index i, and the L2 (Euclidean) distance, 

which is the square root of sum of squared coordinate differences 

L2 (x, x')   =   ∑ −
i ii xx 2)'(  , (2.2) 

are sometimes used as benchmarks (e.g. by Lee, 1999).  In general, there are no strict formal 

restrictions on the similarity or distance values.  For instance, a dissimilarity measure is not expected 

to form a metric as L1 and L2 do, and in particular, a distance measure d is not required to be 

symmetric (d(x,x') ≠ d(x',x) is permitted) or to obey the triangle inequality (d(x,x') + d(x',x'') ≤ d(x,x'') 

is permitted). 

Several dissimilarity measures refer to representation of data in the above mentioned form of 

conditional probability distributions of features.  The Kullback-Leibler (KL) divergence (Cover & 

Thomas, 1991, p. 18) quantifies the inefficiency of coding information distributed according to p(y|x') 

with code that is optimized for p(y|x):  

KL[p(y|x)||p(y|x')] = ∑y p(y|x) ( log p(y|x) − log p(y|x') ).   (2.3) 
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KL divergence is undefined, i.e. approaches infinity, whenever there is a feature y* such that 

p(y*|x) > 0 but p(y*|x') = 0.  There are dissimilarity measures that are based on KL divergence but 

overcome this problem.  The Jensen-Shannon (JS) divergence (used, e.g., in Manos, 1996, and 

Korhonen, Krymolowski & Marx, 2003) is the sum of KL divergences of p(y|x) and p(y|x') from their 

average, possibly weighted by the elements' relative frequencies p(x) and p(x'): 

JS[p(y|x)||p(y|x')] = π KL[p(y|x)||q(y)] + π' KL[p(y|x')||q(y)] ,   (2.4) 

where π = p(x) / ( p(x) + p(x') ) , π' = p(x') / ( p(x) + p(x') ) and q(y) = ( π p(y|x) + π' p(y|x') ) .  The ff-

skew divergence (Lee, 1999) is the KL divergence between p(y|x) and a slight shift, by a small positive 

value α, of p(y|x') towards p(y|x): 

ff-skew[p(y|x)||p(y|x')] = KL[p(y|x) || (1−α)p(y|x') + αp(y|x)] .   (2.5) 

Both the symmetric JS divergence and the non-symmetric ff-skew divergence are guaranteed not to 

approach infinity, because the average of p(y|x) and p(y|x'), as well as the shifted probability p', are 

equal to zero only on those features y for which both p(y|x) and p(y|x') are equal to zero. 

Similarity values are often induced from distance values.  A popular scheme of calculating similarity 

between two data elements x and x' is through an exponentially decreasing function of their given 

distance d: sim(x,x') = e−d(x,x') (as, e.g., done by Blatt, Wiseman & Domany, 1997).  This scheme tends 

to sharpen differences between pairs of close neighbors, while blurring differences between pairs of 

distant elements, thus it intensifies sensitivity to neighborhood-related information that is more 

relevant to the clustering task (distant elements would always be assigned to different clusters). 

In the domain of text processing, co-occurrence based similarity measures are widely used (see 

Dagan, 2000 for a review).  Such measures rely on the observation that semantically similar words 

tend to share similar patterns of co-occurrences with their neighboring words, which take the role of 

relevance features in this case.  Likewise, similar documents share similar word frequency 

distributions.  A common convention bounds the similarity values between 0 to 1, where 1 typically 

denotes self-similarity.  One widely used measure is the cosine of the angel between two co-

occurrence count vectors (van Rijsbergen, 1979, ch. 5; used, e.g., by Dhillon & Modha, 2001), that is, 

the sum of corresponding entry products (dot product) of the two vectors normalized by the L2 norm 

of the product: 

cosine (x, x')   =   
∑∑

∑
yy

y

yxcountyxcount

yxcountyxcount

22 ),'(),(

),'(),(
 , (2.6) 

The cosine and other similarly straightforward measures are affected by the data sparseness problem, 

intensified, for instance, by the common use of different words referring to similar meanings.  More 

sophisticated measures, which are designed to overcome the sparseness problem, incorporate 
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information-theoretic perspective.  We employ in this work two such similarity measures, by Lin 

(1998) and Dagan, Marcus & Markovitch (1995).  These measures are described in detail later, in 

Chapter 4. 

2.1.3.4   Re-representation and Preprocessing 

There are cases where the given representation of the data is modified before applying the actual 

clustering method.  This might be required, for instance, because the method in use takes different 

representation than the given one, or in order to have smaller or less noisy data so that the method 

operates faster or produces results of better quality. 

Re-representation in general implies loss of information.  Consequently, an important sub-goal of pre-

processing is to preserve the information relevant to the clustering task.  When pairwise data is given, 

similarities between distant elements are often ignored, resulting in sparse similarity matrix, which 

improves computation efficiency.  This is an example of rather straightforward elimination of 

irrelevant information: as noted, any two unmistakably dissimilar elements are expected to be in 

different clusters and their exact level of similarity is less important. 

A common re-representation procedure is the transformation of feature vectors into an array of 

similarities, or distances, appropriate for pairwise clustering.  Such transformation is based on a 

measure of distance or similarity between vectors (see previous subsection).  Often, terms such as 

'similarity' or 'distance' are mentioned also in the context of feature-based clustering, which gets a 

concrete meaning only if a concrete measure of similarity between feature vectors is specified. 

Feature-selection and feature-generation techniques can be applied to convert one form of vectorial 

representation into another, with aims such as masking noise from the given representation or 

decreasing the data complexity prior to actual clustering.  For example, PCA (principled component 

analysis), a dimensionality-reduction procedure, is used by Brew & Schulte im Walde (2002) as a pre-

processing procedure prior to applying a clustering method. 

2.1.4   Algorithmic Framework for Data Clustering 

The number of all possible partitions of n elements to k clusters is roughly kn/k!, which grows 

exponentially with n (Duda, Hart & Stork, 2001, p. 548).  Hence, going through all different 

clustering configurations in search for one realizing the requirements, whatever they are, is 

computationally ineffective (indeed, data clustering is an NP-complete problem, Garey & Johnson, 

1979).  Accordingly, clustering algorithms typically attempt to provide, by means of restricted but 

principled search, a reasonably good solution even if spotting the absolutely best solution in not 

guaranteed.  The following subsections present some schemes for how various data clustering 

methods conduct such a search. 
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2.1.4.1   Incremental Search 

A strategy for solving optimization problems that are not liable to an exhaustive search, implemented 

within most data clustering methods that are mentioned below, is performing the task incrementally, 

as shown in Fig 2.1. 

 

given an initial configuration of clusters 

repeat 

from a set of currently available update steps of a pre-specified 
type, perform the one that is optimal due to some pre-specified 
criterion, so that a new clustering configuration results 

Until the resulting configuration meets some pre-specified stop condition 

Figure 2.1: The incremental clustering scheme. 

There are several simple examples for methods implementing this step-by-step scheme.  One well-

known class of such methods assumes an initial configuration where each element forms an individual 

cluster (singleton) and the update steps are cluster merges.  This strategy, known as agglomerative 

clustering, elementarily produces a strict hierarchy of clustering configurations.  Criteria to assess the 

best merge to perform are, for instance, the similarity of most similar members of the clusters to be 

merged, or the similarity of their most dissimilar members (known, respectively, as the single linkage 

and complete linkage methods, Duda, Hart & Stork, 2001, pp. 553-554).  The stop condition in these 

examples is either the formation of a pre-specified number of clusters k or a pre-specified similarity 

threshold value beyond which clusters are not merged any more. 

Other feasible types of update steps employed by different methods, other than cluster merges, are: 

cluster splits, reassignments of a single data element and reassignment of all elements.  Identifying the 

optimal update step, which means quantifying each steps' quality relatively to the other candidate 

steps, should be carried out with low computational complexity in order to maintain tractability.  

The stepwise scheme, though prevalent, is not the only conceivable search strategy.  Blatt, Wiseman 

& Domany (1997), for instance, implement a Monte Carlo procedure producing a series of partitions 

that can be thought of as “typical” rather than “target” clustering configurations.  Then, the probability 

of element pairs to be part of the same typical cluster is used to determine the final configuration.  

(Formally, however, this process can also be understood as a conversion – or re-representation, see 

2.1.3.3 above – of the given similarities into similarities of other type, namely probabilities to share 

the same “typical” cluster, followed by application of the single-linkage method with threshold 0.5). 
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2.1.4.2   Cost-Based Search 

There are data clustering methods that assign to each admissible clustering-configuration a measure of 

quality, or a cost function.  The availability of global quality measure or cost function has several 

attractive consequences.  The target of data clustering becomes clear and concrete: finding a 

configuration of highest quality or lowest cost.  Accordingly, the stepwise scheme described in the 

previous subsection can be made more concrete given a cost function, so that the criteria of how to 

choose the update step to execute next and when to stop the iterative loop are clear and explicit: 

 

Given an initial configuration of clusters 

repeat 

from a set of currently available update steps of a pre-specified 
type, perform the one reducing a pre-specified cost more than any 
other step, so that a new clustering configuration results 

Until the cost cannot be reduced by any available step 

Figure 2.2: The cost-reduction clustering scheme. 

The above iterative loop is guaranteed to stop, as the cost is bounded from below (the number of 

configurations is finite) and is reduced every iteration.  It is apparent, however, that the obtained 

configuration is not necessarily of absolutely lowest cost, but just one that cannot be improved by the 

available updates steps.  Update step types usually employed are single element re-assignment, picked 

either according to some fixed schedule or at random (Puzicha, Hofmann & Buhmann, 2000; Slonim, 

Friedman & Tishby, 2002).  In the last case, before terminating the iterative loop, it should be verified 

that cost cannot improve by any further reassignments, not just of the element currently examined. 

2.1.4.3   Axiomatic Approach to Data Clustering 

An attractive aspect of cost functions is that they provide a definite criterion, in terms of precise 

mathematical expression, for determining the quality of data clustering outcome relatively to other 

possible outcomes.  However, in order to make a rough definition of the data clustering problem (such 

as the one above at the top of Section 2.1) precise, a cost function must involve further assumptions 

that are not necessarily consensual, but rather they reflect more individual view of what should be 

expected of “a reasonable clustering procedure”.  Assumptions of this kind are sometimes 

incorporated within an axiomatic approach to data clustering.  We exemplify below two cases where 

such assumptions are incorporated in the pairwise clustering setting. 

Kleinberg (2003) includes a requirement termed consistency in his axiomatic analysis.  This 

requirement states that in any specific clustering problem the best (lowest-cost) clustering 
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configuration should remain the best solution also for data that is modified relatively to the original 

problem as follows: some or all of the similarities between elements sharing the same cluster in the 

best configuration are increased and between-cluster similarities are decreased.  Puzicha, Hofmann & 

Buhmann's (2000) theory of proximity-based clustering (on which we elaborate in Chapter 4; see 

detailed review there) introduces other requirements.  For instance, the relative ranking of all 

clustering configurations is not expected, under their assumptions, to change in case all pairwise input 

values are multiplied or shifted by a constant (scale and shift invariance properties, respectively). 

2.1.4.4   Prototypical Representatives of Clusters 

Some clustering algorithms keep prototypical vectorial representation of each one of the clusters, 

additional to the list of cluster members (as mentioned before, such representations can be understood 

as a part of the algorithm output). 

The incremental data clustering scheme (Figure 2.1) can make use of prototypical representations.   

When they are incorporated, assessing the candidate update steps can rely on associations between 

elements and cluster representatives, which are fewer than the associations between all pairs of 

elements involved.  On the other hand, the incremental scheme would require in that case updating the 

cluster representatives along with the updates of assignments into clusters: 

 

given an initial array of k cluster representatives 

repeat 

- reassign all elements - each element to the cluster with the 
representative to which it is most similar 

- recalculate cluster representatives, based on the members of each 
cluster 

until a stable configuration is obtained 

Figure 2.3: The k-representatives clustering scheme. 

The k-representatives scheme is a specific heuristic variant of the incremental scheme.  The specific 

stopping condition, namely obtaining a stable configuration where cluster representatives are not 

liable to any further change, is not guaranteed in general terms.  It turns out, however, that in some 

concrete cases, with certain definitions of cluster representatives and element-representative similarity 

relations, the k-representatives scheme happens to reduce a specific cost criterion (known as the 

Lyapunov function of the algorithm, McKay, 2003, p. 299).  Therefore, such cases, three of which are 

mentioned below, realize also the cost-based clustering scheme (Figure 2.2) and are hence assured to 

stop with configuration that locally minimizes the specific cost. 
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Feature-based methods naturally represent clusters as vectors in the same space of their input vectorial 

representations: 

- The k-means algorithm: Each cluster is represented by its centroid – the mean of the vectorial 

representations of the cluster's elements.  The distance (dissimilarity) between the centroids and 

the data elements is measured in L2 (Euclidean) norm.  In this case, the cost being reduced 

happens to be the sum of squared L2 distances of all data elements, each from its cluster centroid 

(Estivill-Castro, 2003). 

Duda, Hart & Stork (2001, p. 550) note that, in terms of susceptibility to being trapped in local 

minima, the k-means algorithm has been found empirically advantageous over cost based search with 

reassignment of a single element at a time. 

- The k-medoids algorithm: Each cluster is represented by its medoid – a vector where each 

entry is the median value of the corresponding cluster-member entries.  Element-medoid 

similarity is captured through proximity in L1 norm.  The cost being reduced in this case is the 

sum of L1 distances between all elements and their cluster medoids (Estivill-Castro, 2003). 

The notion of cluster representative is applicable, though not very intuitive or common, also in 

pairwise clustering: 

- The prototypical representative is a concrete data element, for which the sum of similarities to 

all other members of its cluster is the largest compared to corresponding sums of the other 

cluster's members (equivalently, the sum of dissimilarities is required to be the smallest in the 

cluster).  The cluster-element similarity or dissimilarity employed is straightforwardly given by 

the proximity measure between data elements.  The cost being reduced in this case is the sum of 

dissimilarities, or minus the sum of similarities, between all the elements and their corresponding 

cluster representatives.  (It is easy to verify that, in each iteration, the total cost is decreased by 

both reassignments and re-selected representatives). 

2.1.4.5   Stochasticity 

Randomness can affect several aspects of the algorithmic schemes introduced so far.  For instance, the 

initial configuration can be determined randomly and so is the next element to be reassigned, in case a 

single element is reassigned at each update step of the incremental scheme.  More importantly, update 

steps can be chosen stochastically among all alternatives as the following scheme explicates: 
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given an initial configuration of clusters 

repeat 

pick at random one of the currently available update steps s and 
perform it with probability correlated with the anticipated addition 
to cost ∆s 

until, for some pre-specified number of iterations, the change in cost 
does not exceed some pre-specified small threshold value 

Figure 2.4: The stochastic cost-driven clustering scheme. 

There are a couple of algorithmic variations that fit this scheme.  They differ from one another by the 

way they calculate the probability to perform a candidate step as a function of its anticipated impact 

on the cost.  As with the basic cost-reduction scheme, the update steps in both variations are picked 

from all possible reassignments of one randomly chosen element.  In one variation of simulated 

annealing (Kirkpatrick, Gelatt & Vecchi, 1983) if an update step that does not increase the cost is 

picked it would be performed always (i.e. in probability 1).  A step s that does increase the cost by a 

positive quantity ∆s would be performed in probability e−β∆s.  In another variation (Gibbs sampling, 

Geman & Geman, 1984; implemented in Chapter 4) any step s can be picked and performed in 

probability proportional to e−β∆s, where the cost change ∆s can be either positive or not.  In both cases, 

the cost might occasionally grow, though rarely in comparison to cost reduction.  Stochasticity is 

gradually relaxed during execution of both variations by means of gradual increasing of the inverse 

“computational temperature” parameter β.  Initially, β is low, which implies low differentiation 

between varying levels of cost-change.   During execution β is gradually increased, so that after a 

large number of iterations a high β value is employed and systematic increase in cost becomes very 

probable even in comparison to slight deterioration. 

Theoretically, and often in practice, in order to ensure that the algorithms above produce a clustering 

configuration of globally low cost, a very slow schedule of stochasticity relaxation (i.e., very gradual 

increase of the β parameter) is required, which results in long execution time (Duda, Hart & Stork, 

2001, p. 356). 

2.1.4.6   Probabilistic Clustering 

As mentioned before (in Subsection 2.1.2.2), there are methods that compute non-negative 

probabilities of assignments or “assignment levels” p(c|x), which, per element x, sum up to one over 

all clusters c.  We will now refer to those methods assuming further that the given feature-based 

vectorial representations of the elements are also normalized: each element x is represented by 

conditional probability distribution p(y|x) over the features.  Given such normalized representation of 

the data, it is natural that cluster representatives are taken from the same probabilistic space: each 
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cluster is represented by a conditional probability distribution over the features, p(y|c).  This 

probabilistic setting underlies the following scheme, which generalizes the k-representatives 

clustering scheme of Figure 2.3:  

given initial assignment levels p(c|x) for each element x and cluster c, 

repeat 

- recalculate each cluster probabilistic representative p(y|c), as a 
normalized sum of all element probabilistic representations p(y|x), 
weighing the contribution of each element x by its assignment 
probability to c,  p(c|x). 

- recalculate each assignment probability p(c|x) for each element x and 
cluster c, so that it is proportional to the similarity of  x's 
vectorial representation, p(y|x), to c's vectorial representation, 
p(y|c). 

until the recalculated representatives do not change any more beyond some 
pre-specified small threshold value 

Figure 2.5: probabilistic representative-based clustering scheme. 

We refer below to two approaches that fit in the above probabilistic representative-based scheme. 

These two approaches, whose underlying algorithms are very similar to one other, are related with the 

two motivations mentioned earlier for the data clustering task: “prediction” versus “communication” 

(Subsection 2.1.1).  One approach – the one associated with the predictive aspect of data clustering – 

follows the expectation maximization (EM; Dempster, Laird & Rubin, 1977) framework.   It examines 

the data as if it were sampled from a mixture of latent distinguishable classes of element-feature co-

occurrence distributions to be approximated.  The iterative steps of calculating assignment 

probabilities p(c|x) and cluster representatives p(y|c) maximize a likelihood term of the mixture 

model.  Deriving the update steps so that they systematically maximize the model likelihood implies a 

particular representative-element similarity measure, 

simEM ( x, c ) = p(c) e
−count(x) KL[ p(y|x) || p(y|c) ],   (2.7) 

where p(c) is the relative weight of cluster c and count(x) is the total number of occurrences of the 

element x in the data.  A particular work that is based on this formulation is Hofmann, Puzicha & 

Jordan's (1999) one-sided clustering model.  As the data – i.e., the number of times each element is 

sampled – grows, the method is capable of assigning the elements more deterministically and 

detecting larger numbers of clusters. 

The second approach is related with the communication aspect of clustering and is based on 

information theoretical considerations.  The information bottleneck method (IB; Tishby, Pereira & 

Bialek, 1999) implements this approach.  It looks at data clustering as if it aims at lossy encoding of 
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the data so that relevant information, namely information about the features, is conveyed optimally.  

In this case as well, a similarity measure emerges from the principles underlying the IB method, 

which turns to be very similar to the EM related similarity measure:  

simIB ( x, c ) = p(c) e
−βKL[p(y|x) || p(y|c)] ,   (2.8) 

where p(c) is, again, the relative weight of the cluster c and β is an additional parameter, which, 

roughly speaking, articulates counterbalance between the target of communicating the information as 

accurately as possible and the target of reducing the length of communicated transmission.  In Chapter 

5, we provide more detailed description of the IB method and the closely related information 

distortion method (Gedeon, Parker & Dimitrov, 2003; Pereira, Tishby & Lee, 1993). 

Further examples of methods following the probabilistic representative-based clustering scheme can 

be seen as close variants on the methods mentioned above, for instance, the three soft k-means 

versions that are specified by MacKay (2003, Ch. 20, 22).  Another method that is worth mentioning 

in this context is Bezdek's (1981) fuzzy c-means, which does not require the assignment levels of an 

element to sum up over all clusters to one, but leaves space for uncertainty regarding the assignments. 

2.1.5   Variations on Data-Clustering  

We now discuss some methods that are related to, or extend, the data clustering task. 

2.1.5.1   Data Clustering and other Unsupervised Tasks 

Data clustering is a key member in the family of unsupervised computational learning methods.  It is 

interesting to note that data clustering can be seen as if it accomplishes tasks that we have already 

mentioned as means for pre-processing prior to clustering (Subsection 2.1.3.4). 

- Similarity assessment: any standard deterministic data-clustering configuration imposes a 

trivial 0/1 similarity measure: elements of the same clusters are considered similar, while 

elements of different clusters are not.  Probabilistic clustering is more detailed in this respect: 

assignment probability distributions of individual elements over the clusters, p(c|x), can be used 

to measure distance or similarity between data elements through standard distance or similarity 

measures of distributions (e.g., KL distance).  This might facilitate overcoming the sparseness that 

often characterizes raw element-feature co-occurrence vectors in domains such as text processing.   

- Dimensional reduction / feature generation: clustering is also a particular case of dimensional 

reduction.  Specifically, probabilistic clustering maps the data onto a k-1 dimensional simplex 

embedded in a k dimensional space, where k is the number of clusters.  The utility of dimensional 

reduction of the feature space – replacing the original array of features by clusters of features – is 

demonstrated by Slonim & Tishby, 2000. 
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2.1.5.2   Methods that Extend Basic Data Clustering 

There are data clustering methods, both deterministic and probabilistic, that process and output 

constructs more elaborated than plain clustering configurations.  There are several methods that 

output a hierarchy of clusters, i.e., a sequence of increasingly detailed clustering configurations 

consisting of an increasing number of smaller clusters, so that every cluster forms a subset of a cluster 

in each one of all less detailed configurations.  Simple examples are the complete and single linkage 

methods mentioned before (Subsection 2.1.4.1).  Hierarchical clustering, however, can be tackled 

through more sophisticated approach, including the case of probabilistic clustering (Hofmann, 

Puzicha & Jordan, 1999).  Although in the current work we do not aim at hierarchy in general, we 

note that in general meaningful sub-clusters that emerge as individual clusters in a more detailed 

configuration are often revealed simply by applying a non-hierarchical method repeatedly with 

number of clusters, k, incremented at each run.  Such partial hierarchy often reveals interesting 

relations between themes and sub-themes in the data (as demonstrated in Chapter 4 and Chapter 5). 

One further well known modification to the data-clustering task is the self-organizing map (SOM; 

Kohonen, 1989) that, in addition to a clustering configuration, maps the clusters onto a grid, thus 

imposes spatial structure on the clusters. 

A recent line of works on dimensionality reduction (the two-sided clustering model by Hofmann, 

Puzicha & Jordan, 1999; Hofmann, 1999; Globerzon & Tishby, 2002), can be seen as extending 

feature-based clustering to a setting of two sets of elements, symmetrically playing the roles of both 

clustered data and features with respect to each other.  A further recent work, on the multivariate 

information bottleneck method (Friedman et al., 2002), extends the concept and technique of the IB 

method in revealing complex relational constructs.  The input to this method may consist of several 

distinct element sets that are connected with one another through a network of element-feature 

relations.  The method can produce several clustering configurations, each of which partitions 

(probabilistically) one of the sets that take the role of clustered data.  The obtained complex relational 

structure allows, for example, several different partitions of the same set simultaneously, directed by 

different relevance feature sets conveying different types of information regarding the “multi-

clustered” set. 
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2.1.5.3   Data Clustering with Constraints 

There are several works, including the present one, on methods producing output that has the form of 

a standard clustering configuration, but differ from ordinary data clustering by considering input that 

is supplementary to the standard array of pairwise proximity values or feature-based vectorial 

representations. 

In a review of relational data-clustering methods used within social sciences, Batagelj & Ferligoj 

(2000) provide examples of combining clustering with relational biases of various kinds that are 

embedded within the data.  The blockmodeling method seeks to cluster together elements that have 

similar patterns of relations with other elements (in this case, some representation of the global 

relationships between clusters may form supplementary output).  There are several types of relational 

pattern similarity, such as structural equivalence, where elements are identically related with the rest 

of individual elements, and regular equivalence, where elements are similarly connected to equivalent 

other elements.  Another approach reviewed by Batagelj & Ferligoj (2000) – constrained clustering – 

groups similar elements into clusters based on features, but clusters have to satisfy also some 

additional conditions.  For example: clusters of geographical regions that are similar according to their 

socioeconomic development level have to be determined such that the regions inside each cluster are 

also geographically connected.  Considerations that, in a way, are similar to the above are applied in 

works on image segmentation, where nearby pixels are relatively probable to be part of the same 

object (Boykov, Vexler & Zabih, 1999). 

Other works (Wagstaff et al. 2001; Basu, Banerjee & Mooney, 2002) tackle data clustering 

constrained by other types of pre-specified restrictions.  They take as an additional input a list of 

element pairs constrained to be in the same cluster, versus another list of pairs constrained to be in 

different clusters.  Several variants of the k-means algorithm that incorporate such constraints were 

suggested. 

The method of information bottleneck with side information (Chechik & Tishby, 2003) can be viewed 

as extending further the above line.  Chechik & Tishby consider an additional set of features 

conveying “negative” information that is supposed to be neutralized rather than be followed in 

forming the clusters.  Our work addresses a closely related task, so we will provide detailed 

comparison with this work. 
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2.2   Computational Models of Analogy 
Analogy is defined as “similarity in some respects between things that are otherwise dissimilar” 

(quoting http://dictionary.reference.com/search?q=analogy).  The issues of how analogies are 

identified and what makes an analogy a good one have been discussed in the cognitive literature from 

a variety of points of view.  A major motivation to studying computational methods for identifying 

analogies (analogy making in short) is that the capacity of drawing analogies and metaphors is an 

essential part of human intelligence.  Analogy making allows utilizing knowledge, ideas and 

inspiration across seemingly different domains and thus it contributes significantly to the flexibility 

and creativity characterizing human intelligence.  “Analogy pervades all our thinking, our everyday 

speech and our trivial conclusions as well as artistic ways of expression and the highest scientific 

achievements” (Polya, 1957).   

In addition to the theoretic motivation of modeling an essential ingredient of human intelligence, 

developments in the computational methods used for analogy making – including, we hope, the ones 

introduced in this work – might have impact on practical applications: language understanding and 

generation, data mining, artificial intelligence and so on.  

Our review below is only exemplifying.   We concentrate on two approaches to analogy making: the 

structure mapping theory (Gentner, 1983) and the Copycat project (Hofstadter et al., 1995, Chapters 

5-6).  Among the many works to which our review does not refer, there are several that can be seen as 

lying somewhere in between the two above mentioned ones (e.g., Holyoak & Thagard, 1989; Hummel 

& Holyoak, 1997; Veale, O'Donoghue & Keane, 1999; Kokinov & Petrov 2001)1.  More 

comprehensive discussion with reference to a larger variety of works is given, e.g., by French (2002). 

2.2.1   The Structure Mapping Theory 

As French (2002) notes, Gentner's structure mapping theory (SMT; 1983) is unquestionably the most 

influential work to date on the modeling of analogy-making.  It has been applied in a wide range of 

contexts ranging from child development to folk physics.  The prominent innovation of SMT 

relatively to earlier works is the emphasis that it puts on structural similarity between the analogized 

                                                      

1 All in all, these works process data consisting of relational prepositions similar to the representation used by 

the computational implementation of the structure mapping theory (see Section 2.2.1), but they employ 

computational machinery, such as connectionist or neural network architectures, somewhat closer in spirit to 

Copycat (2.2.2). 
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systems.  The structure-mapping engine (SME; Falkenhainer, Forbus & Gentner, 1989) is the 

computational implementation of SMT. 

2.2.1.1   Data Representation 

SME represents the information about the systems between which analogy is to be drawn as relational 

prepositions.  Unary relations (of one argument) are equivalent with elementary attributes or features, 

as is familiar from the conventional feature-based data-clustering setting.  A numeric value might be 

used to quantify the association between an element and its attribute.  For example (based on 

Falkenhainer, Forbus & Gentner, 1989), the fact that ‘temperature’ is an attribute of coffee, with 

value X, is denoted as: 

TEMPERATURE(coffee) = X 

In distinction from elementary features, there are relations that apply to two or more elements and 

even to other relations, e.g., 

GREATER-THAN [ TEMPERATURE(coffee), TEMPERATURE(ice-cube) ] 

or to any fixed combination of relations and data elements.   

2.2.1.2   Principles and Algorithmic Framework 

Two major principles underlie SMT: 

- the relation-matching principle: good analogies are grounded on mapping of multi-

argument relations rather than attributes (unary relations). 

- the systematicity principle: mappings of coherent systems of relations (i.e., graphs 

resulting from compositions of relations) are preferred over mappings of individual 

relations. 

The SME algorithm implements a heuristic search for a cross-system map realizing these principles 

through four stages: 

- Local match construction: find all base-target element pairs that can potentially 

match, i.e. all possible matches between groups of elements sharing identical relations 

in base and target systems. 

- Global map construction: within the formed collection of all possible local matches, 

identify all maximal consistent sub-collections of matches. 

- Candidate inference construction: for each maximal consistent sub-collection of 

matches, infer additional relations not given originally in the target domain that have 
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matched relations in the base domain and thus extend the map suggested by the 

consistent matches. 

- Match evaluation: calculate a score for each one of the candidate extended maps 

incorporating the inferred information, based on local structural measures that are 

derived from the two SMT principles above. 

Although innovative and influential (and maybe because of it), SMT has been extensively criticized, 

for example by Hofstadter et al. (1995, mainly Ch. 4).  Hofstadter et al.'s criticism is particularly 

focused on the inflexibility inherent to SME.  This inflexibility is expressed in the one-to-one 

mapping scheme that is restricted to mapping of identical – even not similar – relations.  Further, the 

propositional representations that the program manipulates are manually coded and, as such, they 

articulate pre-determined relations over a pre-determined set of concepts.  The SMT pretends to 

account for real-world analogies.  However, it is not clear to what extent it models successfully the 

flexibility and creativity characterizing human reasoning, particularly if one has in mind real-world 

data in raw form that cannot be suspected as tailored for the problem at hand.  

2.2.2   The Copycat Project 

The Copycat project by Hofstadter et al. (1995; Chs. 5-6) is one of several projects from the same 

group (see other chapters there), promoting an approach alternative to the seeming rigidity of SMT.  

A basic strategic direction of Hofstadter et al. is abandoning the pretension to solve real-world 

problems of general character, which in their view is a too advanced challenge for the present level of 

recent research.  Rather, they advocate concentrating on specific artificial toy domains.   Simple toy 

problems are claimed to underlie search spaces that are more liable to systematic study (as Hofstadter 

et al. put it: looking at a problem together with its “hallo” of variant problems; p. 330). 

2.2.2.1   System Overall Description 

Copycat is a computer program exemplifying the above direction.  It is restrictedly designed to answer 

questions regarding analogy of letter strings transformation, such as: 

“if a string abc is transformed into abd, what would be the analogously transformed 

value of a target string xyz”. 

The strings abc and abd form the base domain of the problem and the xyz string is the given part of 

the target domain.  The problem to be solved is completing the target domain by constructing an 

additional string so the relation between the two target strings, the given one and the constructed one, 

will be analogous to the relation between the two base strings.   
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The solution is achieved based on grouping letter subsets together and on two types of links between 

the original letters and between formed letter groups: bonds that link neighboring elements within the 

same string and bridges that connect (map) between different strings.  Thus, a possible solution to the 

problem presented above as an example can be that xyz is transformed into wyz.  This solution might 

rely, among other things, on bridging the letters c and d (across the two base strings) and a 

corresponding bridge between x of the given target string and w of the constructed solution string. 

The program considers rather elementary information regarding the nature and characteristics of the 

alphabet letters.  a is recognized as the first letter, and z is recognized as the last one.  The alphabetic 

order, i.e. the identities of the letters that come before and after each letter (successor and predecessor 

relations), is known as well.  Slipnet is the name of a central ingredient in the Copycat architecture, 

which stores and process this information in addition to other information that is gathered during the 

run.  It consists of approximately 60 nodes.  The values associated with the Slipnet nodes form a 

vector, referring globally, across the whole system, to the intensity of both basic features and relations 

as the ones mentioned (first letter, last letter, successor, predecessor, and also the letter A, the letter 

B, …, the letter Z) and, additionally, features and relations that are not specified in advance but rather 

emerge during Copycat's execution.  Examples for these emerging attributes (meta-features) are the 

notion of LETTER, SUBSEQUENCE LENGTH, INCREASING SEQUENCE (and DECREASING SEQUENCE) and 

OPPOSITE. 

In order to concretize further the framework described above, we draw the following simplistic partial 

example.  Suppose that one of the base strings and the given target string are aab and bba and ignore 

for the moment the other details of the Copycat setting (which are not much relevant in terms of our 

current work).  Suppose further that the following grouping pattern has been evolved: in aab the first 

two letters are grouped together so that the whole string is now perceived as concatenation of aa and 

b. Similarly, bba is perceived as a bb group concatenated with a.  This grouping pattern is not 

guaranteed to emerge in a real run, but seems probable in view of actual test cases described by 

Hofstadter et al.  The aa and bb groups are likely to be marked by the features letter A and letter B, 

respectively, as well as by the feature length 2.  The solution where aa is bridged to bb and b is 

bridged to a would have an increasing impact on the Slipnet value associated with the feature 

SUBSEQUENCE LENGTH, reflecting that the matched groups share the same length.   An alternative 

conceivable solution, where aa is matched with a while b is matched with bb would result in increase 

in the value associated with the features LETTER, reflecting that the matched groups consist of the 

same letter, and OPPOSITE, reflecting that the groups are matched in their reverse order. 
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To summarize, the computational machinery underlying Copycat is based on three main factors that 

constantly change, while interdependently affecting each other.  These are the Slipnet global values, 

the current setting of letter grouping, bonds and bridges, and the purposed solution string, which is 

firstly constructed after some execution time but from this point on, is also constantly adapted to fit 

the current state of the other factors and at the same time affects them. 

2.2.2.2   Further Discussion in View of Methods Reviewed Previously 

The computational framework of Copycat is somewhat reminiscent of the stochastic data clustering 

methods (Subsection 2.1.4.5), and of the scheme of constantly adjusted assignments and gradually 

stabilizing probabilistic or deterministic centroids (2.1.4.6 and 2.1.4.4).  Update steps – grouping and 

ungrouping, setting and unsetting of bonds and bridges, attaching labels (features) to groups, adapting 

Slipnet values, and so on – are stochastically chosen from a pool of prioritized codeletes: small code 

segment that are randomly chosen to be performed.  In difference from some of the methods we 

described, choosing the next step, i.e. codelete, to perform is not based on a global one-valued cost 

criterion but rather on a variety of global and local considerations (that are assessed by some codeletes 

dedicated for this purpose). 

Among the various considerations being constantly assessed, there is a global computational-

temperature parameter, which is described as regulating a global level of “open-mindedness” 

expressed through stochasticity level and overall likelihood of certain types of codeletes to perform.  

In relation to that, the temperature quantifies a global “confidence” level with regard to the currently 

posed solution, so that once it goes below a certain level the probability of terminating the run 

increases.  The temperature has no deterministic cooling schedule as in simulated annealing (2.1.4.5) 

or in the IB method (described in Chapter 5). 

Evolving representation, which is not hand coded or pre-determined, seems to be a unique and 

fascinating aspect of the Copycat project.  On the other hand, Copycat employs a complex and hard-

to-analyze computational mechanism and at the same time it manifestly gives up addressing practical 

real-world problems.  The data-clustering-based methods we introduce later in this work (Chapter 4 

and Chapter 5) attempt to maintain the flavor of creative gradually-emerging analogy discovery, along 

with fairly tractable computational rational and mechanisms and implementation to real-world data. 
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