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Chapter 4: Coupled Clustering 

The method introduced in this chapter – coupled clustering – extends the standard clustering task for a 

set of data elements pre-divided into two disjoint subsets.  As explained in the previous chapter, we 

study the problem of partitioning in parallel the pair of pre-given subsets to groups of elements, or 

sub-clusters, each of which is matched with a corresponding sub-cluster in the other subset.  A pair of 

matched sub-clusters forms together a coupled cluster. 

This chapter relies on a paper introducing the coupled clustering framework (Marx et al., 2002), 

extending earlier publications (Marx & Dagan, 2001; Marx, Dagan & Buhmann, 2001).  In Section 

4.1, we review the computational methods that underlie our approach, namely the standard clustering 

method by Puzicha, Hofmann & Buhmann (2000) and co-occurrence based similarity measures by 

Lin (1998) and Dagan, Marcus & Markovitch (1995).  The coupled clustering method is formally 

introduced in Section 4.2.  Then, we demonstrate our method on synthetic data (Section 4.3) and on a 

task of detecting equivalencies across distinct textual corpora (Section 4.4).  The examined corpora 

deal with the conflict theme as exemplified in Figure 3.2 and on various religions between which we 

identify correspondences.  The religion data is thoroughly evaluated through comparison of our 

program's output with keyword classes that were formed manually by experts of comparative studies 

of religions.  Section 4.5 concludes this chapter with further discussion. 

4.1   Computational Background 

This section reviews the two computational frameworks that form the basis for the coupled-clustering 

method.  The first subsection concentrates on the relevant details of a data-clustering method, by 

Puzicha, Hofmann & Buhmann (2000), which our algorithm extends for coupled clustering.  The next 

subsection reviews methods for calculating the similarity values used as input for our method. 

4.1.1   Cost-based Pairwise Clustering 

Puzicha, Hofmann & Buhmann (2000) present, analyze and classify a family of pairwise clustering 

cost functions.  Their framework assumes “hard” assignments: every data element is assigned into one 

and only one of the clusters.  In reviewing their work we use the following notation.  A data clustering 

procedure partitions the elements of a given dataset, X, into disjoint element clusters, c1, …, ck.  The 

number of clusters, k, is pre-determined and specified as an input parameter to the clustering 

algorithm.  A cost criterion guides the search for a suitable clustering configuration.  This criterion is 

realized through a cost function H (S, C) taking the following parameters: 
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(i) S = {sxx'}x,x'∈X : a collection of pairwise similarity values1, each of which pertains to a pair of 

data elements x and x' in X. 

(ii) C = (c1, …, ck) : a candidate clustering configuration, specifying assignments of all elements 

into the disjoint clusters (that is ∪cj = X and cj∩cj' = φ for every 1 ≤ j ≤ j' ≤ k). 

The cost function outputs a numeric cost value for the input clustering-configuration C, given the 

similarity collection S.  Thus, various candidate configurations can be compared and the best one, i.e 

the configuration of lowest cost, is chosen.  The main idea underlying clustering criteria is the 

preference of configurations in which similarity of elements within each cluster is generally high and 

similarity of elements that are not in the same cluster is correspondingly low.  This idea is formalized 

by Puzicha et al. through the monotonicity axiom: in a given clustering configuration, increasing 

similarity values, pertaining to elements within the same cluster, cannot increase the cost assigned to 

that configuration.  Similarly, increasing the similarity level of elements belonging to distinct clusters 

cannot improve the cost. 

Monotonicity captures the most basic intuitive expectation from pairwise data clustering.  By 

introducing further requirements, Puzicha et al. focus on a more confined family of cost functions.  

The following requirement focuses attention on functions of relatively simple structure.  A cost 

function H fulfills the additivity axiom if it can be presented as the cumulative sum of repeated 

applications of “local” functions referring individually to each pair of data elements.  That is: 

H (S, C)   =   ∑x,x'∈X ψxx'
 (x, x', sxx', C) , (4.1) 

where ψxx' depends on the two data elements x and x', their similarity value, sxx', and the whole 

clustering configuration C.  An additional axiom, the permutation invariance axiom, states that cost 

should be independent of element and cluster reordering.  Combined with the additivity axiom, it 

implies that a single local function ψ, s.t. ψxx' ≡ ψ for all x,x' ∈ X, can be assumed. 

Two additional invariance requirements aim at stabilizing the cost under simple transformations of the 

data.  First, relative ranking of all clustering configurations should persist under scalar multiplication 

of the whole similarity ensemble.  Assume that all similarity values within a given collection S are 

multiplied by a positive constant η, and denote the modified collection by ηS.  Then, H fulfills the 

scale invariance axiom if for every fixed clustering configuration C, the following holds: 

                                                      

1 In their original formulation, Puzicha et al. use distance values (dissimilarities) rather then similarities.  

Hereinafter, we apply straightforward adaptation to similarity values by adding a minus sign to H.  Adhering to 

the cost minimization principle, this transformation replaces the cost paid for within-cluster dissimilarities with 

cost saved for within-cluster similarities (alternatively pronounced as “negative cost paid”). 
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H (ηS, C)   =   ηH (S, C) . (4.2) 

Likewise, it is desirable to control the effect of an addition of a constant.  Assume that a fixed 

constant ∆ is added to all similarity values in a given collection S, and denote the modified collection 

by S+∆.  Then, H fulfills the shift invariance axiom if for every fixed clustering configuration C, the 

following holds: 

H (S+∆, C)   =   H (S, C) + Φ , (4.3) 

where Φ may depend on ∆ and on any aspect of the clustered data (typically the data size), but not on 

the particular configuration C. 

As the most consequential criterion, to assure that a given cost function is not subject to local slips, 

Puzicha et al. suggest a criterion for robustness.  This criterion ensures that whenever the data is large 

enough, bounded changes in the similarity values regarding one specific element, x ∈ X, would result 

in limited effect on the cost.  Consequently, the cost assigned to any clustering configuration would 

not be sensitive to a small number of fluctuations in the similarity data.  Formally, denote the size of 

the set of elements X by N and let S x+∆ be the collection obtained by adding ∆ to all similarity values 

in S pertaining to one particular element, x ∈ X.  Then H is robust (in the strong sense) if it fulfills 

N
1 | H (S, C) − H (S x+∆, C) |  ⎯⎯ →⎯ ∞→N

 0. (4.4) 

Puzicha et al. show that any cost function satisfying Equations 4.1, 4.2, 4.3 is a linear combination of 

two factors: a positive component (to be minimized) incorporating averages of distances between 

elements within the same cluster, and a negative component (to be maximized) incorporating averages 

of distances between elements from different clusters.  It turns out that among those cost functions 

there is only one function that satisfies the strong robustness criterion of Equation 4.4 in addition to 

Equations 4.1, 4.2, 4.3.  This function, denoted here as H0, involves only similarity values pertaining 

to elements within the same cluster (within-cluster similarities). 

Specifically, H0 is a weighted sum of average within-cluster similarity.  Denote the sizes of the k 

clusters c1, …, ck by n1, …, nk respectively.  The average within-cluster similarity for the cluster cj is 

then 

Avgj   =    
)1(

', '

−×

∑ ∈

jj

cxx xx

nn

s
j  . (4.5) 

H0 weights the contribution of each cluster to the cost proportionally to the cluster size: 

H0   =   − ∑j nj Avgj . (4.6) 

In Section 4.3, we modify H0 to adapt it for the coupled clustering setting. 
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4.1.2   Feature-based Similarity Measures 
In our calculations, similarity between data elements is assessed through methods that take feature 

vectors as input and put heavier weights on the more informative features.  The information regarding 

a data element, x, conveyed through a given feature, y, is assessed through the following term:2 

I(x,y)   =   
)(

)|(
log2 xp

yxp+  , (4.7) 

where, p denotes conditional and unconditional occurrence probabilities and the ‘+’ sign indicates that 

0 is returned whenever the log2 function produces negative value.  In our experiments x and y are 

generally words and p is empirical occurrence probability. 

Dagan, Marcus & Markovitch (1995) base their similarity measure on the following term:  

simDMM(x,x')   =   
∑
∑

y

y

yxIyxI

yxIyxI

)},'(),,(max{
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 . (4.8) 

The similarity value obtained by this measure is higher as the number of highly informative features, 

providing comparable amount of information for both elements x and x', is larger. 

Lin, 1998 incorporates the information term of Equation 4.7, as well, though differently: 

simL(x,x')   =   { }

∑
∑

+

+
>∧>

y

yxIxIy

yxIyxI
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)),'(),((

)),'(),((
0),'(0),(/  . (4.9) 

Here, the obtained similarity value is higher as the number of features that are somewhat informative 

for both elements, x1 and x2, is larger, and the relative contribution of those is in proportion to the total 

information all features convey. 

Similarly to the cosine measure (see 2.1.3.3), both simDMM and simL measures satisfy: (i) the maximal 

similarity value, 1, is obtained for element pairs with relation to which every feature is equally 

informative (including self similarity); and (ii) the minimal similarity value, 0, is obtained whenever 

every attribute is not informative for either one of the elements.  Accordingly, our formulation and the 

experiments below follow the convention that a zero value denotes no similarity. 

In the coupled clustering experiments on textual data that are described later, we use both above 

similarity measures.  We utilize pre-calculated simL values for one experiment (Subsection 4.4.1) and 

we calculate simDMM values, based on word co-occurrence within our corpora, for another experiment 

(Subsection 4.4.2). 

                                                      

2 The expectation over the term of Equation 4.7 over co-occurrences of all x's and y's, (with log2) is the mutual 

information of x and y (Cover and Thomas, 1991, p. 18). 
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4.2   Algorithmic Framework for Coupled Clustering 

In this section, we define the coupled clustering task and introduce an appropriate setting for 

accomplishing it.  We then present alternative cost criteria that can be applied within this setting and 

describe the search method that we use to identify coupled-clustering configurations of low cost.  As 

we noted in Chapter 3, coupled clustering is the problem of partitioning two data subsets into 

corresponding sub-clusters, so that every sub-cluster is matched with a counterpart in the other subset.  

Each pair of matched sub-clusters forms jointly a coupled cluster.  As in the standard single set task of 

data clustering, each coupled cluster consists of elements that are similar to one another and distinct 

from elements in other clusters.  However, this is subject to an additional bias imposed by the 

requirement to match sub-clusters of each pre-given subsets with those of the other subset. 

4.2.1   Directing Clustering through Between-subset Similarities 

Coupled clustering divides the two pre-given element subsets, X1 and X2, into disjoint sub-clusters 
1
1c , …, 1

kc  and 2
1c , …, 2

kc .  Each of these sub-clusters is coupled with a corresponding sub-cluster of 

the other subset, that is 1
jc  is coupled with 2

jc  for j = 1…k.  Every pair of coupled sub-clusters forms a 

unified coupled-cluster, cj = 1
jc ∪ 

2
jc , which contains elements of both pre-given subsets (see Figure 

4.1).  We approach the coupled clustering problem through a pairwise-similarity-based setting, 

incorporating the elements of both X1 and X2.  Our treatment is independent of the method by which 

similarity values are calculated: feature-based calculations such as those described in Subsection 

4.1.2, subjective assessments, or any other method. 

The notable feature distinguishing our method from standard pairwise clustering, is the set of 

similarity values, S, that are considered.  A standard pairwise clustering procedure potentially 

considers the similarity values referring to all pairs of elements within the undivided clustered set.  

Typically, the only similarity values that are not considered are self-similarities.  In the coupled 

clustering setting, there are two different types of available similarity values.  Values of one type 

denote within-subset similarities (short gray arrows in Figure 4.1).  Values of the second type denote 

similarities of element pairs consisting of one element from each subset (between-subset similarities; 

long black arrows in Figure 4.1).  As an initial strategy, to be complied with throughout this chapter, 

we choose to ignore similarities of the first type altogether and to concentrate solely on between-

subset similarities: S = {sxx'}, where x ∈ X1 and x' ∈ X2.  Consequently, the assignment of a given data 

element into a coupled cluster is directly influenced by the most similar elements of the other subset, 

regardless of its similarity to members of its own subset. 

The policy of excluding within-subset similarities captures, according to our conception, the unique 

context posed by aligning two pre-given subsets representing distinct domains with respect to one 
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another.  Correspondences special to the current comparison, which underlie presumed parallel or 

analogous structure of the compared systems, are thus likely to be identified abstracted from the 

distinctive information characterizing each individual system.  This fits our key goal of detecting 

commonalities, while masking out subset-internal structures (see Section 3.1).  In this chapter, we do 

not deal with the questions of whether and how available information regarding within-subset 

similarities should be incorporated.  The next chapter introduces a method that processes the data 

more comprehensively. 

 

 

Figure 4.1: The coupled clustering setting.  The diamonds represent elements of the pre-given 

subsets X1 and X2.  The long black arrows represent the values in use: similarity values pertaining to 

two elements, one from each subset.  The shorter grey arrows stand for the disregarded similarity 

values within a subset. 

4.2.2   Three Alternative Coupled Clustering Cost Functions 

Given the setting described above, in order to identify configurations that accomplish the coupled 

clustering task, our next step is defining a cost function.  In formulating it, we closely follow the 

standard pairwise-clustering framework presented by Puzicha, Hofmann & Buhmann, (2000, see 

Subection 4.1.1 above).  Given a collection of similarity values S pertaining to the members of two 

pre-given subsets, X1 and X2, we formulate an additive cost function, H (S, C), which assigns a cost 

value to any coupled-clustering configuration C.  Given such a cost function and a search strategy 

(see 4.2.4 below) our procedure would be able to output a coupled clustering configuration specifying 

2
jc

1
jc

Subset X1 Subset X2
 

x x' 
sxx' 

cj 
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assignments of the elements into a pre-determined number, k, of coupled clusters.  We concentrate on 

Puzicha et al.'s H0 cost function (Subection 4.1.1, Eq. 4.6), which is limited to similarity values within 

each cluster and weighs each cluster's contribution proportionally to its size.  Below we present and 

analyze three alternative cost-functions derived from H0. 

As in clustering in general, the coupled clustering cost function should assign similar elements into 

the same cluster and dissimilar elements into distinct clusters (as articulated by the monotonicity 

axiom in Subsection 4.1.1).  A coupled-clustering cost function is thus expected to assign low cost to 

configurations in which the similarity values, sxx', of elements x and x' of coupled subs-clusters, 1
jc  and 

2
'jc , are high on average.  (The dual requirement to assign low cost whenever similarity values of 

elements x and x' from non-coupled sub-clusters 1
jc  and 2

'jc , j ≠ j', are low, is implicitly fulfilled).  In 

addition, we seek to avoid influence of transient or minute components – those that could have been 

evolved from casual noise or during the optimization process – and maintain the influence of stable 

larger components.  Consequently, the contribution of large coupled clusters to the cost is greater than 

the contribution of small ones with the same average similarity.  This direction is realized in H0 

through weighting each cluster's contribution by its size. 

In the coupled-clustering case, one apparent option is to apply straightforwardly the original H0 cost 

function to our restricted collection of between-subset similarity values.  The average similarity of the 

coupled cluster cj = 1
jc ∪ 

2
jc  is then calculated as  

Avg'j   =    
)1(

21 ', '

−×

∑ ∈∈

jj

cxcx xx

nn

s
jj  , (4.10) 

where nj is the number of elements in cj (so that Eq. 4.10 differs from the standard average formula, 

Eq. 4.5, by setting all within-subset similarities to 0).   As in H0 (Eq. 4.6), the average similarity of 

each cluster is multiplied by the cluster size.  Thus, the following cost function, H1, is obtained: 

H1   =   − ∑j nj × Avg'j . (4.11) 

Alternatively, as we restrict the collection of similarities being considered in our calculations, we 

might want to take it into account in the averaging scheme as well.  The actual number of considered 

similarities in the restricted collection is, for each j, the product 1
jn × 

2
jn  of the sizes of the two sub-

clusters 1
jc  and 2

jc  forming cj.  The following averaging scheme might seem more natural for the 

coupled clustering setting: 

Avg''j   =    
21

', '21

jj

cxcx xx

nn

s
jj

×

∑ ∈∈  , (4.12) 
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Correspondingly, a second cost variant, H2, is given: 

H2   =   − ∑j nj × Avg"j . (4.13) 

One factor to which the weighting schemes of H1 and H2 does not refer is the inner partition of the 

coupled clusters.  Hence, we suggest yet another alternative that incorporates the proportion between 

the sizes of the two sub clusters, namely weighing the average similarity each cluster contributes to 

the cost by the geometrical mean of the corresponding coupled sub-cluster sizes: 
21
jj nn × .  This 

yields yet another cost function: 

H3   =   − ∑j 
21
jj nn ×  × Avg"j . (4.14) 

The weighting factor of H3 results in penalizing large gaps between the two sizes, 1
jn  and 2

jn , and in 

preferring balanced configurations, with coupled-cluster inner proportions maintaining the global 

proportion of the clustered subsets ( 1
jn / 2

jn  ≅ N1/ N
2 for each j, where N1 and N2 are the sizes of X1 and 

X2, respectively).  Later on we refer to the cost function H2 and H3, as the “additive” and the 

“multiplicative” cost functions. 

4.2.3   Properties of the Coupled Clustering Cost Functions 

Puzicha, Hofmann & Buhmann, (2000) based their characterization of pairwise-clustering cost-

functions on some properties and axioms (see Subsection 4.1.1 above).  In the previous subsection, we 

have followed their conclusions in adapting, in three different variants, one function, H0, that realizes 

the most favorable properties.  It is worthwhile to see if and how these properties are preserved 

through the adaptation for the coupled clustering setting.  As we show below, all the three cost 

functions that we have derived, H1, H2 and H3, are additive by construction and it immediately follows 

that they are also scale invariant.  They are not, except for H2, shift-invariant.  However, the effect of 

a constant added to all between-subset similarity values is bounded for H1 and H3, as well.  Finally, H1 

and H3 are robust (but not by H2). 

Lemma 4.1: H1, H2 and H3, are additive (Eq. 4.1). 

Proof: For each one of the three functions, each element pair with non-zero impact on the cost (i.e., 

members of the same coupled cluster from different subsets) adds to the cost a component of the form 

ψxx'
 (x, x', sxx', C).  This contribution amounts to the average similarity within the cluster to which both 

elements belong multiplied by a factor depending on this cluster.  Specifically, for each pair of 

elements x, x' ∈ cj, such that x ∈ X1 and x' ∈ X2, we have the following terms: 

1
''

1 −
−=

j

xxxx

n

s
ψ  ,   

21
''

2
jj

xx
j

xx

nn

s
n

×
−=ψ ,   

21

''
3

jj

xxxx

nn

s

×
−=ψ , (4.15) 

which explicate the non-zero summands forming H1, H2 and H3, respectively.  



 47

Lemma 4.2: H1, H2 and H3, are scale invariant (Eq. 4.2). 

Proof: As '
1
xxψ , '

2
xxψ  and '

3
xxψ  of the previous lemma all depend linearly on sxx' (i.e., 

η 'xx
iψ (x, x', sxx', C) = 'xx

iψ (x, x', ηsxx', C)), it follows that the three cost functions satisfy the scale 

invariance property.  

Lemma 4.3: H2 is shift invariant (Eq. 4.3). 

Proof: in the j-th cluster there are 1
jn × 

2
jn  cross-subset pairs (x, x'), so that introducing a constant shift 

to all the considered similarities and summing '
2
xxψ  (defined in the proof to Lemma 5.1) over all the 

relevant pairs within the j-th cluster gives: 

∑
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Taking sum over the above cluster-dependent terms of Eq. 4.16 yields H2
 (S+∆, C) = H2

 (S, C) + N∆ , 

where the term N∆ depends on the shift constant and on the data (and not on C), as required for 

maintaining the shift invariance property.  

Lemma 4.4: For H1 and H3, the effect on the cost value of adding a constant to all between-subset 

similarities is bounded. 

Proof:  Both H1 and H3 are are non-positive, thus bounded from above by 0.   

For H1
 , the j-th cluster's contribution to the modified cost resulting from increasing all similarities by 

a positive ∆ is ( 1
jn × 

2
jn / (nj − 1))∆  ≤  min{ 1

jn , 
2
jn }∆  ≤  (nj/2) ∆ .  Therefore, 

H1
 (S+∆, C)  ≥  H1

 (S, C) − (N/2) ∆ . 

Similarly, for H3
 , the j-th cluster's contribution to the modification in cost value is 21

jj nn × ∆ ≤ (nj/2)∆, 

so that also for H3 the following holds: H3
 (S+∆, C) ≥ H3

 (S, C) − (N/2) ∆ .  

We note that it is possible to modify H1 and H3 so to impose the shift-invariance property on them.  

For that, one can use the derivative of, say, H3 with respect to ∆, which is the increment for all 

between-data-set similarity values.  This is a linear function so the resulting derivative is 

D = ∑j
211 jj nn × .  Consequently, normalizing H3 by 1/D would result in perfect shift invariance.  

However, H3 in its non-normalized form is nearly shift-invariance with regard to configurations for 

which the clusters approximately maintain the global proportion of the clustered data sets X1 and X2, 

while highly imbalanced configurations are highly penalized.  Since our experiments use similarity 

measures with values between 0 and 1, we stick to the simpler formulation of Eqs. 4.11 and 4.14 

above, assuming that the normalized version would behave similarly. 
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Lemma 4.5: H1 is robust (Eq. 4.4); H3 is robust provided the ratio between the sub-cluster sizes of 

any coupled cluster is kept bounded as the number of elements grows. 

Proof:  For H1: 

N

1 | H1
 (S, C) − H1

 (S x+∆, C) |   ≤   
1

},max{
1 21

−
∆

j
jj n

nn
N

   ≤   
N

∆    ⎯⎯ →⎯ ∞→N
   0 , (4.17) 

where j is the index of the cluster to which x is assigned.  Similarly for H3: 

N

1 | H3
 (S, C) − H3

 (S x+∆, C) |      (4.18) 

≤   
21

21 },max{
1

jj

jj
nn

nn
N ×

∆    =   
},min{

    },max{  
21

21

jj

jj

nn

nn

N

∆    ⎯⎯ →⎯ ∞→N
   0 , 

where convergence relies on the assumption regarding the ratio between the sub-clusters.  

Finally, we note that using the coupled sizes geometrical mean as a weighting factor, H3 tends to 

escape configurations that match minute sub-clusters with large ones, which are occasionally the 

consequence of noise in the input data or of fluctuations in the search process.  It turns that this 

property provides H3 with a notable advantage over H1 and H2, as our experiments indeed show (see 

Sections 4.3 and 4.4). 

4.2.4   Optimization Method 

In order to find the clustering configuration of minimal cost, we have implemented a stochastic search 

procedure, namely a variation of the simulated annealing method based on the sampling pattern of the 

Gibbs sampler algorithm (Geman & Geman, 1984; See also Chapter 2, Subsection 2.1.4.5).  Starting 

with random assignments into clusters, this algorithm iterates repeatedly through all data elements and 

probabilistically reassigns each one of them in its turn, according to a probability governed by the 

expected cost change.  Suppose that in a given assignment configuration, C, the cost difference ∆j|x,C 

is obtained by reassigning a given element, x, into the j-th cluster (∆j|x,C = 0 in case x is already 

assigned to the j-th cluster).  The target cluster, into which the reassignment is actually performed, is 

selected among all candidates with probability 

p(j)   ≡   p(j|x,C)   ≺   
}exp{1

1

,| Cxj∆−+ β
 (4.17) 

Consequently, the chances of an assignment to take place are higher as the resulting reduction in cost 

is larger.  In distinction from the original simulated annealing algorithm (Kirkpatrick, Gelatt & 

Vecchi, 1983), assignments that result in increased cost are possible, though with relatively low 

probability.   The β parameter, controlling the randomness level of reassignments, functions as an 

inverse “computational temperature”.  Starting at high temperature followed by a progressive cooling 
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schedule, that is initializing β to a small positive value and gradually increasing it (e.g. repeatedly 

multiply β by a constant that is slightly greater than one, 1.001 in our experiments), turns most 

profitable assignments increasingly probable.  As the clustering process proceeds, the gradual 

“cooling” systematically reduces the probability that the algorithm would be trapped in a local 

minimum (though global minimum is fully guaranteed only under an impracticably slow cooling 

schedule).  The algorithm execution stops after several repeated iterations through all data elements, 

in which no cost change has been recorded (50 iterations in our experiments). 

4.3 Experiments with Synthetic Data 

A set of experiments on synthetic data has been conducted for evaluating the performance of our 

algorithm, making use of the three cost functions introduced in Section 4.3 above.  These experiments 

have measured, under changing noise levels, how well each of the cost functions reconstructs a 

configuration of pre-determined clusters of various inner proportions. 

Each input similarity value (i.e. between-subset similarities) in these experiments incorporates a basic 

similarity level, dictated by the pre-determined clustering configuration, combined with an added 

random component introducing noise.  The basic similarity values have been generated so that each 

element is assigned into one of four coupled clusters.  Elements in the same cluster share the maximal 

basic similarity of value 1, while elements in distinct clusters share the minimal basic similarity 0.  

The noisy component combined with the basic value is a random number between 0 and 1. 

In precise terms, the similarity value sxx', of any x ∈ X
1 and x' ∈ X

2 (X1 and X2 are the pre-given 

subsets), has been set to 

sxx'   =   (1−α) δj(x)j(x') + α rxx' , (4.18) 

where δj(x)j(x') – the basic similarity level – is 1 if x ∈ X
1 and x' ∈ X

2 are, by construction, in the same (j-

th) coupled cluster or otherwise 0 and rxx' – the random component – is sampled uniformly between 0 

and 1, differently for each x and x' in each experiment.  The randomness proportion parameter α (i.e. 

level of added noise), also between 0 to 1, is fixed throughout each experiment, to maintain a steady 

average noise level. 

In order to study the effect of the coupled-cluster inner proportion, we have run four sets of 

experiments.  Given subsets X1 and X2 consisting of 32 elements each, four types of synthetic coupled-

clustering configurations have been constructed, in which the sizes 1
jn  and 2

jn  of the sub-cluster pairs 
1
jc  ⊂ X

1 and 2
jc  ⊂ X

2, together forming the j-th coupled-cluster, have been set as follows: 
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Figure 4.2: Reconstruction of synthetic coupled-clustering configurations of the ‘10-6 coupling’ 

target configuration type from noisy similarity data.  Lines and columns of the plotted gray-level 

matrices correspond to members of the two sets.  On the left-hand side – original similarity values – 

the gray-level of each pixel represents the corresponding similarity value between 0 (black) and 1 

(white).  In the reconstructed data, gray level corresponds to average similarity within each 

reconstructed cluster.  The bottom part demonstrates that the multiplicative cost function, H3, 

reconstructs better under intensified noise. 

     (i)  1
jn = 

2
jn  = 8, for j = 1…4;  

     (ii)  1
jn = 10, 2

jn  = 6 for j = 1,2 and  
1
jn = 6, 2

jn  = 10 for j = 3,4; 

     (iii) 1
jn  = 12, 2

jn  = 4 for j = 1,2 and  
1
jn = 4, 2

jn  = 12 for j = 3,4;  

     (iv)  1
jn = 14, 2

jn  = 2 for j = 1,2 and  
1
jn = 2, 2

jn  = 14 for j = 3,4. 

These four configuration types, respectively labeled ‘8-8 coupling’, ‘10-6 coupling’, ‘12-4 coupling’ 

and ‘14-2 coupling’, have been used in the four experiment sets. 

It is convenient to visualize a collection of similarity values as a gray-level matrix, where rows and 

columns correspond to individual elements of the two clustered subsets and each pixel represents the 

similarity level of the corresponding elements.  The diagrams on the left-hand side in Figure 4.2 show 
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two collections of similarity values generated with two different noise levels.  White pixels represent 

the maximal similarity level in use, 1; black pixels represent the minimal similarity level, 0; the 

intermediate gray levels represent similarities in between.  The middle and right-hand-side columns of 

Figure 4.2 displays clustering  configurations  as reconstructed by our algorithm, using the additive H2 

and multiplicative H3 cost functions respectively, given the input similarity values displayed on the 

left-hand side.  Examples from the 10-6 coupling experiment set, with two levels of noise, are 

displayed.  Bright pixels indicate that the corresponding elements are in the same reconstructed 

cluster.  It demonstrates that, for the 10-6 coupling, the multiplicative variant H3 tends to tolerate 

noise better than the additive variant H2 and that this advantage grows when the noise level intensifies 

(bottom of Figure 4.2). 

The performance over all experiments in each set has been measured through the PURITY measure, 

introduced in Section 4.2.  Figure 4.3 displays average accuracy for the changing noise levels, 

separately for each experiment set.  The multiplicative cost function H3, is biased toward balanced 

coupled clusters, i.e. clusters in which the inner proportion is close to the global proportion of the 

subsets (which are equal in size in our case).  Our experiments indeed verify that H3 reconstruct better 

than the other functions, particularly in cases of almost balanced inner proportions. 

Figure 4.3 shows that the accuracy obtained using the restricted standard-clustering function H1 is 

consistently worse than the accuracy of H3.  In addition, for all internal proportions, there is some 

range, on the left-hand side of each curve, in which H3 performs better than the additive function H2.  

The range where H3 is superior to H2 is almost unnoticeable for the sharply imbalanced internal 

proportion (2-14 coupling) but becomes prominent as the internal proportion approaches balance.  

Consequently, it makes sense to use the additive function H2 only if both: (i) there is a good reason to 

assume that the data contains mostly imbalanced coupled clusters and (ii) there is a reason to assume 

high level of noise.  Real world data might be noisy, but given no explicit indication that the emerging 

configurations are inherently imbalanced, the multiplicative function H3 is preferable.  Consequently, 

we have used H3 in our experiments with textual data, described in the following sections. 
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Figure 4.3: Purity as a function of the noise level (randomness proportion) for different coupled 

size proportions, obtained through experiments in reconstructing synthetic coupled-clustering 

configurations.  For each proportion, results obtained using the straightforward adaptation of the 

original method (H1, termed here “standard clustering”), “additive” (H2) and “multiplicative” (H3) 

cost functions are compared. 

4.4  Identifying Corresponding Topics in Textual Corpora 

In this section, we demonstrate the capabilities of the coupled clustering algorithm with respect to 

real-world textual data, namely pairs of sets of keywords (the subsets X1, X2 mentioned in Subsection 

4.2.2) along with counts of co-occurring content words, taking the role of features.  The keywords 

have been extracted from given corpora focused on distinct domains.  Our experiments have been 

motivated by the target of identifying, by means of the induced coupled clusters, concepts that play 

similar or analogous roles in the examined domains.  In Subsection 4.4.1, the keyword sets are 

extracted from collections of news articles referring to two conflicts of different character that are 

nowadays in the focus of public attention: the Middle East conflict and the dispute over electronic 

media copyright, demonstrated through the Napster case.  Our experiments revealed some 

illuminating correspondences between the two seemingly unrelated conflicts.  In Subsection 4.4.2, we 

turn to larger corpora focused on various religions, specifically Buddhism, Christianity, Hinduism, 
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Islam and Judaism.  Hence, the task is to explicate common, or equivalent, aspects of the examined 

religions.  This inter-religion comparison is further analyzed and evaluated also in subsequent 

sections. 

In both conflict and religion comparisons, our setting assumes that the datasets are given or that they 

can be extracted automatically.   We have used the TextAnalyst software by MicroSystems Ltd.3, 

which is capable of identifying key-phrases in given text, to generate datasets for our experiments.  

From the terms and phrases that have been identified by the software, we have excluded the items that 

have appeared in fewer than three documents.  Thus, relatively rare terms and phrases that the 

software has inappropriately segmented have been filtered out. 

After extracting the datasets, between-subset similarities, if not pre-given, are calculated.  In general 

terms, every extracted keyword is represented by a co-occurrence vector, whose entries essentially 

correspond to the co-located words (concrete examples follow in the subsections bellow), excluding a 

limited list of function words.  Then, between-subset similarity values are calculated using methods, 

such as those described in Subsection 4.1.2, to adapt the data for the similarity-based coupled-

clustering algorithmic setting introduced in Section 4.2.  We differentiate between two optional 

sources that can provide the co-occurrence data for the similarity calculations.  One option is to base 

the calculations on co-occurrences within the same corpora from which the keyword sets have been 

extracted.  Thus, the calculated similarity values naturally reflect the context in which the comparison 

is being made.  This approach has underlay most of the coupled clustering experiments that we have 

conducted (Subsection 4.4.2).  However, sometimes the compared corpora might be of small size and 

there is a need to rely on a more informative statistical source.  An alternative option is to utilize the 

co-occurrences within an additional independent corpus for the required similarity calculations.  In 

order to produce reliable and accurate similarity values, such independent corpus can be chosen to be 

significantly larger than the compared ones, but it is important that it addresses well the topics that are 

being compared, so the context reflected by the similarities is still relevant.  This approach, making 

use of pre-given similarity values, is demonstrated in the following subsection. 

4.4.1   Conflict Keyword Clustering Based on Pre-given Similarities 

The conflict corpora are composed of about 30 news articles each (200–500 word tokens in every 

article), regarding the two above-mentioned conflicts: the Middle East conflict and the dispute over 

music copyright.  The articles were downloaded in October 2000. 

                                                      

3 An evaluation copy of TextAnalyst 2.3 is available for download at http://www.megaputer.com/php/eval.php3. 
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We have obtained the similarities from a large body of word similarity values that have been 

calculated by Dekang Lin, independently of our project (Lin, 1998).  Lin has applied the simL 

similarity measure (Subsection 4.2, Equation 4.9) to word co-occurrence statistics within syntactic 

relations, extracted from a very large news-article corpus.4  We assume that this corpus includes 

sufficient representation of the conflict keyword sets in relevant contexts.  That is: even if the articles 

in the corpus do not explicitly discuss the concrete conflicts, it is likely that they address similar 

issues, which are rather typical as news topics.  In particular, occurrences of the clustered keywords 

within this corpus are assumed to denote meanings resembling their sense within our small article 

collection. 

As Table 4.1 shows, the coupled-clusters that have been obtained by our algorithm fall, according to 

our classification, within three main categories: “Parties and Administration”, “Issues and Resources 

                                                      

4 This corpus contains 64 million word tokens from Wall Street Journal, San Jose Mercury, and AP Newswire. 

The similarity data is available at http://armena.cs.ualberta.ca/lindek/downloads/sims.lsp.gz. 

Table 4.1:  Coupled clustering of conflict related keywords.  Every row in the table contains the 

keywords of one coupled cluster.  Cluster titles and titles of the three groups of clusters were added 

by the author. 

 Middle-East Music Copyright 

Parties and Administration 
Establishments city  state company  court  industry university 

Negotiation delegation minister committee  panel 

Individuals partner  refugee  soldier 
terrorist 

student 

Professionals diplomat leader artist  judge  lawyer 

Issues and Resources in Dispute 
Locations home  house  street block  site 

Protection housing  security copyright  service 

Activity and Procedure 
Resolution defeat  election  mandate meeting decision 

Activities1 assistance settlement innovation  program  swap 

Activities2 disarm  extradite  extradition  
face 

use 

Confrontation attack digital infringement label shut violation

Communication declare meet listen violate 

Poorly-clustered keywords 
low similarity 
values interview peace weapon 

existing found infringe listening medium 
music song stream worldwide 

no similarity 
values 

armed diplomatic  
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in Dispute” and “Activities and Procedure”.  To improve readability, we have also added an 

individual title to each cluster. 

The keywords labeled “poorly-clustered”, at the bottom of Table 4.1, are assigned to a cluster with 

average similarity considerably lower than the other clusters, or for which no relevant between-subset 

similarities are found in Lin's similarity database.  Consequently, these keywords could be 

straightforwardly filtered out.  However, poorly clustered elements persistently occur in most of our 

experiments and we include them here for the sake of conveying the whole picture. 

Making use of pre-given similarity data is, on the one hand, trivially advantageous.  Apart from 

saving programming and computing resources, such similarity data typically relies on rich statistics 

and its quality is independently verified.  Moreover: in principle, pre-given similarity data could be 

utilized for further experiments in clustering additional datasets that are adequately represented in the 

similarity database.  However, there are several disadvantages in taking this route.  First, reliable 

relevant similarity data is not always available.  In addition, the context of comparing two particular 

domains might not be fully articulated within generic similarity data that has been extracted in a much 

broader context.  For example, the interesting case where the same keyword appears in both clustered 

sets, but it is used for different meanings, could not be traced.  A keyword used differently in distinct 

corpora would co-occur with different features in each corpus.  In contrast, when similarities are 

computed from a unified corpus, self-similarity is generally equal to the highest possible value (1 in 

Lin's measure), which is typically much higher than other similarity values.  In such case, the two 

distinct instances of a keyword presenting in both clustered sets would always fall within the same 

coupled-cluster. 

4.4.2   Religion Keyword Clustering 

This subsection introduces the main body of our data, to which, from this point on, the coupled 

clustering method is systematically applied, followed by detailed examination and evaluation of the 

outcome.  The same data is further analyzed, in the next chapter, through additional algorithmic 

extensions.  The data consists of five corpora, each focusing on a different religion: Buddhism, 

Christianity, Hinduism, Islam and Judaism, to which we apply our methods in order to compare the 

religions to one another and to identify corresponding aspects.  The corpora used here significantly 

extend the ones used by Marx, et al. (2002).   

As we have noted earlier, one of the options for inducing input similarity values is by using co-

occurrence statistics from corpora that are focused on the compared domains.  These can be the same 

corpora from which the clustered keywords are extracted.  In such case, it is clear that each keyword 

appears in its relevant sense or senses.  Hence, context dependent subtleties, such as identical 
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keywords denoting different meanings, can be revealed.  In this case, we rely on the assumption that 

there is a substantial overlap between the features, namely words commonly co-occurring in the two 

corpora, and that at least some of the overlapping features are used similarly within both.  

Specifically, we assume that the corpora to which we refer below – introductory web pages and 

encyclopedic entries concerning religions – contain enough common vocabulary directed towards 

some “average-level” reader, thus enabling co-occurrence-based similarity calculations that are fairly 

informative.  In summary, while pre-given similarity data might typically result from richer statistics 

over a unified set of features, the alternative might fit better the context of the task at hand, but 

depends on rich enough statistics of shared features. 

4.4.2.1   The Data 

The religion data consists of five corpora containing encyclopedic entries, electronic periodicals and 

additional introductory web pages that were downloaded from the Internet.  The five corpora contains 

1.5–2 million word tokens (8.5–13 Megabyte) each.  Using the TreeTagger5 software, we have filtered 

out all function words according to their part-of-speech (POS) and substituted each one of the 

remaining words by its lemma.  This way, each corpus has been shrunk to 0.8–1.2 million tokens 

(5.5–8.5 Megabyte).  More details about the corpora can be found in Appendix A.  In addition to the 

keywords extracted by TextAnalyst software (described above), the elements of the clustered sets 

include keywords that have been provided by comparative religion experts (the data provided by 

experts has been primarily used for quantitative evaluation, see Subsection 4.4.2.3).  The total size of 

each of the final keyword sets is 180–240, of which 15–20% were not extracted by TextAnalyst but 

solely by the experts.  Each keyword is represented by its co-occurrence vector, as extracted from its 

own corpus (so the same keyword that is relevant to two or more corpora has different representation 

with respect to each corpus).  In counting co-occurrences, we have used two-sided sliding window of 

±5 words, truncated by sentence ends (similarly to Smadja, 1993).  On one hand, this window size 

captures most syntactic relations (Martin, Al & van Sterkenburg, 1983).  On the other hand, this scope 

is wide enough to score terms that refer to the same topic in general – and not only literally 

interchangeable terms – as similar (Gorodetsky, 2001), which accords our aim of identifying 

corresponding topics.  Appendix A contains details of some of the features that are most common in 

the corpora.  The keyword sets are introduced through some of their items along with exemplifying 

features and corresponding co-occurrence counts. 

Each one of the clustered keywords is represented by a (sparse) vector, whose entries are the counts of 

the keyword's co-occurrences with each feature.  We have applied to the obtained vectorial 

                                                      
5 TreeTagger – a language independent POS tagger and lemmatizer – is available for download from 

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html. 



 57

representations the simDMM similarity measure, which incorporates detailed information on the data 

(Dagan, Marcus & Markovitch 1995; Subsection 4.1.2, Eq. 4.8; simL is less detailed in that it only 

distinguishes between features that are present in one of the two vectors: features that are present in 

both do not contribute to the dissimilarity even though the values might be different, while simDMM 

utilizes value differences for features that are positive in both vectors).  After calculating between-

subset similarities, we ran the coupled clustering algorithm on each pair of subsets. 

4.4.2.2   Qualitative Overview of the Results 

Appendix B contains a detailed sample of coupled-clustering results, with number of clusters k = 16, 

including four religion pairs: Buddhism–Christianity, Christianity–Hinduism, Hinduism–Islam and 

Islam–Judaism.  The coupled keyword clusters are ordered by their average similarity in descending 

order.  The poorly clustered elements – those in the 16th cluster with the lowest average similarity – 

are not shown.  We have attached intuitive titles to each cluster for readability and orientation. 

The following post-hoc thematic analysis combines careful examination of the results described in 

this section and some background reading (particularly Smart, 1989; see discussion in Section 4.5).  

The obtained clusters (and additional results that are not shown concerning other religion pairs) 

appear to reflect consistently several themes that share commonalities across the different subsets: 

∗ The religious experience: 

This theme incorporates, for instance, terms referring to spiritual and mental conditions that 

lead to, or are the result of, the search for the religious message or religious belief. 

∗ Theology and philosophy: 

This covers several aspects such as ethics and other basic principles to be followed.  Two 

notable subtopics that are typically expressed through distinct clusters: qualities and attributes 

that are admired, usually related to the nature of the divine and, in contrast, the issues of 

sorrow, suffering, sin and punishment, usually adjoined with terms referring to the reward 

promised to those who do not violate the religious way. 

∗ Institutional organizations: 

This topic covers the various schools and traditions within the religion and, sometimes, the 

history of their development.  It includes, for instance, terms referring to various types of 

priests serving at the particular religion.  It often involves names of places, where the various 

traditions have been originated, or are currently practiced. 

∗ Practice and custom: 

This topic includes ritual aspects of the religion, for instance, terms referring to dietary rules, 

pilgrimage, holy places and festivals. 
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∗ The scriptures: 

In addition to the names of holy writings, there are two notable sub-themes: terms referring to 

teaching and scholarship and terms related to myths and narratives.  The latter sub-theme 

often involves names of figures and places that are related with the narratives. 

Furthermore, keyword coupled clusters are a valuable source for additional specific analyses of varied 

sorts.  We shall exemplify this here only briefly: 

•  Religion founders.  The names of the central figures of each religion are often clustered 

together within the same coupled-cluster.  Whenever such a cluster is not focused on other 

personal names, the cluster's terms often convey prominent attributes of the central figure, thus 

provide in some sense the key to the whole religion – the ideal attribute it adopts.  Examples are 

being, practice and teaching with regard to Buddha, believing, faith, love regarding Jesus Christ 

and messenger, prophet, Quran regarding Mohamed. 

•  Family relations.  Family related terms – family, wife, husband, marriage, mother, sister, 

brother, daughter, child (excluding father and son, which often convey additional meaning) – are 

distributed differently over clusters, in different pairs of religions.  Islam plays a pivotal role with 

relation to these terms.  Clustering Islam terms against those of Christianity and Judaism, the 

family terms are concentrated within a single coupled cluster.  This provides a hint regarding the 

central part of family issues in the Islam, when it is viewed in light of the other western religions 

where comparable aspects are present (in contrast, comparing Christianity and Judaism with one 

another, the same terms are distributed among four different couple clusters).  When Islam is 

compared to Buddhism, the family-related terms are divided among varied contexts: “personal 

relationships” (enemy, fight, meet, responsibility, …), “sin and prohibitions” (forbid, kill, pain, 

punishment, …), “figures in narratives” (Abraham, Ishmael, Moses, caliph, tribe, …). 

We provide further qualitative evaluation of more results concerning comparison of religions in the 

following subsections. 

4.4.2.3   Expert Data Used for Evaluation 

As the previous section explicates, our empirical experiments have been concentrated on the 

comparative study of religions.  In fact, the existence of such a discipline and its presumed potential 

as a source for external standards was an initial reason for applying our framework for religion 

comparison.  The different religions are non-trivially related to one another.  Thus, religions seem to 

be liable to varied types of analysis and views that might underlie interesting correspondences 

between them.  Our working hypothesis is that corresponding aspects of distinct religions would be 

expressed through common features, i.e. commonly shared content words, implying close, or related, 
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meaning.  However, from the data contributed by the experts it also becomes apparent that there is no 

precise definition or consensual agreement with regard to the aspects of correspondence and the 

particular terms capturing them. 

We have asked human subjects, whose academic field of expertise is the comparative study of 

religions, to perform manually the coupled clustering task in the following manner.  The experts have 

been asked to explicate the most prominent equivalent aspects common to given pairs of religions.  

(To convey a broad notion of equivalency, we have included the following phrase in the instructions: 

“… features and aspects that are similar, or resembling, or parallel, or equivalent, or analogous in the 

two religions under examination…”; see Appendix C for the full instructions).  Then, the experts have 

been requested to specify representative terms that characteristically address each one of the identified 

similar aspects, within the content world of the two compared religions.  The resulting pairs of 

corresponding sets, or classes, of terms, each of which addressing one aspect of similarity between 

two compared religions, form our external standard – a class configuration (see Section 3.3).  Such a 

configuration is used for evaluating our results regarding the particular religion pair to which it refers. 

The task of explicating keywords, dissociated from any wider context, was new and somewhat 

unusual to our experts.  We have made efforts not to add on top of that any bias that further 

restrictions might cause. We have provided only rough guidelines regarding the number or content of 

equivalent aspects (i.e. expert classes), and the number and identity of terms that are associated with 

each aspect within each religion (i.e. the size of the coupled clusters; see Appendix C).  We have not 

set limits to the number of equivalent aspects with which any word can be associated. 

We have got responses from four people that have accomplished the task – two graduate students and 

two university professors, from Finland, Israel and New Zealand.  Perhaps due to the pretty 

permissive guidelines, we could not use some parts of the contributed data.  There were several terms 

that did not occur, or occurred rarely (i.e. less than 40 times in the relevant corpus), in our corpora.  A 

particular contribution, by one of the four experts, contained too few prevalent terms and thus has 

been discarded altogether, so we have been left with the expert class configurations contributed by the 

three remaining experts.  One of the experts has provided comparisons between all 10 possible pairs 

of the five religions.  Another expert has provided the following comparisons: Buddhism-Christianity 

Buddhism-Hinduism, Christianity-Islam and Christianity-Hinduism.  The third expert has provided 

the three possible comparisons among Christianity, Islam and Judaism. 

The data in use still included phrases conveying ideas that were far too composite than what we 

expected from key terms (e.g., the phrase not-admiring-something-that-belongs-to-someone-else).  

Most phrases of this type were excluded.  With regard to few of them we made some editorial 
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interpretations.  For example (one of the most extreme cases): identifying the single expert phrase 

obeying-God-and-not-mentioning-his-name-without-a-reason with co-locations of the terms obey and 

God.  Extensive work has been required also for other editing tasks, such as identifying alternating 

spellings.  In total, we discarded from the expert classes about 50 (10%) of the terms contributed by 

the three experts, so that a total of 448 terms were left to be used in the evaluation.  The detailed 

expert data is described further in Appendix C. 

As noted, the field of comparative study of religions does not lend itself to an absolute measure for 

assessing keyword-grouping results, through the experts' contribution.  Accordingly, our external 

standard cannot be regarded as conveying a definite academic directive.  Nevertheless, we suppose 

that our appliance to domain experts have yielded data that is both more reliable and richer than what 

could have been collected from, say, “educated human subjects”.  Note that even for experts the task 

of identifying corresponding themes in religions is intrinsically subjective, most likely because their 

skills do not underlie clear-cut criteria.  The fact that we have used data from three participants allows 

us to provide some notion of the maximal level of precision that we can, in principle, get. 

4.4.2.4   Examples of Expert Data versus Coupled Clustering Output 

Table 4.2 shows concrete examples for our results in comparison to the expert data used for 

evaluation.  The top of the table (A) displays a specific coupled class configuration contributed by one 

of the experts, pertaining to Christianity to Hinduism.  The expert configuration is followed by the 

output of our method.  The next two configurations, in (B) and (C), have been produced by our 

coupled clustering algorithm, making use of the multiplicative H3 and additive H2 cost functions 

respectively.  Although the expert configuration consists of five clusters, the most convincingly 

interpretable results, shown in the table have been obtained with eight clusters.  The table 

demonstrates that reconstruction of the expert configuration follows, in several cases, the right 

direction, but it is still imperfect.  There are several expert classes – e.g., the one titled “mysticism” – 

for which no trace is found in the various computerized outputs.  On the other hand, computerized 

configurations display some level of topical coherence, unrelated with the expert clusters, for 

example, the cluster that we have titled religious experience in Table 4.2 (B), referring to the 

multiplicative function performance.  The “one-to-many” coupled-clusters produced by the additive 

cost function (C) do reveal, as well, some interesting themes: symbols, doctrine, theological principles 

and so on.  The themes captured, however, are not balanced well over the two religions and 

consequently do not overlap well with the expert classes, even in cases where there is some thematic 

correspondence.  For comparison with standard single-set clustering, we used the IB method reviewed 

in the next chapter (Section 5.2).  The standard clustering results in Table 4.2 (D), place all Hinduism 

terms in one cluster, which disallow the detection of any correspondence between the two religions. 



 61

Table 4.2: Examples of the expert data and coupled clustering results. 

(A) Expert class configuration: The class configuration, comparing Christianity to Hinduism, contributed by 
expert I.   The titles are those given by the expert. 

Christianity Hinduism 
 1. Scriptures 
new_testament old_testament apostle bible john 
luke matthew paul revelation  

Gita mahabharata upanishad vedas  

 2. Beliefs and Ideas 
jesus_christ love_of_god devil god cross 
fish heaven hell resurrection trinity  

holy_people trimurti moksha atman 
brahman reincarnation 

 3. Society and Politics 
catholic church minister monk priest protestant 
rome vatican  

brahmin caste sadhu 

 4. Establishments 
bishop cardinal church pope priest  caste gift priest temple 
 5. Mysticism 
eucharist crucifixion love miracle saint suffer  ashram chakra darshan guru yoga 

 

(B) Multiplicative cost function: Eight-cluster configuration produced by our program with the multiplicative 
function (the best score was obtained for this eight-cluster configuration, although the expert specified five classes).  
The eighth cluster, of lowest average intra-cluster similarity, is omitted from the multiplicative cost function results.  
The remaining seven clusters are shown in full.  The results are shown in full, including terms not used by the expert.  
(Cluster titles are by the author). 

Christianity Hinduism 
 (1. religious experience) 
being believing child death earth faith father 
find god2 hear holy jesus love5 man people 
prayer problem sin soul spirit suffer5 word  

being child death family find god 
human man people soul  

 (2. writings–1) 
america bible1 book church3,4 
evangelical history religious rome3 
theology tradition write  

ancient art author book christian country history 
india language philosophy question religion 
religious sacred sanskrit school science shri 
south study temple4 tradition vedas1 west write  

 (theology) 
divinity doctrinal experience human 
moral relationship religion 
spiritual 

animal attain brahman2 consciousness dharma 
discipline divinity existence experience faith 
freedom idea karma law liberation practice ritual 
sense shiva social society spirit spirituality 
teach universe word yoga5  

 (writings–2) 
author chapter greek hebrew luke1 
matthew1 new_testament1 old_testament1 
passage revelation1 scripture study text 
theory translate writer writing  

epic gita1 hymn literature mahabharata1 
purana ramayana rigveda scripture story sutra 
teaching text upanishad1 writing  

 (doctrine / schools) 
ancient baptist bishop4 catholic3 
constantinople convert council establish found 
german jew luther organization orthodox pope4 
protestant3 university vatican3 west  

aryan authority brahmin3 buddhism 
caste3,4 civilization doctrine found 
founder jain muslim scholar shaiva  

 (tradition / cutoms) 
christmas city disciple family friend 
home house jerusalem learn meet member 
minister3 ministry school service sunday 
woman worship  

ashram5 ceremony dance festival ganesh gift4 
holy krishna learn meditation pilgrimage 
prayer priest4 puja rama sadhu3 son star 
student teacher  

 (narratives) 
abraham angel apostle1 authority baptism baptize believer birth 
bless blood command confess devil2 eat eye face faithful fire flesh 
forgiveness gift gospel grant heaven2 hell2 holy_spirit israel 
jesus_christ2 john1 judgment kingdom law listen mankind moses mother 
paul1 pay peace preach prophet punishment question redemption refer 
repentance resurrection2 reward righteousness sabbath sacrifice 
saint5 sake salvation savior sinful sinner teach voice water win  

birth devotee 
earth  guru5 
heaven mother 
person sacrifice  
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Table 4.2 (cont.): Examples of the expert data and coupled clustering results 

(C) Additive cost function: Eight-cluster configuration produced by our program with the additive function.  All 
clusters are displayd, but terms not used by the expert are shown only in the cases they are the only ones in their cell.  
Expert terms are in bold font. Superscripts inticate expert class number.  (Cluster titles are by the author). 

Christianity Hinduism 
 (1. spirituality) 
spiritual guru5 yoga5  
 (2. religious ) 
religious ashram5 brahmin3 caste3,4 priest3,4 temple4 
 (3. personal experience) 
apostle1 bible1 devil2 god2 hell2 jesus_christ2 john1 
love5 love_of_god2 paul1 resurrection2 suffer5   

Person 

 (4. history – writings) 
history gita1 mahabharata1 upanishad1 vedas1 
 (5. establishments) 
church4 minister3 saint5  Devotee 
 (6. symbols) 
cross2 fish2 heaven2 miracle5 Heaven 
 (7. doctrine) 

bishop4 cardinal4 catholic3 crucifixion5 eucharist5 
luke1 matthew1 monk3 new_testament1 old_testament1 
pope4 priest3,4 protestant3 revelation1 rome3 vatican3  

doctrine 

 (8. theological principles) 
trinity2 atman2 brahman2 chakra5 darshan5 gift4 holy_people2 

moksha2 reincarnation2 sadhu3 trimurti2 

 

(D) Single set clustering: Eight-cluster configuration produced by a standard clustering method (the information 
bottleneck iterative algorithm, producing soft clusters (Section 5.2); each term is assigned into its most probable 
cluster).  The Hinduism terms were all assigned in one cluster, so only Christianinity terms are shown.  Exemplifying 
terms not used by the experts are shown only in the cases where there have been no expert terms in their cluster.  
Expert terms are in bold font. Superscripts indicate expert class number.  (Cluster titles are by the author). 

Christianity Hinduism 
 (1. establishment-A) 
vatican3 pope4 cardinal4 rome3 bishop4 catholic3 protestant3   
 (2. customs/<general for Hinduism> ) 
trade pilgrimage 

[All Hinduism terms were 

assigned to cluster 2] 

 (3. spirituality) 
holy_spirit holy reign spirit   
 (4. establishment-B) 
church4 monk3 eucharist5   
 (5. writings/figures) 
 luke1 matthew1  
 (6. doctrine) 
postmodern theology luther evangelical ethic tradition 
religious religion founder 

 

 (7. <general>) 
apostle1 bible1 devil2 god2 hell2 jesus_christ2 john1 love5 
love_of_god2 paul1 resurrection2 suffer5 minister3 saint5  cross2 

fish2 heaven2 miracle5 crucifixion5 priest3,4 revelation1 trinity2 

 

 (8. sacred writings) 
new_testament1 old_testament1  
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4.4.2.5   Quantification of the Overlap with the Expert Data 

We employed the Jaccard coefficient to quantify the overlap between our output clusters and the 

classes provided by the experts.  We used the version of Jaccard coefficient that is specifically 

adapted to the coupled clustering task, considering only cross-dataset element pairs (JACCARD-PROB-

CP; see Chapter 3, Subsection 3.3.2.2).  In order to lay common grounds for measuring the overlap, 

we eliminated from our clusters those terms that were not used by the expert.  Note that the data was 

clustered in full, so that the terms not used by the expert were deleted from the outcome, after the 

clustering process was completed.  This procedure differs from the one used by Marx et al. (2002), 

where the clustering algorithm was applied to partial datasets that included only expert's terms.  

Considering the noisy impact of those many items that are not in the target classes (about 400 items 

per couple of full datasets, compared to an average of 54 expert items used in each evaluation), the 

current procedure demonstrates a higher degree of robustness. 

We compared coupled clustering results obtained with the multiplicative cost function H3 to the 

additive function H2, as well as to random assignments and to the clusters produced by standard 

clustering method – the information bottleneck iterative algorithm (Tishby, Pereira & Bialek, 1999; 

reviewed in Chapter 5, Section 5.2) – applied to the union of the two coupled subsets.  The 

information bottleneck method produces soft probabilistic clustering, i.e., it assigns each element to 

all clusters with probabilistic assignment values that sum up to 1.  We turned these probabilistic 

assignments into hard ones, by considering each element as if it is assigned into its most probable 

cluster.  The original soft IB clusters can be evaluated through the methods we use as well, but in 

general, they score somewhat worse than the hard version. 

Figure 4.4 displays the results for all 17 evaluation cases examined.  High Jaccard coefficient values 

imply high degree of overlap with the expert classes.  The number of clusters indicated by each 

expert, which is denoted in the figure by a dotted vertical line, does not perfectly predict the number 

of clusters that actually obtain the highest score, so it cannot be assumed known in advance.  We 

rather examine output configurations with numbers of clusters that vary over a reasonable 

predetermined range: two to 16 clusters.  Averaged over all shown cluster numbers across all religion 

pair cases, the differences between the methods are all statistically significant, except for the 

difference between the additive cost function and the standard single-set clustering.  Particularly, 

Figure 4.4 exhibits the superiority of the multiplicative cost in the vast majority of cases, over the 

whole cluster number range.  In some cases, additionally to the highest scoring configuration, there 

are local picks (maxima) along the result graph, indicating that there is more than one meaningful 

interpretation to the data, corresponding to different levels of detail. 
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Figure 4.4:  The religion keyword coupled-clustering results evaluated relatively to the expert 

classes.  Jaccard scores are shown for cluster numbers range from two to 16, for all 17 cases: ten by 

expert I, four by expert II and three by expert III.  The methods in use: coupled clustering with the 

multiplicative and additive cost functions, and a standard clustering method (information 

bottleneck).  Scores of random assignments are shown as well. 

In most cases, the additive-cost and standard-clustering Jaccard scores shown in Figure 4.4 lie below 

the corresponding random-assignment scores.  The reason is that the version of Jaccard coefficient 

used here considers only cross-dataset element pairs (Chapter 3, Subsection 3.3.2.2).  The additive 

cost function tends to form “one-to-many” coupled clusters, i.e., clusters that contain only one, or 

very few, elements from one of the datasets (for an example, see Table 4.2 (C) ).  Standard clustering, 

as well, tends to follow within-dataset regularities, inducing similarly imbalanced clusters. 

 

Expert I: Buddhism vs. Christianity Expert I: Buddhism vs. Hinduism Expert I: Buddhism vs. Islam 

Expert I: Buddhism vs. Judaism Expert I: Christianity vs. Hinduism Expert I: Christianity vs. Islam 

Expert I: Christianity vs. Judaism Expert I: Hinduism vs. Islam Expert I: Hinduism vs. Judaism

Expert I: Islam vs. Judaism Expert II: Buddhism vs. Christianity Expert II: Buddhism vs. Hinduism

Expert II: Christianity vs. Hinduism Expert III: Christianity vs. Islam Expert II: Christianity vs. Islam

Expert III: Christianity vs. Judaism Expert III: Islam vs. Judaism multiplicative cost  

additive cost  

random clusters 

the number of clusters 
indicated by the expert 

standard clustering 
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4.4.2.6   Agreement between the Experts 

 

Figure 4.5:  The religion keyword coupled-clustering results evaluated on partial sets of terms: those 

used by two experts for the same cross religion comparison.  The Jaccard scores of the 10 cases are 

shown for all cluster numbers from two to 16, three common to experts I and II, three common to 

experts I and III and one common to experts II and III.  For comparison, we show the level of 

agreement between the experts, i.e., the Jaccard score each expert configuration achieves in 

approximating the classes provided by the other expert. 

In this subsection, we quantify the subjectivity level that can be ascribed to the evaluation criterion in 

use and we examine the portion of our results comparable with the limits set by this subjectivity level.  

There was one religion pair (Christianity/Islam) to which all three experts generated evaluation data 

independently and five additional religion pairs to which two experts generated data independently 

(Buddhism/Christianity, Buddhism/Hinduism and Christianity/Hinduism by expert I and II; 

Christianity/Judaism and Islam/Judaism by experts I and III).  Together, evaluating data of an expert 

against data regarding the same religion pair contributed by another expert gave a total of 16 

evaluation cross-expert evaluation cases: ten cases resulting from the religion pairs addressed by two 

experts and six cases from the pair addressed by all experts, as this religion pair was actually 

addressed by three pairs of experts.  Note that each expert pair was judged twice, taking one expert as 

a gold standard and the other expert as the one being evaluated.   

Evaluating expert data through comparing it to data of another expert measures cross-expert overlap 

over the set of terms used in common by both experts, thus such evaluation results provide an 

indication for the level of agreement between the experts.  Figure 4.5 displays the Jaccard scores 

indicating these cross-expert agreement levels for each pair of religions, along with the results 

multiplicative cost relatively 
to the first expert 

the second expert 
relatively to the first one 

the first expert relatively 
to the second one 

multiplicative cost relatively 
to the second expert 

Expert III/I: Islam vs. JudaismExpert III/I: Christianity vs. Islam Expert II/I: Buddhism vs. Christianity 

Expert II/I: Buddhism vs. Hinduism Expert II/I: Christianity vs. Islam Expert III/II: Christianity vs. Islam 

Expert III/I: Christianity vs. Judaism Expert II/I: Christianity vs. Hinduism
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obtained by our method on the same small sets of commonly used terms.  In order to set common 

grounds to our results with cross-expert agreement, after the clusters were formed the terms not used 

by either expert were discarded from our clusters, so that the term sets left are much smaller than the 

ones used for evaluation in the previous subsection.  The figure shows that our results approach the 

cross-expert agreement level in some of the cases.  However, the averaged results in table 4.4 show 

that even the best clustering results for each case (over the range of number of clusters) are 

significantly inferior to the agreement between experts.  In the next chapter, these results would be 

significantly improved. 

Table 4.4: Quantitative measures for cross-expert agreement, obtained through applying the 

evaluation methods to expert-classes using another expert class configuration as a criterion.  For 

comparison, we show mean scores of our results with respect to the 16 corresponding religion 

comparison cases, to which an additional expert has referred.  The evaluation is restricted to the 

items common to both experts.  In parentheses: the average over the best score of each case. 

 Jaccard Coefficient 

 Means ± standard deviations for cross-expert agreement quantitative assessment 

Cross-expert Agreement 0.450±0.249 

 Means ± standard deviations over the 16 cross-expert scores averaged (best ) over all examined numbers of clusters 2–16 

Multiplicative Cost 0.237±0.101  (0.344±0.114) 

Difference: Expert − Multiplicative 0.214±0.194  (0.106±0.193) 

 

4.5  Discussion 

In this chapter we have formalized and implemented the coupled clustering problem that was 

introduced in general terms in the previous chapter: clustering two pre-given element subsets to 

matching parts so that each matched pair forms a coupled cluster.  Formalization of the task  took 

place in the familiar pairwise cost-based data clustering framework (Subsection 4.2.2).  The 

implementation has used the stochastic Gibbs Sampler search method (Subsection 4.2.4).  The 

requirement of matching the formed subset parts has been realized through restricting the pairwise 

clustering setting to only those similarities between members of distinct subsets (Subsection 4.2.1). 

The results demonstrate that our approach addresses the coupled clustering task fairly well, not only 

with respect to tailored synthetic task (Section 4.3), but also for tackling an interesting real-world 

problem (Section 4.4).  Neither standard clustering techniques nor simplistic approach, such as the 

one suggested by the straightforward additive cost function (Eq. 4.11), address the examined task as 
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well as the solution dedicatedly designed for the problem, namely the multiplicative cost function (Eq. 

4.14).   

The expertise of the individuals that participated in creating our evaluation criteria did not completely 

eliminate the subjectivity inherent to the task of identifying and matching terms related with various 

religions.  Given the inherently subjective task and the lack of clear-cut criteria for matching 

equivalent terms or themes within the studied data, we find the results encouraging and inherently not 

too far from the level of agreement among the experts. 

Yet, several aspects in the method that we have introduced seem as non-negligible limitations.  There 

is a source of information, the between-subset similarities, which are not utilized at all.  Should they 

really play no role in the formed correspondence between systems aligned with respect to each other?  

Another point to note is that the conversion from element-feature data to pairwise similarities 

(through methods as the ones described in Subsection 4.1.2) implies additional loss of information. 

In the next chapter of this work, we introduce another method that generalizes the coupled clustering 

setting across several aspects and, in addition, addresses the points we have mentioned. 
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