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Appendix D: Proofs for Chapter 5 

Lemma 5.1: 

(A) At any iterative cycle of the ID algorithm (Figure 5.1) with t > 0, update step ID1 

decreases the value of FID (Eq. 5.1) by 

∆FID1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] . (D.1) 

(B) (following Gilad-Bachrach, Navot & Tishby, 2003) At the iterative cycle of the ID 

algorithm with any t, update step ID2 decreases the value of FID by 

∆FID2
t   =   β ∑c pt(c)KL[pt(y|c)||pt−1(y|c)] . (D.2) 

Proof:  

(A) Taking log of both sides of the equality sign in step ID1 (note that pt(c|x) is never equal to 

0), we have: 

log pt(c|x)  =  β ∑y p(y|x) log pt−1 (y|c) − log zt (x,β) , (D.3) 

where zt (x,β) is a normalization function, over all values c of C, of terms depending on x, c 

and β.  Extracting log zt (x,β) from the above equality: 

log zt (x,β)  =  β ∑y p(y|x) log pt−1 (y|c) − log pt(c|x) . (D.4) 

Note that although a particular value c is being used in Eq. D.4 (which is in fact true for every 

c), the actual value of log zt (x,β) does not depend on any particular value of C. 

After performing update step ID1 at time t, which results in the replacement of each pt−1(c|x) 

with pt(c|x), the value of FID changes from FID
t−1, where all p(c|x) and p(y|c) indexed by t−1, to  

FID
t−    ≡   ∑x p(x) ∑c pt(c|x) log pt(c|x)  −  β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c) . (D.5) 

The value we are interested in, ∆FID1
t, is the difference between FID

t−1 and FID
t− : 

∆FID1
t   =   FID

t−1 − FID
t−    = (a) (D.6) 

∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

− ∑x p(x) ∑c pt(c|x) ( β ∑y p(y|x) log pt−1 (y|c) − log zt (x,β) ) 

+  β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c)   = (b)  

∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

+ ∑x p(x) ∑c pt−1(c|x) ( log zt (x,β) )   = (c)  
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∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

+ ∑x p(x) ∑c pt−1(c|x) ( β ∑y p(y|x) log pt−1 (y|c) − log pt(c|x) )   = (d)  

∑x p(x)KL[pt−1(c|x)||pt(c|x)] 

In the equality chain of Eq. D.6, (a) incorporates Eq. D.3, (b) omits identical terms with 

opposite signs and replaces, for each x separately, expectation over pt(c|x) with the identical 

expectation over pt−1(c|x) (as log zt (x,β) is independent in C), (c) incorporates Eq. D.4 and (d) 

again omits opposite sign terms and resorts to the definition of KL divergence. 

(B) The value we are interested in, ∆FID2
t, is the difference between FID

t− (Eq. D.5) and FID
t 

(where all p(c|x) and p(y|c) are indexed with t): 

∆FID2
t   =   FID

t− − FID
t    = (a) (D.7) 

 − β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c) + β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt(y|c)   = (b)  

β ∑c,y ( log pt(y|c) − log pt−1(y|c) ) ∑x p(x) pt(c|x) p(y|x)   = (c) 

 β ∑c,y ( log pt(y|c) − log pt−1(y|c) ) pt(c,y)   = (d)  

β ∑c pt(c)KL[pt(y|c)||pt−1(y|c)] 

In the equality chain of Eq. D.7, (a) drops the term ∑x p(x) ∑c pt(c|x) log pt(c|x) with opposite 

signs from both FID
t− and FID

t, (b) just re-orders the terms, (c) uses the conditional 

independence assumption (Eq. 5.4), which step ID2 happens to maintain, and (d) resorts to 

the definition of (conditioned) KL divergence.  

Lemma 5.2: Stable points of the ID algorithm (i.e. probability distributions that remain 

unchanged under the update steps: pt+1(c|x) = pt(c|x) and pt+1(y|c) = pt(y|c) for all c, x and y) are 

locally extremal points of  FID (Eq. 5.1). 

Proof:  Update step ID1 of the ID algorithm can be derived, using the method of Lagrange 

multipliers, as follows: 

(1) Convert FID (Eq. 5.1) to a Lagrangian LID1, by adding to it a Lagrange multiplier λx  

for each x, in order to restrict each probability p(c|x) distribution to sum up to 1: 

LID1 = FID + ∑x λx ( 1 − ∑c p(c|x) ) . 

(2) Take derivatives from LID1 with respect to each p(c|x). 

(3) Equate each of the resulting terms to 0, extract p(c|x) and set λx so that all 

distributions sum up to 1, to obtain the equation specifying ID1. 

 



 137

The details of this derivation closely resemble the derivation of step IB1 for the IB algorithm 

(Fig. 5.2), which has been given in several previous works (e.g., Tishby, Pereira & Bialek 

1999).  The above holds as well with regard to the derivation of update step ID2, substituting 

p(c|x) by p(y|c), λx by λc and LID1 by LID2 = FID + ∑c λc (1 − ∑y p(y|c)): 

(1)  The Lagrangian introducing to FID the constraint of p(y|c) to sum up to 1 is: 

LID2  ≡  ∑x p(x) ∑c p(c|x) ( log p(c|x) − β ∑y p(y|x) log p(y|c) ) + ∑c λc ( 1 − ∑y p(y|c) ). (D.8) 

(2) From LID2, take derivatives relatively to p(y|c):  

)|(

2

cyp

LID

δ
δ

   =   − β ∑x p(x) p(c|x) p(y|x) ( 1 / p(y|c) ) + λc . 
(D.9) 

(3) Equating the above term to 0 and setting λc = β ∑x p(x)  p(c|x) = β p(c) so that the 

constraint of p(y|c) to sum up to 1 holds (note that p(c) have here the mere role of a 

normalization factor), we get the equation underlying step ID2 of the ID algorithm: 

p(y|c) = ( 1 / p(c) ) ∑x p(x)  p(c|x) p(y|x) . (D.10) 

From the above follows that stable probability distributions pt(c|x) (i.e., ones satisfying 

pt+1(c|x) = pt(c|x)) specify extremal value of FID relatively to fixed pt(y|c) and vice versa: stable 

probability distributions pt(y|c) (satisfying pt+1(y|c) = pt(y|c)) specify extremal value of FID 

relatively to fixed pt(c|x).  As the pt(c|x) and pt(y|c) are all the parameters and they are all fixed 

in a stable point, together they form an extremal point of FID.  

Lemma 5.7: In the update cycle of time t, the four CP algorithm steps CP1, CP2, CP*1, 

CP*2, decrease the value of FCP1 (Eq. 5.17), FCP2 (Eq. 5.19), FCP*1 (Eq. 5.24), FCP*2 (Eq. 5.27) 

by 

∆FCP1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] , 

∆FCP2
t   =   ∑x pt(c,w)KL[pt(y|c,w)||pt−1(y|c,w)] , 

∆FCP*1
t   =   ∑y p(y)KL[p*t−1(c|y)||p*t(c|y)] , 

∆FCP*2
t   =   ∑y p*t(c)KL[p*t(y|c)||p*t−1(y|c)] , 

(D.11) 

respectively. 

Proof: We exemplify the proof by proving the claim with regard to FCP*1 (note the similarity 

to the proof of lemma 5.1 (A) ). 
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Taking log of both sides of the step CP*1 equality sign, we have: 

log p*t(c|y)  =  η ∑w p(w) log pt−1(y|c,w) − log z*t(y,η) , (D.12) 

where z*t (y,η) is a normalization function over all values c of C of terms depending on y, c 

and η.  We then extract log z*t (y,η) from the above equality: 

log z*t(y,η)  =  η ∑w p(w) log pt−1(y|c,w) −  log p*t(c|y) . (D.13) 

Note that although a particular value c is being used in Eq. D.13 (in fact, it is true for every c), 

the actual value of log z*t (y,η) does not depend on any particular value of C. 

After performing update step CP*1 at time t, which results in the replacement of each 

p*t−1(c|y) with p*t(c|y), the value of FCP*1 changes from FCP*1
t−1, where all p*(c|y) and p(y|c,w) 

are indexed by t−1, to 

 (D.14) 

FCP*1
t−   ≡   ∑y p(y) ∑c p*t(c|y) log p*t(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p*t(c|y) log pt−1(y|c,w) . 

The value we are interested in, ∆FCP*1
t, is the difference between FCP*1

t−1 and FCP*1
t−: 

∆FCP*1
t    =    FCP*1

t−1 − FCP*1
t−    = (a) (D.15) 

∑y p(y) ∑c p*t −1(c|y) log p*t −1(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p*t −1(c|y) log pt−1(y|c,w)  + 

− ∑y p(y) ∑c p*t (c|y) ( η ∑y p(y|x) log  pt−1(y|c,w) − log z*t (y,η) )   

+  η ∑w p(w) ∑y p(y) ∑c p*t (c|y) pt−1(y|c,w)   = (b) 

∑y p(y) ∑c p*t −1(c|y) log pt−1(c|x)  −  η ∑w p(w) ∑y p(y) ∑c  p*t −1(c|y) log  pt−1(y|c,w)  + 

+ ∑y p(y) ∑c p*t −1(c|y) ( log z*t (y,η) )   = (c) 

∑y p(y) ∑c p*t −1(c|y) log p*t −1(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p*t −1(c|y) log  pt−1(y|c,w)  + 

+ ∑y p(y) ∑c p*t −1(c|y) ( η ∑w p(w) log pt−1(y|c,w) − log  p*t (c|y) )   = (d) 

∑y p(y) KL[ p*t −1(c|y) || p*t (c|y) ] 

In the equality chain of Eq. D.15, (a) incorporates Eq. D.12, (b) drops identical terms with 

opposite signs and replaces, for each y separately, expectation over p*t(c|y) with the identical 

expectation over p*t−1(c|y) (as log z*t (y,η) is independent of C), (c) incorporates Eq. D.13 and 

(d) again drops opposite sign terms and resorts to the definition of KL divergence. 

The proof for the claim regarding update step CP1 is in close correspondence to the proof of 

lemma 5.1 (A).  The proofs for the claims regarding update step CP2 and CP*2 are similar to 

the proof of lemma 5.1 (B).  
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Lemma 5.8: A set of probability distributions that form a stable point of the CP algorithm 

(i.e., ones that satisfy pt+1(c|x) = pt(c|x), pt+1(y|c,w) = pt(y|c,w), p*t+1(c|y) = p*t(c|y) and 

p*t+1(y|c) = p*t(y|c), for all c, x, y and w) specifies locally extremal points for FCP1 with respect 

to p(c|x) (p*(y|c) held fixed), FCP2 with respect to p(y|c,w) (p(c|x) held fixed), FCP*1 with 

respect to p*(c|y) (p(y|c,w) held fixed) and FCP*2 with respect p*(y|c) (p*(c|y) held fixed). 

Proof: As a demonstrative example, we show that distributions p*(c|y) that are part of a stable 

point of the CP algorithm specify locally extremal points for FCP*1 (while p(y|c,w) held fixed).  

The other parts are similar (see also the proof of Lemma 5.2 above). 

We first write explicitly LCP*1, the Lagrangian introducing to FCP*1 for every y the constraint 

of p*(c|y) to sum up to 1: 

LCP*1  ≡ (D.16) 

∑y p(y) ∑c p*(c|y) ( log p*(c|y) − η ∑w p(w) log p(y|c,w) ) + ∑y λ*y ( 1 − ∑c p*(c|y) ). 

From LCP*1, we take derivatives relatively to p*(c|y), considering p(y|c,w) as a constant: 

(D.17) 

)|(*

1*

ycp

LCP

δ
δ

   = p(y) ( log p*(c|y) − η ∑w p(w) log p(y|c,w) ) + p(y)  p*(c|y) ( 1 / p*(c|y) ) + λ*y . 

Equating the above term to 0 and setting λ*y =  p(y) ( log z*(y,η) − 1), so that the constraint of 

p*(c|y) to sum up to 1 holds, with a normalization factor z*(y,η) = ∑c' ∏w p(y|c',w)η p(w), we get 

the equation underlying step IB2 of the IB algorithm: 

 p*(c|y)   =   ( 1 / z*(y,η) ) ∏w p(y|c,w)η p(w)
 .  (D.18) 
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