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Chapter 3:  Setting and Evaluation 

In this chapter, we start laying the grounds to our conception of how to adapt the data-clustering 

framework, reviewed in the first part of the previous chapter, to the problem of drawing analogies 

between distinct systems – a problem that is illustratively discussed in the second part of the previous 

chapter.  This chapter describes the basic setting.  It explains how the systems to be compared, which 

are not necessarily similar to one another, are represented within our extended framework and what 

sorts of clusters are interpretable as conveying analogies or correspondences between the analogized 

systems.  The chapter continues with a preliminary example of an application to real-world textual 

data of the type treated in depth in the next chapters. 

In the last part of this chapter we describe how, given a configuration of clusters of the appropriate 

kind, the quality of the analogy or the correspondence being drawn is to be evaluated.  The evaluation 

methods are essentially the same ones used to evaluate standard data clustering, but our extended 

framework suggests some subtle distinctions from the standard framework. 

3.1   Problem Setting 
The problem examined in this work extends the standard single-set data-clustering problem.  In 

distinction from the setting in the single-set problem, the data for the extended problem is pre-divided 

into several distinct subsets of elements to be clustered.  A setting of two subsets is studied first 

(Chapter 4).  More general setting, which allows a larger number of subsets, is examined later 

(Chapter 5).  Each one of the subsets represents one of two or more systems between which we draw 

an analogy or a correspondence. 

A correspondence between the given subsets is established by means of partitioning them to 

corresponding partitions.  We term each one of the subset parts that result from these partitions a sub-

cluster.   Every one of the obtained sub-clusters has a matching sub-cluster in the other subset (or 

several matches, one in each subset, in case the data is pre-divided to more than two subsets).  Hence, 

a one-to-one map is established between the sub-clusters of one subset and those of the other subsets.  

In a setting restricted to two pre-given subsets, a pair of matched sub-clusters is termed a coupled 

cluster.  A configuration of an element set pre-divided to two subsets and partitioned into three 

coupled clusters is sketched in Figure 3.1.  Later, when a larger number of pre-given subsets is 

allowed, a more general term, cross-partition cluster will be employed to denote a collection of 

matched sub-clusters, one from each of the subsets.  As a rule, we use the more general latter term, 

unless the setting under discussion is clearly of the type restricted to two subsets. 
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Figure 3.1: An example of a coupled-clustering configuration.  The diamonds represent elements 

of the two pre-given subsets A and B.  Closed contours represent coupled clusters, each of which 

links two corresponding sub-clusters each from a different subset. 

Similarly to the single-set clustering problem discussed in the previous chapter (and many other 

problems likewise), obtaining a good solution to the cross-partition clustering task, or determining 

whether a given solution is satisfactory or not, is a matter of optimization over an array of potentially 

contradicting biases.  Standard clustering aims at homogeneous subsets: each cluster is expected to 

consist of elements that are similar to one another (as much as possible) and, at the same time, its 

elements are expected to be not similar to elements in other clusters.  In the case of coupled and cross-

partition clustering, a new requirement is added.  On one hand, we still aim at getting homogenous 

groups of elements.  On the other hand, we want to ignore the impact of specificities characterizing 

any particular pre-given subset.  Rather, we require that each homogenous group of elements 

extracted from one of the subsets would also have a good match – a corresponding group of similar 

elements – in the other subset or subsets, so that a cross-partition cluster is formed.  An optimal 

configuration would thus consist of clusters containing elements that are similar to one another and 

distinct from elements in other clusters, subject to the context imposed by the requirement to match 

sub-clusters from the different subsets. 

Similarly to standard-clustering formulations, the computational methods addressing the cross-

partition clustering task – including the ones developed in the next chapters – might encounter various 

sorts of difficulties that are related to the ill-posed nature of the problem (see previous chapter, 

Subsection 2.1.1.2).  In this respect, the situation is not improved in the cross-partition case, as this 

Subset A Subset B 
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task introduces yet another source of potential biases that might not be satisfied in full, additionally to 

the biases already present in the original data clustering problem.  The combination of considerations 

and biases discussed above defines cross partition clustering as a new task that cannot be tackled 

through previously studied methods and, particularly, not by standard data clustering methods as 

explained below. 

Technically, it is straightforward to generate a cross-partition clustering configuration by simply 

ignoring the given pre-partition to subsets and applying a standard clustering method to their union.  

The current work focuses on cases where a standard single-set clustering method cannot work well.  

Such cases are characterized by relatively homogenous subsets, where the similarity between 

elements from the same subset is overall higher than similarity between elements originating in 

different sets.  Standard clustering is committed solely to producing homogenous clusters.  Therefore, 

a standard clustering method might tend to produce clusters that coincide with the pre-given subsets 

or, in case larger number of clusters is requested, clusters that are restricted to elements of an 

individual subset. 

As mentioned in the previous chapter, the case where the pre-given subsets are relatively homogenous 

but, overall, are not very similar to one another is interesting, as it is characteristic of analogy making.  

Particularly in such cases, a solution consisting of clusters that are exclusive to one of the pre-given 

subsets would not reveal correspondence between the subsets.  To prevent this non-favorable type of 

solution to the cross partition clustering problem, our method will be required to include 

representatives from all subsets in every cluster, along with the basic direction of including similar 

elements in a cluster.  This additional requirement to create clusters that cut across the pre-given 

partition, while neutralizing regularities internal to specific subsets, differentiates the cross partition 

clustering problem introduced in this work from the standard data clustering problem. 

3.2   A Real-world Example 
In principle, cross-partition clustering seems to be applicable to revealing corresponding element 

groups across any unstructured set of elements pre-divided to several subsets, regardless of the type of 

data.  Hypothetical applicative uses might include: aligning corresponding collections of atomic 

image components, such as pixels or contours, in order to identify corresponding objects; revealing 

matches between sets of physiological or psychological records in order to identify equivalencies 

across distinct subjects or populations and so on. 
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Figure 3.2:  Keyword samples from news articles regarding two conflicts.  Examples of coupled 

clusters, each consisting of two matched topical sub-clusters, are marked by curved contours. 

 

The current work applies cross-partition clustering to another task: identification of corresponding 

topics across texts.  Specifically, we have applied the coupled clustering and the cross partition 

clustering methods to collections of documents containing information regarding distinct domains.  

The target is to identify prominent sub-topics, themes and categories for which a correspondence can 

be drawn across the domains.  Each domain is characterized by its own terminology and key-concepts 

extracted from an appropriate corpus.  The keyword sets in Figure 3.2, for instance, have been 

extracted from news articles regarding two conflicts of distinct types: the Middle-East conflict and the 

dispute over copyright of music and other media types (the “Napster case”).  The question of whether 

and with relation to which aspects these two conflicts are similar does not seem amenable to an 

obvious straightforward analysis.  Figure 3.2 demonstrates non-trivial correspondences that have been 

identified by our method.  For example: the role played within the Middle East conflict by individuals 

such as ‘soldier’, ‘refugee’, ‘diplomat’ has been aligned by our procedure, in this specific comparison, 

with the role of other individuals: ‘lawyer’, ‘student’ and ‘artist’ in the copyright dispute. 
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3.3   Evaluation 
Given the ill-posed nature of the standard data-clustering problem, quantitative assessment of the 

performance of clustering methods is known to be a subtle issue.  As the cross partition task is 

inherently more complex than the standard singe set task, it is at least as problematic to evaluate.  The 

output configuration is expected to balance different types of potentially opposing biases, as discussed 

in the first section of this chapter, so that the judged quality of the balance obtained might be 

subjective or application-dependent, just as the case is with solutions to the basic clustering problem. 

In general, there are two main strategies for evaluating the quality of a clustering configuration: 

internal criteria and external measures.  An internal criterion relies solely on the processed data.  

Using an internal criterion can be an obvious choice when there is a known objective function exactly 

articulating, in a definite unquestionable manner, what is expected from the clustering mechanism.  

For many if not most applications, this prerequisite is not met.  Our experience with cost functions 

(see Chapters 4 and 5) particularly demonstrates that cost scores do not capture in general the relative 

quality of cross-partition clustering configurations with different numbers of clusters.  Likewise, 

relatively small cost differences of configurations resulting from a large similarity matrix often do not 

reflect differences in the applicative utility of the assessed configurations, even in comparing 

configurations of equal number of clusters.  And, as implied by the ill-posed nature of the task, there 

are in general several alternative cost functions that may apply to the same data and there is no 

general procedure to determine which one is the “right” one (also, if we knew the ultimate cost 

function, we would direct our method to optimize it).  Therefore, in this work evaluation of the results 

is carried out through external measures. 

An external evaluation criterion assesses the results relatively to some external “gold standard” – a 

given configuration E from an authoritative source, assumed to provide the correct solution to the 

problem.  We term the “gold clusters” e1, e2, …, el that form the criterion configuration E, classes, to 

distinguish them from the automatically generated clusters c1, c2, …, ck, forming the configuration C 

that we wish to evaluate. 

In our experiments with synthetic data (Sections 4.3 and 5.4.1), the gold standard is given by 

construction: each data element is drawn as part of some pre-defined class.  To evaluate these 

experiments, we formulate in the following subsection a rather simple and straightforward external 

criterion, named purity. 

In many real-world clustering problems, for example topical clustering of keywords, it is not as clear-

cut in advance where each element should belong.  In such cases (including the present work, see 

Subsection 4.4.2.3), human judges are often requested to produce the criterion set for evaluation, 
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based on their judgment and knowledge.  Depending on factors such as the specific data type and 

content and the level of expertise of the human judge, classes produced by human judges might turn 

to be just a rough criterion for evaluation (so the term “gold standard” might be a bit misleading).  In 

the lack of precise criterion, we collected subjective criterion classes from several participants, so that 

the level and scope of agreement between them can be inspected as well.  We have evaluated those 

more subtle cases through Jaccard coefficient described in Subsection 3.3.2 (several additional 

external evaluation methods are reviewed and analyzed by Meila, 2003). 

3.3.1   Cluster Purity 

One straightforward method for measuring the quality of a clustering configuration C in comparison 

to an external criterion E is known as cluster purity.  Purity considers all elements of a cluster c in C 

as if they are classified as members of c's dominant class, which is the class e in E with which c 

shares maximal number of elements.  For an individual cluster c, purity is defined as the ratio between 

those elements shared by c and e, to the total number of elements in c: 

PURITY E ( c )  =   ||

1

c
maxe∈E {|c ∩ e|} , (3.1) 

where |c ∩ e| is the number of elements shared by c and e, and | c | is the total number of elements in c.  

Note that some classes may not share maximal number of elements with any cluster and, 

complimentarily, several different clusters may share the maximal intersection with the same class.  

To evaluate the entire clustering configuration C, given the class configuration E, compute the 

average of the cluster-wise purities weighted by the cluster size, which sums up to:   

PURITY E ( C )  =  
N

1 ∑c∈C maxe∈E {|c ∩ e|} , (3.2) 

where N is the total number of data elements.  

Purity is a reliable evaluation measure under certain conditions.  We use it wherever the criterion is 

definite and the target number of clusters is known.  When it is known that the classes of E provide 

just a rough approximation of the desired outcome rather than a definite solution, there are several 

subtleties to consider and more appropriate methods.  For instance, incrementing the number of 

clusters would tend to improve purity, up to the perfect purity of the non-informative partition to 

singletons. Hence, if the criterion at hand is only an approximation, one might prefer not to restrict the 

produced output to configurations with number of clusters identical to the number of classes in E, 

neither to commit to any other fixed number of clusters.  As these considerations are relevant to our 

actual experiments and, particularly, we study problems where the number of clusters is not known in 

advance, we evaluate our results with Jaccard coefficient. 
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3.3.2   Jaccard coefficient 

Jaccard coefficient is one of several methods based on element-pair counting (used for evaluating data 

clustering results also by Ben-Dor, Shamir, & Yakhini, 1999).  It symmetrically captures the 

agreement between an evaluated clustering configuration C and an external classification E, on 

assigning pairs of data elements to the same cluster versus different clusters.  A noticeable advantage 

of the Jaccard coefficient on other pair count method is that it does not incorporate those pairs about 

which the evaluation criterion and evaluated configuration agree that they should not be included in 

the same cluster.  As Ben-Dor et al. (1999) note, this type of agreement is overstressed as the number 

of clusters grows.  Meila, 2003 suggests an alternative: a set-intersection based criterion with 

information-theoretic motivation that claim to accommodate well to configurations of varied number 

of clusters.  However, it is not clear whether this suggestion is straightforwardly applicable in our 

case: the fact that our method is applied to a pre-divided element set and the obtained clusters, which 

are composed of several sub-clusters, might affect the results in a manner that is not trivial to 

quantify. Therefore, we stick to the pair-count based Jaccard measure, for which incorporating the 

cross-partition aspect is simpler. 

We first introduce the Jaccard measure for the standard deterministic (“hard”) clustering case, where 

each element is assigned to one, and only one, cluster and one criterion class. 

The following 0/1 valued functions, are defined for every pair of data elements x and x': 

Co-assignC (x, x')  =  1 iff there is c∈C such that x,x'∈c (0 otherwise); 

Co-assignE (x, x')  =  1 iff there is e∈E such that x,x'∈e (0 otherwise). 
(3.3) 

Now, we define pair counts on which the Jaccard coefficient is based. 

a11 = ∑x, x'∈X min{ Co-assignC (x, x') , Co-assignE (x, x') } (3.4a) 

    (the number of relevant data element pairs assigned into the same cluster by both E and C); 

a01 = ∑x, x'∈X min{ 1 − Co-assignC (x, x') , Co-assignE (x, x') } (3.4b) 

(the number of pairs that have been assigned into the same cluster by E but not by C); 

a10 = ∑x, x'∈X min{ Co-assignC (x, x') , 1 − Co-assignE (x, x') } (3.4c) 

             (the number of pairs that have been assigned into the same cluster by C but not by E). 

Note that Jaccard coefficient ignores a00, which is the agreement between C and E on those pairs that 

are not included in the same clusters.  In general a00 becomes non-informatively dominant as the 

number of classes grows. 
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Jaccard coefficient is defined as 

JACCARDE ( C )  =  
011011

11

aaa

a

++
. (3.5) 

3.3.2.1   Probabilistic Extension for Jaccard coefficient 

In the previous chapter we have mentioned data-clustering methods that produce probabilistic output: 

each element x is distributed over all clusters, so that the association level of x with a cluster c, 

denoted p( c | x ), satisfies ∑c∈C p( c | x ) = 1 (see previous chapter, Subsection 2.1.2.2).  In order to 

extend the Jaccard coefficient for probabilistic clustering, we modify the definition of the binary 

function Co-assignC (Eq. 3.3).  The new variation provides a probabilistic value, between 0 and 1, 

quantifying the level by which two elements x and x' are assigned the same way by a probabilistic C: 

Co-prob-assignC (x, x')  =  ∑c∈C min { p(c | x), p(c | x') } . (3.6a) 

This value is equal to 1 if and only if the distributions over the clusters conditioned on both elements 

are identical.  It coincides with the hard clustering case, whenever p(c | x) and p(c | x') are both 0 or 1. 

The same probabilistic setting might apply also within the classification criterion E: an element may 

be known, or approximated, as belonging to several criterion classes with either equal or varying 

levels of assignment (for example, a keyword might be assigned to several sub-topical keyword 

classes).  It is natural, in such case, to require probabilistic assignment levels p(e | x), so that 

∑e∈E p(e | x) = 1.  We modify accordingly the definition of Co-assignE (x, x'): 

Co-prob-assignE (x, x')  =  ∑e∈E min { p( e | x ), p( e | x' ) } . (3.6b) 

Replacing Co-assignC and Co-assignE in the definitions of a11, a10 and a01 (Eq. 3.4a-c) by the newly 

defined Co-prob-assignC and Co-prob-assignE, we may use the same definition of JACCARDE ( C ) (Eq. 

3.5)  to define a new measure, JACCARD-PROBE ( C ), that is usable for evaluating probabilistic 

clustering results. 

The opportunity of evaluating probabilistic clustering brings to mind the question of what is the actual 

target of probabilistic clustering: does it intend to expose in detail real ambiguities that are present in 

the data, or is it just a strategy to approximate a deterministic clustering configuration (eventually, the 

one where every element x is assigned to the cluster c with highest p(c|x))?  Both targets are of course 

legitimate but exposing true ambiguities is a much bigger challenge, as this implies a much richer 

search space and therefore “noisier” outcome.  In practice, it has indeed turned that our actual 

probabilistic clustering results (Subsection 5.4.2) were scored slightly lower relatively to the 

corresponding deterministic configurations, so we concentrated on evaluating the deterministic 

highest-p( c | x ) configurations as a replacement to the raw probabilistic outcome. 
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In distinction from the possible interpretations of probabilistic clustering, whenever multi-assignments 

are present in the criterion classes as happened occasionally in our experiments, they cannot be 

interpreted as related with any deterministic assignments.  This is the reason that in spite of resorting 

to deterministic configurations, we still had to use JACCARD-PROB rather then the standard JACCARD 

scores.  We did so both when we applied deterministic clustering method (Chapter 4) and when we 

evaluated the deterministic approximation of a probabilistic outcome (Chapter 5). 

3.3.2.2   Adapting Jaccard coefficient for the Cross Partition Setting 

We propose also a variation of the Jaccard evaluation score that is specifically adapted to the cross-

partition clustering setting.  In the cross-partition setting, the data is pre-divided to two or more 

disjoint subsets.  Replace a11, a01, and a10 defined above (Eq. 3.4) by corresponding quantities, with 

sums that include only pairs of elements from distinct subsets: 

a'11 = ∑x, x'  from distinct subsets Co-assignC (x, x') ⋅ Co-assignE (x, x') ,  

a'01 = ∑ x, x'  from distinct subsets ( 1 - Co-assignC (x, x') ) ⋅ Co-assignE (x, x') , (3.7) 

a'10 = ∑ x, x'  from distinct subsets Co-assignC (x, x') ⋅ ( 1 - Co-assignE (x, x') ) .  

Plugging a'11, a'11, a'11 into the definition of Jaccard coefficient (Eq. 3.5), we obtain: 

JACCARD-CPE ( C )  =  
011011

11

'''

'

aaa

a

++
, (3.8) 

a variation on Jaccard coefficient adapted to the context of the new problem, which considers only 

elements from the distinct subsets and excludes the impact of all within-subset pairs.  If we also 

replace in Eq. 3.7 above Co-assign by Co-prob-assign (Eq. 3.6), we obtain the JACCARD-PROB-CP 

measure, which combines probabilistic clustering with ignoring the impact of the within-subset pairs. 

Similarly to the corresponding question regarding evaluation of probabilistic clustering, the question 

of whether to use JACCARD-CP as a replacement for the original JACCARD measure depends on how 

exactly one views the target of the cross-partition task.  If the emphasis is on creating a variety of 

associations between the pre-given subsets, then it would make sense to use JACCARD-CP (or 

JACCARD-PROB-CP).  If, in subtle distinction, the focus is on revealing concepts or themes that cut 

across the pre-given partition and might nevertheless incorporate some within-subset information, 

then using the original JACCARD measure (or JACCARD-PROB) can be viewed as more appropriate.  In 

evaluating our actual results, we accordingly use JACCARD-PROB-CP for evaluating our coupled 

clustering method (Section 4.4) that, as will be explained, relies solely on cross-subset information.  

For evaluating the later cross-partition method (Subsection 5.4.2), which does not ignore within-

subset information, we use the JACCARD-PROB measure. 
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