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AbstractAbstractAbstractAbstract    

The ability to identify analogies and correspondences is one of the fascinating aspects of intelligence.  

It allows learning across different situations, systems and domains, where the common base to 

learning is not trivial or immediate.  The research in cognitive science has acknowledged the 

significance of analogy making to human thinking.  Several previous works on analogy making 

suggested computational mechanisms for constructing detailed mapping that connects corresponding 

ingredients across a given pair of analogized systems. 

In this work, we introduce a new approach to understanding, identifying and forming analogies and 

correspondences.  In distinction from previous works on analogies, our approach and the 

computational methods derived from it are applicable to real world problems, such as the task of 

identification of corresponding topics in texts on different domains.  This work thus bridges between 

cognitive observations regarding analogy making, which inspired this work but provided no concrete 

utilizable computational recipes, with techniques that have been proven efficient in processing real 

world data. 

The methods introduced in this work extend the well known data clustering problem.  The key 

mechanism used to identify correspondences through clustering is directing corresponding data 

elements, from different subsets of elements each representing one of the systems between which the 

correspondence is being drawn, to be included in the same cluster.  The straightforward application of 

a standard clustering technique would not address well this target: a standard clustering method would 

often produce clusters with elements of only one of the representative subsets, particularly when these 

subsets are relatively homogenous.  Our methods, however, are specifically designed to cluster 

together corresponding elements from both subsets while neutralizing the impact of homogeneity 

within each subset. 

The first method that we introduce, termed coupled clustering, addresses the problem of partitioning 

two representative element subsets.  This method extends an axiomatic framework of similarity-based 

data clustering (Puzicha, Hofmann & Buhmann, 2000).  The other method, cross-partition clustering, 

modifies and generalizes the coupled clustering setting along several aspects: it is based on vectorial 

representation of the given data rather than on pairwise proximity values, it produces soft 

(probabilistic) rather than deterministic partitioning and it allows revealing correspondences across 

more than two subsets.  The cross-partition clustering method is based on the information bottleneck 
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(Tishby, Pereira & Bialek, 1999) and information distortion (Gedeon, Parker & Dimitrov, 2003) 

methods, which are grounded on information theoretic approach to data clustering. 

The setting underlying our approach is considerably different than previous views of analogy making.  

The two methods that we introduce ascribe the correspondence being formed to a counterbalance 

between different factors.  In coupled clustering, these factors are shared pairwise similarity (across 

subsets) and prominence of the formed cluster in each one of both analogized subsets.  In the cross 

partition method, the underlying factors are communal feature distribution patterns versus the 

independence of these patterns on the pre-partition of the data to distinct subsets between which a 

correspondence is revealed. 

Both methods were developed using general formulation.  They are capable of identifiable 

correspondences drawn across any sets of data elements that are represented through feature vectors 

or a similarity matrix, regardless of the source of the data.  Hence in principle, they are applicable to a 

large variety of problems and domains.  In this work both methods were applied successfully to 

synthetic and textual data. 

The textual experiments addressed the task of identifying corresponding sub-topics across related but 

distinct domains, each represented through a set of domain-related keywords extracted from 

appropriate corpora.  The similarity measure and vectorial representations required as input to our 

framework were compiled based on word co-occurrence statistics.  Most experiments were focused on 

identifying correspondence between different religions: Buddhism, Christianity, Hinduism, Islam and 

Judaism.  With no prior specialization or training in the study of religions, our methods identified 

analogous factors shared by several religions in varying levels of resolution: “spiritual” versus 

“practical” dimensions in a coarse view and aspects such as “sacred writings”, “rite and festivals” and 

“sin and suffering” in more detailed level.  These findings are in apparent agreement with 

comparative religion studies that were based on a comparable approach.  For the purpose of 

systematic evaluation, we have measured the overlap between our outcome and religion-related term 

clusters provided by experts.  The match between the experts’ clusters and the outcome of our method 

was very close to the level of agreement between the experts. 
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Chapter 1: IntroductionChapter 1: IntroductionChapter 1: IntroductionChapter 1: Introduction    

Identification of analogies and correspondences has consistently enlightened various fields of 

knowledge and scholarship.  Historical situations and events, for instance, provide a rich field for the 

construction of analogies.  In a unique enterprise, which dates back to Plutarch's “Parallel Lives”, 

each member in a list of Greek public figures is paired with a Roman counterpart, whose position, 

actions and life events match in an illuminative manner.1  This classical piece demonstrates one of the 

fascinating aspects of human intelligence: acquiring knowledge in a context of a particular object – be 

it a person, an event or a whole domain – allows applying this knowledge and enriching it in a related 

but different context.  To this end, it is required to identify those relevant aspects that correspond to 

each other across the objects being studied.  In other words, utilizing and enriching knowledge along 

different contexts is grounded on the ability to perceive some compound relation, an equivalence or 

analogy, between the contexts. 

As the ability to perceive correspondence is fundamental to human intelligence, it is interesting to 

study computational mechanisms underlying it.  Along with the theoretical merit, computational 

methods enabling the automated detection of analogies might turn highly practical in the current 

information overload era.  Consider, for example, the following two text fragments extracted from a 

pair of 1986 Reuters' news-articles: 

1.  LOS ANGELES, March 13 – Computer Memories Inc. ... agreed to acquire  

Hemdale Film Corp. ... That company's owner , John Daly, would then become 

chief executive officer  of the combined company... 

2.  NEW YORK, March 25 – Messidor Ltd said it signed a letter of intent to 

acquire  100 pct of the outstanding shares of Triton Beleggineng Nederland 

B.V. ... If approved, the president  of Triton, Hendrik Bokma, will be 

nominated  as chairman  of the combined company. ... 

The similarity between the above fragments is apparent: they both deal with the intention of a 

company to acquire another company.  Typically, computational methods for assessing similarity 

between documents rely on the proportion of shared terms or keywords.  In our example the word 

‘acquire’ appears in both articles, so keyword-based methods would count it as a positive evidence 

                                                      

1Plutarch's “Lives” can be browsed at http://classics.mit.edu/Browse/browse-Plutarch.html. 
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for evaluating the text fragments as similar to each other.  More sophisticated methods (e.g. Latent 

Semantic Indexing; Deerwester et al., 1990) incorporate term-similarity models that may take into 

account correspondence of different terms that resemble in their meaning.  Thus, corresponding terms 

such as ‘owner’ — ‘ president’ and ‘chief executive officer’ — ‘ chairman’ may contribute to the 

unified value of evaluated similarity.   

Now, consider yet another pair of terms from the above fragments: ‘become’ — ‘ nominated’.  These 

terms probably share only a moderate degree of similarity in general, but a human reader will find that 

they meaningfully correspond to one another in this particular context.  Identification of this context-

dependent equivalence also enables a reader to perceive that John Daly and Hendrik Bokma – names 

that the reader is likely not to encounter before – play in the above texts an analogous part of being 

appointed to a managerial position.  Existing similarity assessment methods do not consider such 

analogies and do not provide means for pointing them out. 

With the goal of spotting context dependent correspondences such as the ones demonstrated above in 

mind, the present work addresses questions situated one-step ahead of the traditional similarity 

assessment task: given objects – fragments of news articles in this case – that are already assumed to 

be similar, how they are related to each other?  How to identify those aspects of similarity that would 

facilitate knowledge relevant to both analogized objects?   

The research in cognitive science has acknowledged the role of analogy in human thinking.  Several 

works on analogy making have suggested computational mechanisms for constructing detailed 

mapping that connects corresponding ingredients across a given pair of systems between which 

analogy is being drawn.  According to the structure mapping theory (Gentner, 1983), the ingredients 

of two analogized systems are not expected to share similar individual features, but rather the 

relations among the ingredients within each system should resemble each other.  Another approach 

(Hofstadter et al., 1995) emphasizes the manner in which features of the analogized objects are 

perceived in light of the context of aligning them one against the other.  Representations that are 

suitable for mutual mapping are dynamically formed in interaction with the perceived relevance of the 

features to the correspondence being established.  In the next chapter (second part), we review in 

greater detail these two approaches to analogy making. 

The present work is inspired by the direction of constructing a correspondence map, which is 

grounded on cognitive considerations.  We have not found, however, the computational mechanisms 

employed by cognitive studies directly applicable to real world problems of the type we are interested 

in, such as identification of corresponding themes in un-annotated texts.  One of the above methods 

(Hofstadter et al., 1995), for instance, has been intrinsically designed for a specific toy problem.  This 
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is justified by the authors' claim that studying toy problems is the best strategy for progress in the 

field.  In their view, the current state of our understanding does not allow more realistic models of 

analogy making.  The other approach (Gentner, 1983) is supposed to be applicable to real world 

problems of general nature, but it represents information about such problems through pre-coded 

relational representation.  It is not clear if and how information embodied in readily available real 

world data – free text, for example – can be transformed automatically into this type of relational 

representation. 

Eventually, we have coped with the task of identifying context-dependent correspondences across 

real-world datasets through adapting up to date computational learning methods.  Our work thus 

bridges between cognitive observations regarding analogy making, which inspired our work but 

provided no concrete utilizable computational recipes, with techniques that have been proven efficient 

in processing real world data. 

Our strategy is unsupervised: we seek to identify patterns or regularities in the given data without the 

presence of any examples of suitable correspondences.  This approach is practically reasonable, as un-

annotated data is freely available in many domains and a newly introduced task would require, on the 

other hand, a considerable amount of work in preparing training data.  Further, it is not clear whether 

the same factors that underlie a particular correspondence would work in other examples.  The use of 

an unsupervised approach thus makes sense also because it might facilitate something of the non-

repeating creative nature of the task. 

More specifically, our approach extends recent works on data clustering.   Standard data clustering 

methods (a term that we shall used interchangeably with single-set clustering to distinguish it from 

our original elaborations) impose structure of the most elementary form on unstructured data by 

partitioning the given set of data elements into disjoint clusters.   In the next chapter (first part), we 

refer to the data clustering problem in detail and describe methods addressing it. 

In our setting, the given element set is pre-divided to several subsets, and our goal is not just to find 

the immediate internal structure of each of these subsets but rather to find structure that reveals 

correspondence between them.  In particular, we would like to ignore and, in the more interesting 

cases, to mask out actively internal structures that are irrelevant to the cross-subset correspondence.  

To that end, our approach extends the standard clustering task by producing clusters that contain 

elements of both subsets between which we seek to identify correspondence.  Each cluster would thus 

designate concrete links across ingredients or aspects of systems between which an analogy is drawn.  

Illustratively, a standard clustering method might cluster together names of employees working for 

different firms in different clusters.  Assuming the employer based partition is pre-given, we would 
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expect our approach to produce clusters that capture, say, corresponding functions: the management 

teams of all firms would be clustered together, the same for the sales teams and so on (as opposed to 

clusters that coincide with firm-specific units).  We present this conception in more detail, exemplify 

it and describe how performance on this task will be evaluated in Chapter 3. 

The first method that we introduce, termed coupled clustering, is designed for a dataset pre-divided to 

two disjoint subsets (each associated with one of the analogized systems).  We study the problem of 

partitioning the two subsets into corresponding sub-clusters, so that every such sub-cluster is matched 

with a counterpart in the other subset.  This target is accomplished through elaboration on an 

axiomatic cost-based framework of pairwise (i.e., proximity based) data clustering (Puzicha, Hofmann 

& Buhmann, 2000).  Puzicha et al.'s original framework is reviewed in Chapter 4, followed by several 

alternative extensions aiming at our task.  The various extensions are tested and evaluated on 

synthetic and textual data. 

In chapter 5, we introduce another method, cross-partition clustering, modifying and generalizing the 

coupled clustering setting along several aspects: it is based on vectorial representation of the given 

data rather than on pairwise proximity values, it produces soft (probabilistic) partitioning rather than 

deterministic one and it allows revealing correspondences across more than two subsets.  The cross-

partition clustering method that we have developed is based on the information bottleneck (Tishby, 

Pereira & Bialek, 1999) and information distortion (Gedeon, Parker & Dimitrov, 2003) methods, 

which are grounded on information theoretic approach to data clustering.  We review in detail these 

methods before introducing our original elaborations.  The cross partition method is tested, as well, on 

synthetic and textual data, demonstrating noticeable improvement relatively to the coupled clustering 

results. 

Cross partition clustering is a newly defined computational task of general purpose.  Potentially, 

correspondences of the type we study could be drawn across real world composite objects within 

unrestricted variety of domains.  One might be interested, for instance, in identifying corresponding 

objects in different images.  Further examples are discovery of corresponding biological and 

psychological phenomena typical to different populations, discovery of corresponding business and 

moves in competing commercial firms (competitive intelligence) and so on.  The methods introduced 

in this work are developed using general formulation that would allow adapting them to any 

application such as the ones mentioned, given data in standard format: similarities between pairs of 

data elements (coupled clustering) or probabilistic vectorial representation (cross partition clustering). 

In accordance with our concrete illustrative examples, the focus of the experimental part of this work 

is on textual data, specifically, identifying corresponding sub-topics across related, but distinct, 
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domains (rather than short articles or text fragments as in the previous examples).  Each domain is 

represented by a set of keywords extracted from a corpus of texts discussing it.  A keyword is 

characterized by a vector of its co-occurrences with other words in the corpus.  Such co-occurrence 

based representation, which utilizes the fact that similar words are used in similar lexical contexts, is 

commonly used for tasks such as estimation of similarity between words and documents.  In this 

work, we utilize the correspondences in context captured by the co-occurrence statistics in order to 

identify correspondences between groups of words. 

More concretely, in Chapter 4, we demonstrate how the coupled clustering method performs on 

identifying correspondences between conflicts of different nature that were discussed extensively in 

the new articles.  The main body of experimental work, in both Chapters 4 and 5, is concentrated on 

identifying correspondence between different religions: Buddhism, Christianity, Hinduism, Islam and 

Judaism.  Each of these religions is represented by a collection of texts discussing it.  The results (due 

to both coupled clustering and cross partition clustering) are systematically evaluated against clusters 

manually produced by experts in the comparative study of religions.  Some of our results, particularly 

those in Chapter 5, reveal fundamental themes common to all religions, which can also be traced in 

comparative studies on religious.   

The computational methods introduced in this work provide novel perspective into the essence of 

analogies and deep semantic correspondences (as opposed to immediate correspondence, based on 

superficial appearance).  This and further aspects and potential elaborations of our work are discussed 

in the concluding discussion chapter. 
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Chapter 2: BackgroundChapter 2: BackgroundChapter 2: BackgroundChapter 2: Background    

The current work massively builds on the notion of data clustering.  This fundamental task has been a 

subject for extensive study of computational disciplines such as machine learning and pattern 

recognition and is useful for a variety of applications in many empirical domains.  The review below 

intends to provide a broad perspective on the methods that are elaborated later on.  The original parts 

of our work introduced in later chapters elaborate on two particular data clustering methods, which 

are described in more detail therein.  Chapter 4 below is based on Puzicha, Hofmann & Buhmann's 

(2000) theory of proximity based clustering.  Chapter 5 is based on two closely related data clustering 

methods: the information bottleneck method (IB; Tishby, Pereira & Bialek, 1999) and the information 

distortion method (ID, Gedeon, Parker & Dimitrov, 2003; Pereira, Tishby & Lee, 1993). 

This work is largely inspired as well, though in a less technical level, by computational models of 

analogy – a field of study in cognitive science, on the borderline between linguistics, psychology and 

the computational sciences.  This chapter therefore concludes with an exemplifying discussion of this 

field. 

2.1   Data Clustering 
Data clustering is a computational task, which aims at revealing structure in initially unstructured 

data.  The following definition by Aldenderfer & Blashfield (1984), 

The segmentation of heterogeneous set of elements into a collection of homogenous subsets, 

provides a good notion of what data clustering is about. 

2.1.1  Introduction 

The ability to cluster data might be useful for the functioning of intelligent systems, whether artificial 

or natural.  Two closely related motivations for why intelligent systems are expected to develop data-

clustering capabilities are (after MacKay, 2003, Ch. 20): 

- Prediction: characterizing newly encountered pieces of information as exemplars of identifiable 

distinct classes. 

- Communication: by referring to similar pieces of information by a common cluster label, 

communicating parties can concentrate on what is important to the communicated information, 

while avoiding unneeded details and subtleties. 
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The above two considerations are in fact closely related.  For example, we might expect an intelligent 

system encountering an object to be able to identify it as, say, ‘an animal’, ‘a plant’, or ‘a piece of 

furniture’ and, at a finer level of resolution, as ‘a cat’ or ‘a tiger’.  Such labeling system might play a 

role in classifying data both for the system's own purposes and for communicating this information to 

other parties. 

Data clustering methods approach the above restrictedly from unsupervised perspective.  Likewise, 

the computational mechanisms reviewed and developed throughout this work rely on unlabeled 

training data, while external supervision providing known-to-be “correct labels” is not introduced 

during learning (as is indeed the case in many practical settings). 

2.1.1.1   Practical Applications 

There are many applicative uses for data clustering.  A partial illustrative list is as follows: 

- Object recognition: partitioning of a set of images, recorded sounds, or other composite 

records that are not subject to immediate automated interpretation, into well-distinguished 

classes.  The intended scope of each “well-distinguished class” may vary.  Few examples are:  

���� all exemplars of images from the same natural category (e.g., “animals” in one cluster, 

“buildings” in another one and “pieces of furniture” in a third cluster). 

���� all exemplars of the same object photographed under different conditions (changing 

illumination, angle etc.) 

���� all exemplars of recorded pronunciations of the same word (e.g., names of alphabet 

letters, as in Blatt, Wiseman, & Domany, 1997) 

- Image segmentation: the classifications of image pixels to different textures or to different 

objects (Hofmann & Puzicha, 1998; Boykov, Vexler & Zabih, 1999), e.g. objects in a room or 

organs in an image produced by some medical imaging technique. 

- Information Retrieval and Natural Language Processing: topical categorization of 

documents (Dhillon & Modha, 2001; Slonim & Tishby, 2002); detecting senses and sub-topics 

through word clusters (Pereira, Tishby & Lee, 1993; Brew & Schulte im Walde, 2002; 

Korhonen, Krymolowski & Marx, 2003). 

Forming clusters of semantically similar documents or words is in particular related with the 

applicative part of the current work.  Word clusters illustrate how what can be called “a conceptual 

network”, where each cluster of words sharing a common sense reveals a different concept, emerges 

from unprocessed textual data.  This is accomplished with no supervision, not to mention “deep 

understanding” of the language the analyzed texts are written in.   In our case, as well as in other 
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works such as the two above references on document clustering, clusters are produced with no 

information about the texts except word co-occurrence statistics (the three works on word clustering 

cited above use syntactic information extracted automatically prior to the clustering).  Thus, beyond 

its applicative utility data clustering can be seen as demonstrating, on a very basic level, computation-

based intelligence and the emergence of meaning. 

2.1.1.2   Data Clustering is an Ill-posed Task 

A well-known fact about data clustering is that it is ill posed, or, as Estivill-Castro (2003) puts it: “the 

cluster is in the eyes of the beholder”.  Any definition to the data-clustering problem does not set an 

unambiguous criterion to judging whether, or how well, the problem is solved.  Quite often, several 

partitions exist representing compromises between different biases inherent to the data, so the user 

must be more detailed with regard to the specific goals and the considerations relevant to those goals.  

For instance, image segmentation data is constrained not only by pixels' color or grey scale, but also 

by the spatial proximity of the clustered pixels.  Spatial proximity, however, is irrelevant in most other 

settings.  Being more specific and posing more restrictions does not necessarily turns the data 

clustering into a well-defined problem.  Assuming an axiomatic framework that poses some more 

concrete restrictions, Kleinberg (2003; see Subsection 2.1.4.3 below) shows that the data clustering 

problem is inherently unsatisfiable. 

2.1.2   The Structure of Data Clustering Output 

Basically, a data clustering method is supposed, given a set of elements, to produce a partition of the 

set into clusters.  We use the term clustering configuration to denote any one of all possible partitions 

of the data, among which data clustering methods are supposed to identify the one that optimally 

addresses the data-clustering task.  Each cluster is, by definition, just the set of data elements that 

forms it.  There are, however, methods that provide also supplementary information.  There are 

several methods that specify also a prototypical representation for every cluster, which gives an idea 

about each cluster's characteristics while saving the need to examine its elements.  We elaborate on 

such cases of extended clustering output later on (see 2.1.4.4).  In this subsection, we discuss two 

issues that are part of the clustering output in its more basic form: the number of clusters being 

produced and multi assignments and probabilistic assignments of data elements to clusters. 

2.1.2.1   How Many Clusters 

It is quite clear that the number of clusters, k, is expected to be considerably less than the number of 

clustered elements.  However, determining k exactly is a non-trivial issue, which might depend, for 

instance, on specific user requirements.  There are methods (e.g., Blatt, Wiseman & Domany, 1997) 

that infer k from the data itself, with no directions regarding user preferences.  There are also 
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statistical significance tests comparing configurations of k versus k+1 clusters in order to judge 

whether producing the larger number of clusters is justified (Duda, Hart & Strock, 2001, pp. 557-

559).  Many methods, however, including those adapted in the current work, follow user instructions.  

In these cases, k is usually specified as an additional input parameter.  Alternatively, some methods 

require the user to indicate the value of a method-specific threshold parameter, which indirectly 

determines k, with dependence on the data. 

2.1.2.2   Assignment Probabilities 

In many situations, partitioning the data to homogeneous subsets leaves some elements that do not fit 

perfectly into one of the clusters.  One conceivable solution, sometimes termed “soft” or non-

deterministic clustering, is to allow the assignment of an element to two or more clusters, with 

varying degrees of justification or confidence.  Hence, the clustering output of several methods 

includes detailed information with regard to “level of assignment” ass(c,x) of each element x within 

each cluster c.  A common convention is to restrict the assignment levels to be non-negative, 

ass(c,x) ≥ 0, and to require all assignment levels of an individual element x to sum up to 1: 

∑c ass(c,x) = 1.  Under this convention, the level by which an element is assigned to a cluster can be 

interpreted as ass(c,x) ≡ p(c|x), the probability of the (deterministic) assignment to c to take place, 

given that the assigned element is x.  We call methods with this kind of output probabilistic clustering 

methods.  In this work, we use a probabilistic framework in Chapter 5. 

2.1.3   Data Representation 

Different data clustering methods differ by the type of data representation they are capable of dealing 

with – the format of the input they can take. 

2.1.3.1   Pairwise Representation 

Pairwise clustering methods rely on measures of proximity, i.e. similarity or dissimilarity values, 

between pairs of data elements.  An example for a direct source for similarity values utilizable for 

pairwise clustering is a confusion matrix (e.g., Manos, 1996).  This is a matrix, based on the 

performance of subjects under study, in which both rows and columns correspond to data elements.  

The entry at a row corresponding to an element x and column corresponding to an element x' indicates 

empirical count count(x←x'), or estimated probability p(x|x'), of miss-recognizing an element x' as an 

element x.  More on proximity measures in 2.1.3.3 below. 

2.1.3.2   Feature-based Representation 

Somewhat more typical to actual data than pairwise representation is a representation where, along 

with the set of elements to be clustered, an auxiliary set of features that are considered relevant to the 

desired outcome (relevance features) is present.  In such case, each element is identifiable as a vector 
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with entries that reflect how intensive the element's association with each of the various features is.  

For example, an element x can be represented by the vector of observed co-occurrence counts of x 

with each one of the features y.  Such co-occurrence vectors are widely used, including in this work. 

There are clustering methods that process co-occurrence vectors in their normalized form, i.e., vectors 

of estimated conditional probabilities p(y|x) of each feature y to co-occur with an element x.  The 

normalization factor is the total occurrence count of the element x in the data, over all features with 

which x co-occurs (count(x)).  In a probabilistic setting, the total counts of data elements are often 

normalized themselves to a probabilistic vector of relative frequencies p(x), for each data element x. 

2.1.3.3   Proximity Measures 

Similarity and dissimilarity assessment are practiced both as an independent unsupervised task and as 

pre-processing for other tasks, including data clustering.  It is used within many applications: data 

mining (Das, Mannila & Ronkainen, 1998), image retrieval (Ortega et al., 1998) and document 

clustering (Dhillon & Modha, 2001). 

Dissimilarity can be viewed as distance in the feature space.  The well-known L1 (Manhattan) norm, 

which is the sum of absolute differences between corresponding vector coordinates 

L1 (x, x')   =   ∑ −
i ii xx |'|  , (2.1) 

where corresponding coordinates are indexed by a common index i, and the L2 (Euclidean) distance, 

which is the square root of sum of squared coordinate differences 

L2 (x, x')   =   ∑ −
i ii xx 2)'(  , (2.2) 

are sometimes used as benchmarks (e.g. by Lee, 1999).  In general, there are no strict formal 

restrictions on the similarity or distance values.  For instance, a dissimilarity measure is not expected 

to form a metric as L1 and L2 do, and in particular, a distance measure d is not required to be 

symmetric (d(x,x') ≠ d(x',x) is permitted) or to obey the triangle inequality (d(x,x') + d(x',x'') ≤ d(x,x'') 

is permitted). 

Several dissimilarity measures refer to representation of data in the above mentioned form of 

conditional probability distributions of features.  The Kullback-Leibler (KL) divergence (Cover & 

Thomas, 1991, p. 18) quantifies the inefficiency of coding information distributed according to p(y|x') 

with code that is optimized for p(y|x):  

KL[p(y|x)||p(y|x')] = ∑y p(y|x) ( log p(y|x) − log p(y|x') ).   (2.3) 
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KL divergence is undefined, i.e. approaches infinity, whenever there is a feature y* such that 

p(y*|x) > 0 but p(y*|x') = 0.  There are dissimilarity measures that are based on KL divergence but 

overcome this problem.  The Jensen-Shannon (JS) divergence (used, e.g., in Manos, 1996, and 

Korhonen, Krymolowski & Marx, 2003) is the sum of KL divergences of p(y|x) and p(y|x') from their 

average, possibly weighted by the elements' relative frequencies p(x) and p(x'): 

JS[p(y|x)||p(y|x')] = π KL[p(y|x)||q(y)] + π' KL[p(y|x')||q(y)] ,   (2.4) 

where π = p(x) / ( p(x) + p(x') ) , π' = p(x') / ( p(x) + p(x') ) and q(y) = ( π p(y|x) + π' p(y|x') ) .  The ff-

skew divergence (Lee, 1999) is the KL divergence between p(y|x) and a slight shift, by a small positive 

value α, of p(y|x') towards p(y|x): 

ff-skew[p(y|x)||p(y|x')] = KL[p(y|x) || (1−α)p(y|x') + αp(y|x)] .   (2.5) 

Both the symmetric JS divergence and the non-symmetric ff-skew divergence are guaranteed not to 

approach infinity, because the average of p(y|x) and p(y|x'), as well as the shifted probability p', are 

equal to zero only on those features y for which both p(y|x) and p(y|x') are equal to zero. 

Similarity values are often induced from distance values.  A popular scheme of calculating similarity 

between two data elements x and x' is through an exponentially decreasing function of their given 

distance d: sim(x,x') = e−d(x,x') (as, e.g., done by Blatt, Wiseman & Domany, 1997).  This scheme tends 

to sharpen differences between pairs of close neighbors, while blurring differences between pairs of 

distant elements, thus it intensifies sensitivity to neighborhood-related information that is more 

relevant to the clustering task (distant elements would always be assigned to different clusters). 

In the domain of text processing, co-occurrence based similarity measures are widely used (see 

Dagan, 2000 for a review).  Such measures rely on the observation that semantically similar words 

tend to share similar patterns of co-occurrences with their neighboring words, which take the role of 

relevance features in this case.  Likewise, similar documents share similar word frequency 

distributions.  A common convention bounds the similarity values between 0 to 1, where 1 typically 

denotes self-similarity.  One widely used measure is the cosine of the angel between two co-

occurrence count vectors (van Rijsbergen, 1979, ch. 5; used, e.g., by Dhillon & Modha, 2001), that is, 

the sum of corresponding entry products (dot product) of the two vectors normalized by the L2 norm 

of the product: 

cosine (x, x')   =   
∑∑

∑

yy

y

yxcountyxcount

yxcountyxcount

22 ),'(),(

),'(),(
 , (2.6) 

The cosine and other similarly straightforward measures are affected by the data sparseness problem, 

intensified, for instance, by the common use of different words referring to similar meanings.  More 

sophisticated measures, which are designed to overcome the sparseness problem, incorporate 



 13 

information-theoretic perspective.  We employ in this work two such similarity measures, by Lin 

(1998) and Dagan, Marcus & Markovitch (1995).  These measures are described in detail later, in 

Chapter 4. 

2.1.3.4   Re-representation and Preprocessing 

There are cases where the given representation of the data is modified before applying the actual 

clustering method.  This might be required, for instance, because the method in use takes different 

representation than the given one, or in order to have smaller or less noisy data so that the method 

operates faster or produces results of better quality. 

Re-representation in general implies loss of information.  Consequently, an important sub-goal of pre-

processing is to preserve the information relevant to the clustering task.  When pairwise data is given, 

similarities between distant elements are often ignored, resulting in sparse similarity matrix, which 

improves computation efficiency.  This is an example of rather straightforward elimination of 

irrelevant information: as noted, any two unmistakably dissimilar elements are expected to be in 

different clusters and their exact level of similarity is less important. 

A common re-representation procedure is the transformation of feature vectors into an array of 

similarities, or distances, appropriate for pairwise clustering.  Such transformation is based on a 

measure of distance or similarity between vectors (see previous subsection).  Often, terms such as 

'similarity' or 'distance' are mentioned also in the context of feature-based clustering, which gets a 

concrete meaning only if a concrete measure of similarity between feature vectors is specified. 

Feature-selection and feature-generation techniques can be applied to convert one form of vectorial 

representation into another, with aims such as masking noise from the given representation or 

decreasing the data complexity prior to actual clustering.  For example, PCA (principled component 

analysis), a dimensionality-reduction procedure, is used by Brew & Schulte im Walde (2002) as a pre-

processing procedure prior to applying a clustering method. 

2.1.4   Algorithmic Framework for Data Clustering 

The number of all possible partitions of n elements to k clusters is roughly kn/k!, which grows 

exponentially with n (Duda, Hart & Stork, 2001, p. 548).  Hence, going through all different 

clustering configurations in search for one realizing the requirements, whatever they are, is 

computationally ineffective (indeed, data clustering is an NP-complete problem, Garey & Johnson, 

1979).  Accordingly, clustering algorithms typically attempt to provide, by means of restricted but 

principled search, a reasonably good solution even if spotting the absolutely best solution in not 

guaranteed.  The following subsections present some schemes for how various data clustering 

methods conduct such a search. 
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2.1.4.1   Incremental Search 

A strategy for solving optimization problems that are not liable to an exhaustive search, implemented 

within most data clustering methods that are mentioned below, is performing the task incrementally, 

as shown in Fig 2.1. 

 

given an initial configuration of clusters 

repeat 

from a set of currently available update steps of a  pre-specified 
type, perform the one that is optimal due to some p re-specified 
criterion, so that a new clustering configuration r esults 

Until the resulting configuration meets some pre-sp ecified stop condition 

Figure 2.1: The incremental clustering scheme. 

There are several simple examples for methods implementing this step-by-step scheme.  One well-

known class of such methods assumes an initial configuration where each element forms an individual 

cluster (singleton) and the update steps are cluster merges.  This strategy, known as agglomerative 

clustering, elementarily produces a strict hierarchy of clustering configurations.  Criteria to assess the 

best merge to perform are, for instance, the similarity of most similar members of the clusters to be 

merged, or the similarity of their most dissimilar members (known, respectively, as the single linkage 

and complete linkage methods, Duda, Hart & Stork, 2001, pp. 553-554).  The stop condition in these 

examples is either the formation of a pre-specified number of clusters k or a pre-specified similarity 

threshold value beyond which clusters are not merged any more. 

Other feasible types of update steps employed by different methods, other than cluster merges, are: 

cluster splits, reassignments of a single data element and reassignment of all elements.  Identifying the 

optimal update step, which means quantifying each steps' quality relatively to the other candidate 

steps, should be carried out with low computational complexity in order to maintain tractability.  

The stepwise scheme, though prevalent, is not the only conceivable search strategy.  Blatt, Wiseman 

& Domany (1997), for instance, implement a Monte Carlo procedure producing a series of partitions 

that can be thought of as “typical” rather than “target” clustering configurations.  Then, the probability 

of element pairs to be part of the same typical cluster is used to determine the final configuration.  

(Formally, however, this process can also be understood as a conversion – or re-representation, see 

2.1.3.3 above – of the given similarities into similarities of other type, namely probabilities to share 

the same “typical” cluster, followed by application of the single-linkage method with threshold 0.5). 
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2.1.4.2   Cost-Based Search 

There are data clustering methods that assign to each admissible clustering-configuration a measure of 

quality, or a cost function.  The availability of global quality measure or cost function has several 

attractive consequences.  The target of data clustering becomes clear and concrete: finding a 

configuration of highest quality or lowest cost.  Accordingly, the stepwise scheme described in the 

previous subsection can be made more concrete given a cost function, so that the criteria of how to 

choose the update step to execute next and when to stop the iterative loop are clear and explicit: 

 

Given an initial configuration of clusters 

repeat 

from a set of currently available update steps of a  pre-specified 
type, perform the one reducing a pre-specified cost  more than any 
other step, so that a new clustering configuration results 

Until the cost cannot be reduced by any available s tep 

Figure 2.2: The cost-reduction clustering scheme. 

The above iterative loop is guaranteed to stop, as the cost is bounded from below (the number of 

configurations is finite) and is reduced every iteration.  It is apparent, however, that the obtained 

configuration is not necessarily of absolutely lowest cost, but just one that cannot be improved by the 

available updates steps.  Update step types usually employed are single element re-assignment, picked 

either according to some fixed schedule or at random (Puzicha, Hofmann & Buhmann, 2000; Slonim, 

Friedman & Tishby, 2002).  In the last case, before terminating the iterative loop, it should be verified 

that cost cannot improve by any further reassignments, not just of the element currently examined. 

2.1.4.3   Axiomatic Approach to Data Clustering 

An attractive aspect of cost functions is that they provide a definite criterion, in terms of precise 

mathematical expression, for determining the quality of data clustering outcome relatively to other 

possible outcomes.  However, in order to make a rough definition of the data clustering problem (such 

as the one above at the top of Section 2.1) precise, a cost function must involve further assumptions 

that are not necessarily consensual, but rather they reflect more individual view of what should be 

expected of “a reasonable clustering procedure”.  Assumptions of this kind are sometimes 

incorporated within an axiomatic approach to data clustering.  We exemplify below two cases where 

such assumptions are incorporated in the pairwise clustering setting. 

Kleinberg (2003) includes a requirement termed consistency in his axiomatic analysis.  This 

requirement states that in any specific clustering problem the best (lowest-cost) clustering 
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configuration should remain the best solution also for data that is modified relatively to the original 

problem as follows: some or all of the similarities between elements sharing the same cluster in the 

best configuration are increased and between-cluster similarities are decreased.  Puzicha, Hofmann & 

Buhmann's (2000) theory of proximity-based clustering (on which we elaborate in Chapter 4; see 

detailed review there) introduces other requirements.  For instance, the relative ranking of all 

clustering configurations is not expected, under their assumptions, to change in case all pairwise input 

values are multiplied or shifted by a constant (scale and shift invariance properties, respectively). 

2.1.4.4   Prototypical Representatives of Clusters 

Some clustering algorithms keep prototypical vectorial representation of each one of the clusters, 

additional to the list of cluster members (as mentioned before, such representations can be understood 

as a part of the algorithm output). 

The incremental data clustering scheme (Figure 2.1) can make use of prototypical representations.   

When they are incorporated, assessing the candidate update steps can rely on associations between 

elements and cluster representatives, which are fewer than the associations between all pairs of 

elements involved.  On the other hand, the incremental scheme would require in that case updating the 

cluster representatives along with the updates of assignments into clusters: 

 

given an initial array of k cluster representatives 

repeat 

-  reassign all elements - each element to the cluster  with the 
representative to which it is most similar 

-  recalculate cluster representatives, based on the m embers of each 
cluster 

until a stable configuration is obtained 

Figure 2.3: The k-representatives clustering scheme. 

The k-representatives scheme is a specific heuristic variant of the incremental scheme.  The specific 

stopping condition, namely obtaining a stable configuration where cluster representatives are not 

liable to any further change, is not guaranteed in general terms.  It turns out, however, that in some 

concrete cases, with certain definitions of cluster representatives and element-representative similarity 

relations, the k-representatives scheme happens to reduce a specific cost criterion (known as the 

Lyapunov function of the algorithm, McKay, 2003, p. 299).  Therefore, such cases, three of which are 

mentioned below, realize also the cost-based clustering scheme (Figure 2.2) and are hence assured to 

stop with configuration that locally minimizes the specific cost. 
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Feature-based methods naturally represent clusters as vectors in the same space of their input vectorial 

representations: 

- The k-means algorithm: Each cluster is represented by its centroid – the mean of the vectorial 

representations of the cluster's elements.  The distance (dissimilarity) between the centroids and 

the data elements is measured in L2 (Euclidean) norm.  In this case, the cost being reduced 

happens to be the sum of squared L2 distances of all data elements, each from its cluster centroid 

(Estivill-Castro, 2003). 

Duda, Hart & Stork (2001, p. 550) note that, in terms of susceptibility to being trapped in local 

minima, the k-means algorithm has been found empirically advantageous over cost based search with 

reassignment of a single element at a time. 

- The k-medoids algorithm: Each cluster is represented by its medoid – a vector where each 

entry is the median value of the corresponding cluster-member entries.  Element-medoid 

similarity is captured through proximity in L1 norm.  The cost being reduced in this case is the 

sum of L1 distances between all elements and their cluster medoids (Estivill-Castro, 2003). 

The notion of cluster representative is applicable, though not very intuitive or common, also in 

pairwise clustering: 

- The prototypical representative is a concrete data element, for which the sum of similarities to 

all other members of its cluster is the largest compared to corresponding sums of the other 

cluster's members (equivalently, the sum of dissimilarities is required to be the smallest in the 

cluster).  The cluster-element similarity or dissimilarity employed is straightforwardly given by 

the proximity measure between data elements.  The cost being reduced in this case is the sum of 

dissimilarities, or minus the sum of similarities, between all the elements and their corresponding 

cluster representatives.  (It is easy to verify that, in each iteration, the total cost is decreased by 

both reassignments and re-selected representatives). 

2.1.4.5   Stochasticity 

Randomness can affect several aspects of the algorithmic schemes introduced so far.  For instance, the 

initial configuration can be determined randomly and so is the next element to be reassigned, in case a 

single element is reassigned at each update step of the incremental scheme.  More importantly, update 

steps can be chosen stochastically among all alternatives as the following scheme explicates: 
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given an initial configuration of clusters 

repeat 

pick at random one of the currently available updat e steps s and 
perform it with probability correlated with the ant icipated addition 
to cost ∆s 

until, for some pre- specified number of iterations, the change in cost 
does not exceed some pre-specified small threshold value 

Figure 2.4: The stochastic cost-driven clustering scheme. 

There are a couple of algorithmic variations that fit this scheme.  They differ from one another by the 

way they calculate the probability to perform a candidate step as a function of its anticipated impact 

on the cost.  As with the basic cost-reduction scheme, the update steps in both variations are picked 

from all possible reassignments of one randomly chosen element.  In one variation of simulated 

annealing (Kirkpatrick, Gelatt & Vecchi, 1983) if an update step that does not increase the cost is 

picked it would be performed always (i.e. in probability 1).  A step s that does increase the cost by a 

positive quantity ∆s would be performed in probability e−β∆s.  In another variation (Gibbs sampling, 

Geman & Geman, 1984; implemented in Chapter 4) any step s can be picked and performed in 

probability proportional to e−β∆s, where the cost change ∆s can be either positive or not.  In both cases, 

the cost might occasionally grow, though rarely in comparison to cost reduction.  Stochasticity is 

gradually relaxed during execution of both variations by means of gradual increasing of the inverse 

“computational temperature” parameter β.  Initially, β is low, which implies low differentiation 

between varying levels of cost-change.   During execution β is gradually increased, so that after a 

large number of iterations a high β value is employed and systematic increase in cost becomes very 

probable even in comparison to slight deterioration. 

Theoretically, and often in practice, in order to ensure that the algorithms above produce a clustering 

configuration of globally low cost, a very slow schedule of stochasticity relaxation (i.e., very gradual 

increase of the β parameter) is required, which results in long execution time (Duda, Hart & Stork, 

2001, p. 356). 

2.1.4.6   Probabilistic Clustering 

As mentioned before (in Subsection 2.1.2.2), there are methods that compute non-negative 

probabilities of assignments or “assignment levels” p(c|x), which, per element x, sum up to one over 

all clusters c.  We will now refer to those methods assuming further that the given feature-based 

vectorial representations of the elements are also normalized: each element x is represented by 

conditional probability distribution p(y|x) over the features.  Given such normalized representation of 

the data, it is natural that cluster representatives are taken from the same probabilistic space: each 
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cluster is represented by a conditional probability distribution over the features, p(y|c).  This 

probabilistic setting underlies the following scheme, which generalizes the k-representatives 

clustering scheme of Figure 2.3:  

given initial assignment levels p(c|x) for each element x and cluster c, 

repeat 

- recalculate each cluster probabilistic representati ve p(y|c), as a 
normalized sum of all element probabilistic represe ntations p(y|x), 
weighing the contribution of each element x by its assignment 
probability to c,  p(c|x). 

- recalculate each assignment probability p(c|x) for each element x and 
cluster c, so that it is proportional to the similarity of  x's 
vectorial representation, p(y|x), to c's vectorial representation,  
p(y|c). 

until the recalculated representatives do not chang e any more beyond some 
pre-specified small threshold value 

Figure 2.5: probabilistic representative-based clustering scheme. 

We refer below to two approaches that fit in the above probabilistic representative-based scheme. 

These two approaches, whose underlying algorithms are very similar to one other, are related with the 

two motivations mentioned earlier for the data clustering task: “prediction” versus “communication” 

(Subsection 2.1.1).  One approach – the one associated with the predictive aspect of data clustering – 

follows the expectation maximization (EM; Dempster, Laird & Rubin, 1977) framework.   It examines 

the data as if it were sampled from a mixture of latent distinguishable classes of element-feature co-

occurrence distributions to be approximated.  The iterative steps of calculating assignment 

probabilities p(c|x) and cluster representatives p(y|c) maximize a likelihood term of the mixture 

model.  Deriving the update steps so that they systematically maximize the model likelihood implies a 

particular representative-element similarity measure, 

simEM ( x, c ) = p(c) e
−count(x) KL[ p(y|x) || p(y|c) ],   (2.7) 

where p(c) is the relative weight of cluster c and count(x) is the total number of occurrences of the 

element x in the data.  A particular work that is based on this formulation is Hofmann, Puzicha & 

Jordan's (1999) one-sided clustering model.  As the data – i.e., the number of times each element is 

sampled – grows, the method is capable of assigning the elements more deterministically and 

detecting larger numbers of clusters. 

The second approach is related with the communication aspect of clustering and is based on 

information theoretical considerations.  The information bottleneck method (IB; Tishby, Pereira & 

Bialek, 1999) implements this approach.  It looks at data clustering as if it aims at lossy encoding of 
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the data so that relevant information, namely information about the features, is conveyed optimally.  

In this case as well, a similarity measure emerges from the principles underlying the IB method, 

which turns to be very similar to the EM related similarity measure:  

simIB ( x, c ) = p(c) e
−βKL[p(y|x) || p(y|c)] ,   (2.8) 

where p(c) is, again, the relative weight of the cluster c and β is an additional parameter, which, 

roughly speaking, articulates counterbalance between the target of communicating the information as 

accurately as possible and the target of reducing the length of communicated transmission.  In Chapter 

5, we provide more detailed description of the IB method and the closely related information 

distortion method (Gedeon, Parker & Dimitrov, 2003; Pereira, Tishby & Lee, 1993). 

Further examples of methods following the probabilistic representative-based clustering scheme can 

be seen as close variants on the methods mentioned above, for instance, the three soft k-means 

versions that are specified by MacKay (2003, Ch. 20, 22).  Another method that is worth mentioning 

in this context is Bezdek's (1981) fuzzy c-means, which does not require the assignment levels of an 

element to sum up over all clusters to one, but leaves space for uncertainty regarding the assignments. 

2.1.5   Variations on Data-Clustering  

We now discuss some methods that are related to, or extend, the data clustering task. 

2.1.5.1   Data Clustering and other Unsupervised Tasks 

Data clustering is a key member in the family of unsupervised computational learning methods.  It is 

interesting to note that data clustering can be seen as if it accomplishes tasks that we have already 

mentioned as means for pre-processing prior to clustering (Subsection 2.1.3.4). 

- Similarity assessment: any standard deterministic data-clustering configuration imposes a 

trivial 0/1 similarity measure: elements of the same clusters are considered similar, while 

elements of different clusters are not.  Probabilistic clustering is more detailed in this respect: 

assignment probability distributions of individual elements over the clusters, p(c|x), can be used 

to measure distance or similarity between data elements through standard distance or similarity 

measures of distributions (e.g., KL distance).  This might facilitate overcoming the sparseness that 

often characterizes raw element-feature co-occurrence vectors in domains such as text processing.   

- Dimensional reduction / feature generation: clustering is also a particular case of dimensional 

reduction.  Specifically, probabilistic clustering maps the data onto a k-1 dimensional simplex 

embedded in a k dimensional space, where k is the number of clusters.  The utility of dimensional 

reduction of the feature space – replacing the original array of features by clusters of features – is 

demonstrated by Slonim & Tishby, 2000. 
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2.1.5.2   Methods that Extend Basic Data Clustering 

There are data clustering methods, both deterministic and probabilistic, that process and output 

constructs more elaborated than plain clustering configurations.  There are several methods that 

output a hierarchy of clusters, i.e., a sequence of increasingly detailed clustering configurations 

consisting of an increasing number of smaller clusters, so that every cluster forms a subset of a cluster 

in each one of all less detailed configurations.  Simple examples are the complete and single linkage 

methods mentioned before (Subsection 2.1.4.1).  Hierarchical clustering, however, can be tackled 

through more sophisticated approach, including the case of probabilistic clustering (Hofmann, 

Puzicha & Jordan, 1999).  Although in the current work we do not aim at hierarchy in general, we 

note that in general meaningful sub-clusters that emerge as individual clusters in a more detailed 

configuration are often revealed simply by applying a non-hierarchical method repeatedly with 

number of clusters, k, incremented at each run.  Such partial hierarchy often reveals interesting 

relations between themes and sub-themes in the data (as demonstrated in Chapter 4 and Chapter 5). 

One further well known modification to the data-clustering task is the self-organizing map (SOM; 

Kohonen, 1989) that, in addition to a clustering configuration, maps the clusters onto a grid, thus 

imposes spatial structure on the clusters. 

A recent line of works on dimensionality reduction (the two-sided clustering model by Hofmann, 

Puzicha & Jordan, 1999; Hofmann, 1999; Globerzon & Tishby, 2002), can be seen as extending 

feature-based clustering to a setting of two sets of elements, symmetrically playing the roles of both 

clustered data and features with respect to each other.  A further recent work, on the multivariate 

information bottleneck method (Friedman et al., 2002), extends the concept and technique of the IB 

method in revealing complex relational constructs.  The input to this method may consist of several 

distinct element sets that are connected with one another through a network of element-feature 

relations.  The method can produce several clustering configurations, each of which partitions 

(probabilistically) one of the sets that take the role of clustered data.  The obtained complex relational 

structure allows, for example, several different partitions of the same set simultaneously, directed by 

different relevance feature sets conveying different types of information regarding the “multi-

clustered” set. 
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2.1.5.3   Data Clustering with Constraints 

There are several works, including the present one, on methods producing output that has the form of 

a standard clustering configuration, but differ from ordinary data clustering by considering input that 

is supplementary to the standard array of pairwise proximity values or feature-based vectorial 

representations. 

In a review of relational data-clustering methods used within social sciences, Batagelj & Ferligoj 

(2000) provide examples of combining clustering with relational biases of various kinds that are 

embedded within the data.  The blockmodeling method seeks to cluster together elements that have 

similar patterns of relations with other elements (in this case, some representation of the global 

relationships between clusters may form supplementary output).  There are several types of relational 

pattern similarity, such as structural equivalence, where elements are identically related with the rest 

of individual elements, and regular equivalence, where elements are similarly connected to equivalent 

other elements.  Another approach reviewed by Batagelj & Ferligoj (2000) – constrained clustering – 

groups similar elements into clusters based on features, but clusters have to satisfy also some 

additional conditions.  For example: clusters of geographical regions that are similar according to their 

socioeconomic development level have to be determined such that the regions inside each cluster are 

also geographically connected.  Considerations that, in a way, are similar to the above are applied in 

works on image segmentation, where nearby pixels are relatively probable to be part of the same 

object (Boykov, Vexler & Zabih, 1999). 

Other works (Wagstaff et al. 2001; Basu, Banerjee & Mooney, 2002) tackle data clustering 

constrained by other types of pre-specified restrictions.  They take as an additional input a list of 

element pairs constrained to be in the same cluster, versus another list of pairs constrained to be in 

different clusters.  Several variants of the k-means algorithm that incorporate such constraints were 

suggested. 

The method of information bottleneck with side information (Chechik & Tishby, 2003) can be viewed 

as extending further the above line.  Chechik & Tishby consider an additional set of features 

conveying “negative” information that is supposed to be neutralized rather than be followed in 

forming the clusters.  Our work addresses a closely related task, so we will provide detailed 

comparison with this work. 
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2.2   Computational Models of Analogy 
Analogy is defined as “similarity in some respects between things that are otherwise dissimilar” 

(quoting http://dictionary.reference.com/search?q=analogy).  The issues of how analogies are 

identified and what makes an analogy a good one have been discussed in the cognitive literature from 

a variety of points of view.  A major motivation to studying computational methods for identifying 

analogies (analogy making in short) is that the capacity of drawing analogies and metaphors is an 

essential part of human intelligence.  Analogy making allows utilizing knowledge, ideas and 

inspiration across seemingly different domains and thus it contributes significantly to the flexibility 

and creativity characterizing human intelligence.  “Analogy pervades all our thinking, our everyday 

speech and our trivial conclusions as well as artistic ways of expression and the highest scientific 

achievements” (Polya, 1957).   

In addition to the theoretic motivation of modeling an essential ingredient of human intelligence, 

developments in the computational methods used for analogy making – including, we hope, the ones 

introduced in this work – might have impact on practical applications: language understanding and 

generation, data mining, artificial intelligence and so on.  

Our review below is only exemplifying.   We concentrate on two approaches to analogy making: the 

structure mapping theory (Gentner, 1983) and the Copycat project (Hofstadter et al., 1995, Chapters 

5-6).  Among the many works to which our review does not refer, there are several that can be seen as 

lying somewhere in between the two above mentioned ones (e.g., Holyoak & Thagard, 1989; Hummel 

& Holyoak, 1997; Veale, O'Donoghue & Keane, 1999; Kokinov & Petrov 2001)1.  More 

comprehensive discussion with reference to a larger variety of works is given, e.g., by French (2002). 

2.2.1   The Structure Mapping Theory 

As French (2002) notes, Gentner's structure mapping theory (SMT; 1983) is unquestionably the most 

influential work to date on the modeling of analogy-making.  It has been applied in a wide range of 

contexts ranging from child development to folk physics.  The prominent innovation of SMT 

relatively to earlier works is the emphasis that it puts on structural similarity between the analogized 

                                                      

1 All in all, these works process data consisting of relational prepositions similar to the representation used by 

the computational implementation of the structure mapping theory (see Section 2.2.1), but they employ 

computational machinery, such as connectionist or neural network architectures, somewhat closer in spirit to 

Copycat (2.2.2). 



 24 

systems.  The structure-mapping engine (SME; Falkenhainer, Forbus & Gentner, 1989) is the 

computational implementation of SMT. 

2.2.1.1   Data Representation 

SME represents the information about the systems between which analogy is to be drawn as relational 

prepositions.  Unary relations (of one argument) are equivalent with elementary attributes or features, 

as is familiar from the conventional feature-based data-clustering setting.  A numeric value might be 

used to quantify the association between an element and its attribute.  For example (based on 

Falkenhainer, Forbus & Gentner, 1989), the fact that ‘temperature’ is an attribute of coffee, with 

value X, is denoted as: 

TEMPERATURE(coffee) = X 

In distinction from elementary features, there are relations that apply to two or more elements and 

even to other relations, e.g., 

GREATER-THAN [ TEMPERATURE(coffee), TEMPERATURE(ice -cube) ] 

or to any fixed combination of relations and data elements.   

2.2.1.2   Principles and Algorithmic Framework 

Two major principles underlie SMT: 

- the relation-matching principle: good analogies are grounded on mapping of multi-

argument relations rather than attributes (unary relations). 

- the systematicity principle: mappings of coherent systems of relations (i.e., graphs 

resulting from compositions of relations) are preferred over mappings of individual 

relations. 

The SME algorithm implements a heuristic search for a cross-system map realizing these principles 

through four stages: 

- Local match construction: find all base-target element pairs that can potentially 

match, i.e. all possible matches between groups of elements sharing identical relations 

in base and target systems. 

- Global map construction: within the formed collection of all possible local matches, 

identify all maximal consistent sub-collections of matches. 

- Candidate inference construction: for each maximal consistent sub-collection of 

matches, infer additional relations not given originally in the target domain that have 
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matched relations in the base domain and thus extend the map suggested by the 

consistent matches. 

- Match evaluation: calculate a score for each one of the candidate extended maps 

incorporating the inferred information, based on local structural measures that are 

derived from the two SMT principles above. 

Although innovative and influential (and maybe because of it), SMT has been extensively criticized, 

for example by Hofstadter et al. (1995, mainly Ch. 4).  Hofstadter et al.'s criticism is particularly 

focused on the inflexibility inherent to SME.  This inflexibility is expressed in the one-to-one 

mapping scheme that is restricted to mapping of identical – even not similar – relations.  Further, the 

propositional representations that the program manipulates are manually coded and, as such, they 

articulate pre-determined relations over a pre-determined set of concepts.  The SMT pretends to 

account for real-world analogies.  However, it is not clear to what extent it models successfully the 

flexibility and creativity characterizing human reasoning, particularly if one has in mind real-world 

data in raw form that cannot be suspected as tailored for the problem at hand.  

2.2.2   The Copycat Project 

The Copycat project by Hofstadter et al. (1995; Chs. 5-6) is one of several projects from the same 

group (see other chapters there), promoting an approach alternative to the seeming rigidity of SMT.  

A basic strategic direction of Hofstadter et al. is abandoning the pretension to solve real-world 

problems of general character, which in their view is a too advanced challenge for the present level of 

recent research.  Rather, they advocate concentrating on specific artificial toy domains.   Simple toy 

problems are claimed to underlie search spaces that are more liable to systematic study (as Hofstadter 

et al. put it: looking at a problem together with its “hallo” of variant problems; p. 330). 

2.2.2.1   System Overall Description 

Copycat is a computer program exemplifying the above direction.  It is restrictedly designed to answer 

questions regarding analogy of letter strings transformation, such as: 

“if a string abc is transformed into abd, what would be the analogously transformed 

value of a target string xyz”.  

The strings abc and abd form the base domain of the problem and the xyz string is the given part of 

the target domain.  The problem to be solved is completing the target domain by constructing an 

additional string so the relation between the two target strings, the given one and the constructed one, 

will be analogous to the relation between the two base strings.   
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The solution is achieved based on grouping letter subsets together and on two types of links between 

the original letters and between formed letter groups: bonds that link neighboring elements within the 

same string and bridges that connect (map) between different strings.  Thus, a possible solution to the 

problem presented above as an example can be that xyz is transformed into wyz.  This solution might 

rely, among other things, on bridging the letters c and d (across the two base strings) and a 

corresponding bridge between x of the given target string and w of the constructed solution string. 

The program considers rather elementary information regarding the nature and characteristics of the 

alphabet letters.  a is recognized as the first letter, and z is recognized as the last one.  The alphabetic 

order, i.e. the identities of the letters that come before and after each letter (successor and predecessor 

relations), is known as well.  Slipnet is the name of a central ingredient in the Copycat architecture, 

which stores and process this information in addition to other information that is gathered during the 

run.  It consists of approximately 60 nodes.  The values associated with the Slipnet nodes form a 

vector, referring globally, across the whole system, to the intensity of both basic features and relations 

as the ones mentioned (first letter, last letter, successor, predecessor, and also the letter A, the letter 

B, …, the letter Z) and, additionally, features and relations that are not specified in advance but rather 

emerge during Copycat's execution.  Examples for these emerging attributes (meta-features) are the 

notion of LETTER, SUBSEQUENCE LENGTH, INCREASING SEQUENCE (and DECREASING SEQUENCE) and 

OPPOSITE. 

In order to concretize further the framework described above, we draw the following simplistic partial 

example.  Suppose that one of the base strings and the given target string are aab and bba and ignore 

for the moment the other details of the Copycat setting (which are not much relevant in terms of our 

current work).  Suppose further that the following grouping pattern has been evolved: in aab the first 

two letters are grouped together so that the whole string is now perceived as concatenation of aa and 

b. Similarly, bba is perceived as a bb group concatenated with a.  This grouping pattern is not 

guaranteed to emerge in a real run, but seems probable in view of actual test cases described by 

Hofstadter et al.  The aa and bb groups are likely to be marked by the features letter A and letter B, 

respectively, as well as by the feature length 2.  The solution where aa is bridged to bb and b is 

bridged to a would have an increasing impact on the Slipnet value associated with the feature 

SUBSEQUENCE LENGTH, reflecting that the matched groups share the same length.   An alternative 

conceivable solution, where aa is matched with a while b is matched with bb would result in increase 

in the value associated with the features LETTER, reflecting that the matched groups consist of the 

same letter, and OPPOSITE, reflecting that the groups are matched in their reverse order. 



 27 

To summarize, the computational machinery underlying Copycat is based on three main factors that 

constantly change, while interdependently affecting each other.  These are the Slipnet global values, 

the current setting of letter grouping, bonds and bridges, and the purposed solution string, which is 

firstly constructed after some execution time but from this point on, is also constantly adapted to fit 

the current state of the other factors and at the same time affects them. 

2.2.2.2   Further Discussion in View of Methods Reviewed Previously 

The computational framework of Copycat is somewhat reminiscent of the stochastic data clustering 

methods (Subsection 2.1.4.5), and of the scheme of constantly adjusted assignments and gradually 

stabilizing probabilistic or deterministic centroids (2.1.4.6 and 2.1.4.4).  Update steps – grouping and 

ungrouping, setting and unsetting of bonds and bridges, attaching labels (features) to groups, adapting 

Slipnet values, and so on – are stochastically chosen from a pool of prioritized codeletes: small code 

segment that are randomly chosen to be performed.  In difference from some of the methods we 

described, choosing the next step, i.e. codelete, to perform is not based on a global one-valued cost 

criterion but rather on a variety of global and local considerations (that are assessed by some codeletes 

dedicated for this purpose). 

Among the various considerations being constantly assessed, there is a global computational-

temperature parameter, which is described as regulating a global level of “open-mindedness” 

expressed through stochasticity level and overall likelihood of certain types of codeletes to perform.  

In relation to that, the temperature quantifies a global “confidence” level with regard to the currently 

posed solution, so that once it goes below a certain level the probability of terminating the run 

increases.  The temperature has no deterministic cooling schedule as in simulated annealing (2.1.4.5) 

or in the IB method (described in Chapter 5). 

Evolving representation, which is not hand coded or pre-determined, seems to be a unique and 

fascinating aspect of the Copycat project.  On the other hand, Copycat employs a complex and hard-

to-analyze computational mechanism and at the same time it manifestly gives up addressing practical 

real-world problems.  The data-clustering-based methods we introduce later in this work (Chapter 4 

and Chapter 5) attempt to maintain the flavor of creative gradually-emerging analogy discovery, along 

with fairly tractable computational rational and mechanisms and implementation to real-world data. 
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Chapter 3Chapter 3Chapter 3Chapter 3:  :  :  :  Setting and Setting and Setting and Setting and EvaluationEvaluationEvaluationEvaluation    

In this chapter, we start laying the grounds to our conception of how to adapt the data-clustering 

framework, reviewed in the first part of the previous chapter, to the problem of drawing analogies 

between distinct systems – a problem that is illustratively discussed in the second part of the previous 

chapter.  This chapter describes the basic setting.  It explains how the systems to be compared, which 

are not necessarily similar to one another, are represented within our extended framework and what 

sorts of clusters are interpretable as conveying analogies or correspondences between the analogized 

systems.  The chapter continues with a preliminary example of an application to real-world textual 

data of the type treated in depth in the next chapters. 

In the last part of this chapter we describe how, given a configuration of clusters of the appropriate 

kind, the quality of the analogy or the correspondence being drawn is to be evaluated.  The evaluation 

methods are essentially the same ones used to evaluate standard data clustering, but our extended 

framework suggests some subtle distinctions from the standard framework. 

3.1   Problem Setting 
The problem examined in this work extends the standard single-set data-clustering problem.  In 

distinction from the setting in the single-set problem, the data for the extended problem is pre-divided 

into several distinct subsets of elements to be clustered.  A setting of two subsets is studied first 

(Chapter 4).  More general setting, which allows a larger number of subsets, is examined later 

(Chapter 5).  Each one of the subsets represents one of two or more systems between which we draw 

an analogy or a correspondence. 

A correspondence between the given subsets is established by means of partitioning them to 

corresponding partitions.  We term each one of the subset parts that result from these partitions a sub-

cluster.   Every one of the obtained sub-clusters has a matching sub-cluster in the other subset (or 

several matches, one in each subset, in case the data is pre-divided to more than two subsets).  Hence, 

a one-to-one map is established between the sub-clusters of one subset and those of the other subsets.  

In a setting restricted to two pre-given subsets, a pair of matched sub-clusters is termed a coupled 

cluster.  A configuration of an element set pre-divided to two subsets and partitioned into three 

coupled clusters is sketched in Figure 3.1.  Later, when a larger number of pre-given subsets is 

allowed, a more general term, cross-partition cluster will be employed to denote a collection of 

matched sub-clusters, one from each of the subsets.  As a rule, we use the more general latter term, 

unless the setting under discussion is clearly of the type restricted to two subsets. 
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Figure 3.1: An example of a coupled-clustering configuration.  The diamonds represent elements 

of the two pre-given subsets A and B.  Closed contours represent coupled clusters, each of which 

links two corresponding sub-clusters each from a different subset. 

Similarly to the single-set clustering problem discussed in the previous chapter (and many other 

problems likewise), obtaining a good solution to the cross-partition clustering task, or determining 

whether a given solution is satisfactory or not, is a matter of optimization over an array of potentially 

contradicting biases.  Standard clustering aims at homogeneous subsets: each cluster is expected to 

consist of elements that are similar to one another (as much as possible) and, at the same time, its 

elements are expected to be not similar to elements in other clusters.  In the case of coupled and cross-

partition clustering, a new requirement is added.  On one hand, we still aim at getting homogenous 

groups of elements.  On the other hand, we want to ignore the impact of specificities characterizing 

any particular pre-given subset.  Rather, we require that each homogenous group of elements 

extracted from one of the subsets would also have a good match – a corresponding group of similar 

elements – in the other subset or subsets, so that a cross-partition cluster is formed.  An optimal 

configuration would thus consist of clusters containing elements that are similar to one another and 

distinct from elements in other clusters, subject to the context imposed by the requirement to match 

sub-clusters from the different subsets. 

Similarly to standard-clustering formulations, the computational methods addressing the cross-

partition clustering task – including the ones developed in the next chapters – might encounter various 

sorts of difficulties that are related to the ill-posed nature of the problem (see previous chapter, 

Subsection 2.1.1.2).  In this respect, the situation is not improved in the cross-partition case, as this 

Subset A   Subset B   
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task introduces yet another source of potential biases that might not be satisfied in full, additionally to 

the biases already present in the original data clustering problem.  The combination of considerations 

and biases discussed above defines cross partition clustering as a new task that cannot be tackled 

through previously studied methods and, particularly, not by standard data clustering methods as 

explained below. 

Technically, it is straightforward to generate a cross-partition clustering configuration by simply 

ignoring the given pre-partition to subsets and applying a standard clustering method to their union.  

The current work focuses on cases where a standard single-set clustering method cannot work well.  

Such cases are characterized by relatively homogenous subsets, where the similarity between 

elements from the same subset is overall higher than similarity between elements originating in 

different sets.  Standard clustering is committed solely to producing homogenous clusters.  Therefore, 

a standard clustering method might tend to produce clusters that coincide with the pre-given subsets 

or, in case larger number of clusters is requested, clusters that are restricted to elements of an 

individual subset. 

As mentioned in the previous chapter, the case where the pre-given subsets are relatively homogenous 

but, overall, are not very similar to one another is interesting, as it is characteristic of analogy making.  

Particularly in such cases, a solution consisting of clusters that are exclusive to one of the pre-given 

subsets would not reveal correspondence between the subsets.  To prevent this non-favorable type of 

solution to the cross partition clustering problem, our method will be required to include 

representatives from all subsets in every cluster, along with the basic direction of including similar 

elements in a cluster.  This additional requirement to create clusters that cut across the pre-given 

partition, while neutralizing regularities internal to specific subsets, differentiates the cross partition 

clustering problem introduced in this work from the standard data clustering problem. 

3.2   A Real-world Example 
In principle, cross-partition clustering seems to be applicable to revealing corresponding element 

groups across any unstructured set of elements pre-divided to several subsets, regardless of the type of 

data.  Hypothetical applicative uses might include: aligning corresponding collections of atomic 

image components, such as pixels or contours, in order to identify corresponding objects; revealing 

matches between sets of physiological or psychological records in order to identify equivalencies 

across distinct subjects or populations and so on. 
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Figure 3.2:  Keyword samples from news articles regarding two conflicts.  Examples of coupled 

clusters, each consisting of two matched topical sub-clusters, are marked by curved contours. 

 

The current work applies cross-partition clustering to another task: identification of corresponding 

topics across texts.  Specifically, we have applied the coupled clustering and the cross partition 

clustering methods to collections of documents containing information regarding distinct domains.  

The target is to identify prominent sub-topics, themes and categories for which a correspondence can 

be drawn across the domains.  Each domain is characterized by its own terminology and key-concepts 

extracted from an appropriate corpus.  The keyword sets in Figure 3.2, for instance, have been 

extracted from news articles regarding two conflicts of distinct types: the Middle-East conflict and the 

dispute over copyright of music and other media types (the “Napster case”).  The question of whether 

and with relation to which aspects these two conflicts are similar does not seem amenable to an 

obvious straightforward analysis.  Figure 3.2 demonstrates non-trivial correspondences that have been 

identified by our method.  For example: the role played within the Middle East conflict by individuals 

such as ‘soldier’, ‘refugee’, ‘diplomat’ has been aligned by our procedure, in this specific comparison, 

with the role of other individuals: ‘lawyer’, ‘student’ and ‘artist’ in the copyright dispute. 
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3.3   Evaluation 
Given the ill-posed nature of the standard data-clustering problem, quantitative assessment of the 

performance of clustering methods is known to be a subtle issue.  As the cross partition task is 

inherently more complex than the standard singe set task, it is at least as problematic to evaluate.  The 

output configuration is expected to balance different types of potentially opposing biases, as discussed 

in the first section of this chapter, so that the judged quality of the balance obtained might be 

subjective or application-dependent, just as the case is with solutions to the basic clustering problem. 

In general, there are two main strategies for evaluating the quality of a clustering configuration: 

internal criteria and external measures.  An internal criterion relies solely on the processed data.  

Using an internal criterion can be an obvious choice when there is a known objective function exactly 

articulating, in a definite unquestionable manner, what is expected from the clustering mechanism.  

For many if not most applications, this prerequisite is not met.  Our experience with cost functions 

(see Chapters 4 and 5) particularly demonstrates that cost scores do not capture in general the relative 

quality of cross-partition clustering configurations with different numbers of clusters.  Likewise, 

relatively small cost differences of configurations resulting from a large similarity matrix often do not 

reflect differences in the applicative utility of the assessed configurations, even in comparing 

configurations of equal number of clusters.  And, as implied by the ill-posed nature of the task, there 

are in general several alternative cost functions that may apply to the same data and there is no 

general procedure to determine which one is the “right” one (also, if we knew the ultimate cost 

function, we would direct our method to optimize it).  Therefore, in this work evaluation of the results 

is carried out through external measures. 

An external evaluation criterion assesses the results relatively to some external “gold standard” – a 

given configuration E from an authoritative source, assumed to provide the correct solution to the 

problem.  We term the “gold clusters” e1, e2, …, el that form the criterion configuration E, classes, to 

distinguish them from the automatically generated clusters c1, c2, …, ck, forming the configuration C 

that we wish to evaluate. 

In our experiments with synthetic data (Sections 4.3 and 5.4.1), the gold standard is given by 

construction: each data element is drawn as part of some pre-defined class.  To evaluate these 

experiments, we formulate in the following subsection a rather simple and straightforward external 

criterion, named purity. 

In many real-world clustering problems, for example topical clustering of keywords, it is not as clear-

cut in advance where each element should belong.  In such cases (including the present work, see 

Subsection 4.4.2.3), human judges are often requested to produce the criterion set for evaluation, 
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based on their judgment and knowledge.  Depending on factors such as the specific data type and 

content and the level of expertise of the human judge, classes produced by human judges might turn 

to be just a rough criterion for evaluation (so the term “gold standard” might be a bit misleading).  In 

the lack of precise criterion, we collected subjective criterion classes from several participants, so that 

the level and scope of agreement between them can be inspected as well.  We have evaluated those 

more subtle cases through Jaccard coefficient described in Subsection 3.3.2 (several additional 

external evaluation methods are reviewed and analyzed by Meila, 2003). 

3.3.1   Cluster Purity 

One straightforward method for measuring the quality of a clustering configuration C in comparison 

to an external criterion E is known as cluster purity.  Purity considers all elements of a cluster c in C 

as if they are classified as members of c's dominant class, which is the class e in E with which c 

shares maximal number of elements.  For an individual cluster c, purity is defined as the ratio between 

those elements shared by c and e, to the total number of elements in c: 

PURITY E ( c )  =   ||

1

c
maxe∈E {|c ∩ e|} , (3.1) 

where |c ∩ e| is the number of elements shared by c and e, and | c | is the total number of elements in c.  

Note that some classes may not share maximal number of elements with any cluster and, 

complimentarily, several different clusters may share the maximal intersection with the same class.  

To evaluate the entire clustering configuration C, given the class configuration E, compute the 

average of the cluster-wise purities weighted by the cluster size, which sums up to:   

PURITY E ( C )  =  
N

1 ∑c∈C maxe∈E {|c ∩ e|} , (3.2) 

where N is the total number of data elements.  

Purity is a reliable evaluation measure under certain conditions.  We use it wherever the criterion is 

definite and the target number of clusters is known.  When it is known that the classes of E provide 

just a rough approximation of the desired outcome rather than a definite solution, there are several 

subtleties to consider and more appropriate methods.  For instance, incrementing the number of 

clusters would tend to improve purity, up to the perfect purity of the non-informative partition to 

singletons. Hence, if the criterion at hand is only an approximation, one might prefer not to restrict the 

produced output to configurations with number of clusters identical to the number of classes in E, 

neither to commit to any other fixed number of clusters.  As these considerations are relevant to our 

actual experiments and, particularly, we study problems where the number of clusters is not known in 

advance, we evaluate our results with Jaccard coefficient. 
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3.3.2   Jaccard coefficient 

Jaccard coefficient is one of several methods based on element-pair counting (used for evaluating data 

clustering results also by Ben-Dor, Shamir, & Yakhini, 1999).  It symmetrically captures the 

agreement between an evaluated clustering configuration C and an external classification E, on 

assigning pairs of data elements to the same cluster versus different clusters.  A noticeable advantage 

of the Jaccard coefficient on other pair count method is that it does not incorporate those pairs about 

which the evaluation criterion and evaluated configuration agree that they should not be included in 

the same cluster.  As Ben-Dor et al. (1999) note, this type of agreement is overstressed as the number 

of clusters grows.  Meila, 2003 suggests an alternative: a set-intersection based criterion with 

information-theoretic motivation that claim to accommodate well to configurations of varied number 

of clusters.  However, it is not clear whether this suggestion is straightforwardly applicable in our 

case: the fact that our method is applied to a pre-divided element set and the obtained clusters, which 

are composed of several sub-clusters, might affect the results in a manner that is not trivial to 

quantify. Therefore, we stick to the pair-count based Jaccard measure, for which incorporating the 

cross-partition aspect is simpler. 

We first introduce the Jaccard measure for the standard deterministic (“hard”) clustering case, where 

each element is assigned to one, and only one, cluster and one criterion class. 

The following 0/1 valued functions, are defined for every pair of data elements x and x': 

Co-assignC (x, x')  =  1 iff there is c∈C such that x,x'∈c (0 otherwise); 

Co-assignE (x, x')  =  1 iff there is e∈E such that x,x'∈e (0 otherwise). 
(3.3) 

Now, we define pair counts on which the Jaccard coefficient is based. 

a11 = ∑x, x'∈X min{ Co-assignC (x, x') , Co-assignE (x, x') } (3.4a) 

    (the number of relevant data element pairs assigned into the same cluster by both E and C); 

a01 = ∑x, x'∈X min{ 1 − Co-assignC (x, x') , Co-assignE (x, x') } (3.4b) 

(the number of pairs that have been assigned into the same cluster by E but not by C); 

a10 = ∑x, x'∈X min{ Co-assignC (x, x') , 1 − Co-assignE (x, x') } (3.4c) 

             (the number of pairs that have been assigned into the same cluster by C but not by E). 

Note that Jaccard coefficient ignores a00, which is the agreement between C and E on those pairs that 

are not included in the same clusters.  In general a00 becomes non-informatively dominant as the 

number of classes grows. 
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Jaccard coefficient is defined as 

JACCARDE ( C )  =  
011011

11

aaa

a

++
. (3.5) 

3.3.2.1   Probabilistic Extension for Jaccard coefficient 

In the previous chapter we have mentioned data-clustering methods that produce probabilistic output: 

each element x is distributed over all clusters, so that the association level of x with a cluster c, 

denoted p( c | x ), satisfies ∑c∈C p( c | x ) = 1 (see previous chapter, Subsection 2.1.2.2).  In order to 

extend the Jaccard coefficient for probabilistic clustering, we modify the definition of the binary 

function Co-assignC (Eq. 3.3).  The new variation provides a probabilistic value, between 0 and 1, 

quantifying the level by which two elements x and x' are assigned the same way by a probabilistic C: 

Co-prob-assignC (x, x')  =  ∑c∈C min { p(c | x), p(c | x') } . (3.6a) 

This value is equal to 1 if and only if the distributions over the clusters conditioned on both elements 

are identical.  It coincides with the hard clustering case, whenever p(c | x) and p(c | x') are both 0 or 1. 

The same probabilistic setting might apply also within the classification criterion E: an element may 

be known, or approximated, as belonging to several criterion classes with either equal or varying 

levels of assignment (for example, a keyword might be assigned to several sub-topical keyword 

classes).  It is natural, in such case, to require probabilistic assignment levels p(e | x), so that 

∑e∈E p(e | x) = 1.  We modify accordingly the definition of Co-assignE (x, x'): 

Co-prob-assignE (x, x')  =  ∑e∈E min { p( e | x ), p( e | x' ) } . (3.6b) 

Replacing Co-assignC and Co-assignE in the definitions of a11, a10 and a01 (Eq. 3.4a-c) by the newly 

defined Co-prob-assignC and Co-prob-assignE, we may use the same definition of JACCARDE ( C ) (Eq. 

3.5)  to define a new measure, JACCARD-PROBE ( C ), that is usable for evaluating probabilistic 

clustering results. 

The opportunity of evaluating probabilistic clustering brings to mind the question of what is the actual 

target of probabilistic clustering: does it intend to expose in detail real ambiguities that are present in 

the data, or is it just a strategy to approximate a deterministic clustering configuration (eventually, the 

one where every element x is assigned to the cluster c with highest p(c|x))?  Both targets are of course 

legitimate but exposing true ambiguities is a much bigger challenge, as this implies a much richer 

search space and therefore “noisier” outcome.  In practice, it has indeed turned that our actual 

probabilistic clustering results (Subsection 5.4.2) were scored slightly lower relatively to the 

corresponding deterministic configurations, so we concentrated on evaluating the deterministic 

highest-p( c | x ) configurations as a replacement to the raw probabilistic outcome. 
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In distinction from the possible interpretations of probabilistic clustering, whenever multi-assignments 

are present in the criterion classes as happened occasionally in our experiments, they cannot be 

interpreted as related with any deterministic assignments.  This is the reason that in spite of resorting 

to deterministic configurations, we still had to use JACCARD-PROB rather then the standard JACCARD 

scores.  We did so both when we applied deterministic clustering method (Chapter 4) and when we 

evaluated the deterministic approximation of a probabilistic outcome (Chapter 5). 

3.3.2.2   Adapting Jaccard coefficient for the Cross Partition Setting 

We propose also a variation of the Jaccard evaluation score that is specifically adapted to the cross-

partition clustering setting.  In the cross-partition setting, the data is pre-divided to two or more 

disjoint subsets.  Replace a11, a01, and a10 defined above (Eq. 3.4) by corresponding quantities, with 

sums that include only pairs of elements from distinct subsets: 

a'11 = ∑x, x'  from distinct subsets Co-assignC (x, x') ⋅ Co-assignE (x, x') ,  

a'01 = ∑ x, x'  from distinct subsets ( 1 - Co-assignC (x, x') ) ⋅ Co-assignE (x, x') , (3.7) 

a'10 = ∑ x, x'  from distinct subsets Co-assignC (x, x') ⋅ ( 1 - Co-assignE (x, x') ) .  

Plugging a'11, a'11, a'11 into the definition of Jaccard coefficient (Eq. 3.5), we obtain: 

JACCARD-CPE ( C )  =  
011011

11

'''

'

aaa

a

++
, (3.8) 

a variation on Jaccard coefficient adapted to the context of the new problem, which considers only 

elements from the distinct subsets and excludes the impact of all within-subset pairs.  If we also 

replace in Eq. 3.7 above Co-assign by Co-prob-assign (Eq. 3.6), we obtain the JACCARD-PROB-CP 

measure, which combines probabilistic clustering with ignoring the impact of the within-subset pairs. 

Similarly to the corresponding question regarding evaluation of probabilistic clustering, the question 

of whether to use JACCARD-CP as a replacement for the original JACCARD measure depends on how 

exactly one views the target of the cross-partition task.  If the emphasis is on creating a variety of 

associations between the pre-given subsets, then it would make sense to use JACCARD-CP (or 

JACCARD-PROB-CP).  If, in subtle distinction, the focus is on revealing concepts or themes that cut 

across the pre-given partition and might nevertheless incorporate some within-subset information, 

then using the original JACCARD measure (or JACCARD-PROB) can be viewed as more appropriate.  In 

evaluating our actual results, we accordingly use JACCARD-PROB-CP for evaluating our coupled 

clustering method (Section 4.4) that, as will be explained, relies solely on cross-subset information.  

For evaluating the later cross-partition method (Subsection 5.4.2), which does not ignore within-

subset information, we use the JACCARD-PROB measure. 
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Chapter Chapter Chapter Chapter 4444: Coupled Clustering: Coupled Clustering: Coupled Clustering: Coupled Clustering    

The method introduced in this chapter – coupled clustering – extends the standard clustering task for a 

set of data elements pre-divided into two disjoint subsets.  As explained in the previous chapter, we 

study the problem of partitioning in parallel the pair of pre-given subsets to groups of elements, or 

sub-clusters, each of which is matched with a corresponding sub-cluster in the other subset.  A pair of 

matched sub-clusters forms together a coupled cluster. 

This chapter relies on a paper introducing the coupled clustering framework (Marx et al., 2002), 

extending earlier publications (Marx & Dagan, 2001; Marx, Dagan & Buhmann, 2001).  In Section 

4.1, we review the computational methods that underlie our approach, namely the standard clustering 

method by Puzicha, Hofmann & Buhmann (2000) and co-occurrence based similarity measures by 

Lin (1998) and Dagan, Marcus & Markovitch (1995).  The coupled clustering method is formally 

introduced in Section 4.2.  Then, we demonstrate our method on synthetic data (Section 4.3) and on a 

task of detecting equivalencies across distinct textual corpora (Section 4.4).  The examined corpora 

deal with the conflict theme as exemplified in Figure 3.2 and on various religions between which we 

identify correspondences.  The religion data is thoroughly evaluated through comparison of our 

program's output with keyword classes that were formed manually by experts of comparative studies 

of religions.  Section 4.5 concludes this chapter with further discussion. 

4.1   Computational Background 

This section reviews the two computational frameworks that form the basis for the coupled-clustering 

method.  The first subsection concentrates on the relevant details of a data-clustering method, by 

Puzicha, Hofmann & Buhmann (2000), which our algorithm extends for coupled clustering.  The next 

subsection reviews methods for calculating the similarity values used as input for our method. 

4.1.1   Cost-based Pairwise Clustering 

Puzicha, Hofmann & Buhmann (2000) present, analyze and classify a family of pairwise clustering 

cost functions.  Their framework assumes “hard” assignments: every data element is assigned into one 

and only one of the clusters.  In reviewing their work we use the following notation.  A data clustering 

procedure partitions the elements of a given dataset, X, into disjoint element clusters, c1, …, ck.  The 

number of clusters, k, is pre-determined and specified as an input parameter to the clustering 

algorithm.  A cost criterion guides the search for a suitable clustering configuration.  This criterion is 

realized through a cost function H (S, C) taking the following parameters: 
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(i) S = {sxx'}x,x'∈X : a collection of pairwise similarity values1, each of which pertains to a pair of 

data elements x and x' in X. 

(ii) C = (c1, …, ck) : a candidate clustering configuration, specifying assignments of all elements 

into the disjoint clusters (that is ∪cj =  X and cj∩cj' = φ for every 1 ≤ j  ≤ j' ≤ k). 

The cost function outputs a numeric cost value for the input clustering-configuration C, given the 

similarity collection S.  Thus, various candidate configurations can be compared and the best one, i.e 

the configuration of lowest cost, is chosen.  The main idea underlying clustering criteria is the 

preference of configurations in which similarity of elements within each cluster is generally high and 

similarity of elements that are not in the same cluster is correspondingly low.  This idea is formalized 

by Puzicha et al. through the monotonicity axiom: in a given clustering configuration, increasing 

similarity values, pertaining to elements within the same cluster, cannot increase the cost assigned to 

that configuration.  Similarly, increasing the similarity level of elements belonging to distinct clusters 

cannot improve the cost. 

Monotonicity captures the most basic intuitive expectation from pairwise data clustering.  By 

introducing further requirements, Puzicha et al. focus on a more confined family of cost functions.  

The following requirement focuses attention on functions of relatively simple structure.  A cost 

function H fulfills the additivity axiom if it can be presented as the cumulative sum of repeated 

applications of “local” functions referring individually to each pair of data elements.  That is: 

H (S, C)   =   ∑x,x'∈X ψxx'
 (x, x', sxx', C) , (4.1) 

where ψxx' depends on the two data elements x and x', their similarity value, sxx', and the whole 

clustering configuration C.  An additional axiom, the permutation invariance axiom, states that cost 

should be independent of element and cluster reordering.  Combined with the additivity axiom, it 

implies that a single local function ψ, s.t. ψxx' ≡ ψ for all x,x' ∈ X, can be assumed. 

Two additional invariance requirements aim at stabilizing the cost under simple transformations of the 

data.  First, relative ranking of all clustering configurations should persist under scalar multiplication 

of the whole similarity ensemble.  Assume that all similarity values within a given collection S are 

multiplied by a positive constant η, and denote the modified collection by ηS.  Then, H fulfills the 

scale invariance axiom if for every fixed clustering configuration C, the following holds: 

                                                      

1 In their original formulation, Puzicha et al. use distance values (dissimilarities) rather then similarities.  

Hereinafter, we apply straightforward adaptation to similarity values by adding a minus sign to H.  Adhering to 

the cost minimization principle, this transformation replaces the cost paid for within-cluster dissimilarities with 

cost saved for within-cluster similarities (alternatively pronounced as “negative cost paid”). 
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H (ηS, C)   =   ηH (S, C) . (4.2) 

Likewise, it is desirable to control the effect of an addition of a constant.  Assume that a fixed 

constant ∆ is added to all similarity values in a given collection S, and denote the modified collection 

by S+∆.  Then, H fulfills the shift invariance axiom if for every fixed clustering configuration C, the 

following holds: 

H (S+∆, C)   =   H (S, C) + Φ , (4.3) 

where Φ may depend on ∆ and on any aspect of the clustered data (typically the data size), but not on 

the particular configuration C. 

As the most consequential criterion, to assure that a given cost function is not subject to local slips, 

Puzicha et al. suggest a criterion for robustness.  This criterion ensures that whenever the data is large 

enough, bounded changes in the similarity values regarding one specific element, x ∈ X, would result 

in limited effect on the cost.  Consequently, the cost assigned to any clustering configuration would 

not be sensitive to a small number of fluctuations in the similarity data.  Formally, denote the size of 

the set of elements X by N and let S x+∆ be the collection obtained by adding ∆ to all similarity values 

in S pertaining to one particular element, x ∈ X.  Then H is robust (in the strong sense) if it fulfills 

N
1 | H (S, C) − H (S x+∆, C) |   → ∞→N

 0. (4.4) 

Puzicha et al. show that any cost function satisfying Equations 4.1, 4.2, 4.3 is a linear combination of 

two factors: a positive component (to be minimized) incorporating averages of distances between 

elements within the same cluster, and a negative component (to be maximized) incorporating averages 

of distances between elements from different clusters.  It turns out that among those cost functions 

there is only one function that satisfies the strong robustness criterion of Equation 4.4 in addition to 

Equations 4.1, 4.2, 4.3.  This function, denoted here as H0, involves only similarity values pertaining 

to elements within the same cluster (within-cluster similarities). 

Specifically, H0 is a weighted sum of average within-cluster similarity.  Denote the sizes of the k 

clusters c1, …, ck by n1, …, nk respectively.  The average within-cluster similarity for the cluster cj is 

then 

Avgj   =    
)1(

', '

−×
∑ ∈

jj

cxx xx

nn

s
j  . (4.5) 

H0 weights the contribution of each cluster to the cost proportionally to the cluster size: 

H0   =   − ∑j nj Avgj . (4.6) 

In Section 4.3, we modify H0 to adapt it for the coupled clustering setting. 
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4.1.2   Feature-based Similarity Measures 
In our calculations, similarity between data elements is assessed through methods that take feature 

vectors as input and put heavier weights on the more informative features.  The information regarding 

a data element, x, conveyed through a given feature, y, is assessed through the following term:2 

I(x,y)   =   
)(

)|(
log2 xp

yxp+  , (4.7) 

where, p denotes conditional and unconditional occurrence probabilities and the ‘+’ sign indicates that 

0 is returned whenever the log2 function produces negative value.  In our experiments x and y are 

generally words and p is empirical occurrence probability. 

Dagan, Marcus & Markovitch (1995) base their similarity measure on the following term:  

simDMM(x,x')   =   
∑
∑

y

y

yxIyxI

yxIyxI

)},'(),,(max{

)},'(),,(min{
 . (4.8) 

The similarity value obtained by this measure is higher as the number of highly informative features, 

providing comparable amount of information for both elements x and x', is larger. 

Lin, 1998 incorporates the information term of Equation 4.7, as well, though differently: 

simL(x,x')   =   { }

∑
∑

+

+
>∧>

y

yxIxIy

yxIyxI

yxIyxI

)),'(),((

)),'(),((
0),'(0),(/  . (4.9) 

Here, the obtained similarity value is higher as the number of features that are somewhat informative 

for both elements, x1 and x2, is larger, and the relative contribution of those is in proportion to the total 

information all features convey. 

Similarly to the cosine measure (see 2.1.3.3), both simDMM and simL measures satisfy: (i) the maximal 

similarity value, 1, is obtained for element pairs with relation to which every feature is equally 

informative (including self similarity); and (ii) the minimal similarity value, 0, is obtained whenever 

every attribute is not informative for either one of the elements.  Accordingly, our formulation and the 

experiments below follow the convention that a zero value denotes no similarity. 

In the coupled clustering experiments on textual data that are described later, we use both above 

similarity measures.  We utilize pre-calculated simL values for one experiment (Subsection 4.4.1) and 

we calculate simDMM values, based on word co-occurrence within our corpora, for another experiment 

(Subsection 4.4.2). 

                                                      

2 The expectation over the term of Equation 4.7 over co-occurrences of all x's and y's, (with log2) is the mutual 

information of x and y (Cover and Thomas, 1991, p. 18). 
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4.2   Algorithmic Framework for Coupled Clustering 

In this section, we define the coupled clustering task and introduce an appropriate setting for 

accomplishing it.  We then present alternative cost criteria that can be applied within this setting and 

describe the search method that we use to identify coupled-clustering configurations of low cost.  As 

we noted in Chapter 3, coupled clustering is the problem of partitioning two data subsets into 

corresponding sub-clusters, so that every sub-cluster is matched with a counterpart in the other subset.  

Each pair of matched sub-clusters forms jointly a coupled cluster.  As in the standard single set task of 

data clustering, each coupled cluster consists of elements that are similar to one another and distinct 

from elements in other clusters.  However, this is subject to an additional bias imposed by the 

requirement to match sub-clusters of each pre-given subsets with those of the other subset. 

4.2.1   Directing Clustering through Between-subset Similarities 

Coupled clustering divides the two pre-given element subsets, X1 and X2, into disjoint sub-clusters 
1
1c , …, 1

kc  and 2
1c , …, 2

kc .  Each of these sub-clusters is coupled with a corresponding sub-cluster of 

the other subset, that is 1
jc  is coupled with 2

jc  for j = 1…k.  Every pair of coupled sub-clusters forms a 

unified coupled-cluster, cj = 1
jc ∪ 

2
jc , which contains elements of both pre-given subsets (see Figure 

4.1).  We approach the coupled clustering problem through a pairwise-similarity-based setting, 

incorporating the elements of both X1 and X2.  Our treatment is independent of the method by which 

similarity values are calculated: feature-based calculations such as those described in Subsection 

4.1.2, subjective assessments, or any other method. 

The notable feature distinguishing our method from standard pairwise clustering, is the set of 

similarity values, S, that are considered.  A standard pairwise clustering procedure potentially 

considers the similarity values referring to all pairs of elements within the undivided clustered set.  

Typically, the only similarity values that are not considered are self-similarities.  In the coupled 

clustering setting, there are two different types of available similarity values.  Values of one type 

denote within-subset similarities (short gray arrows in Figure 4.1).  Values of the second type denote 

similarities of element pairs consisting of one element from each subset (between-subset similarities; 

long black arrows in Figure 4.1).  As an initial strategy, to be complied with throughout this chapter, 

we choose to ignore similarities of the first type altogether and to concentrate solely on between-

subset similarities: S = {sxx'}, where x ∈ X1 and x' ∈ X2.  Consequently, the assignment of a given data 

element into a coupled cluster is directly influenced by the most similar elements of the other subset, 

regardless of its similarity to members of its own subset. 

The policy of excluding within-subset similarities captures, according to our conception, the unique 

context posed by aligning two pre-given subsets representing distinct domains with respect to one 
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another.  Correspondences special to the current comparison, which underlie presumed parallel or 

analogous structure of the compared systems, are thus likely to be identified abstracted from the 

distinctive information characterizing each individual system.  This fits our key goal of detecting 

commonalities, while masking out subset-internal structures (see Section 3.1).  In this chapter, we do 

not deal with the questions of whether and how available information regarding within-subset 

similarities should be incorporated.  The next chapter introduces a method that processes the data 

more comprehensively. 

 

 

Figure 4.1: The coupled clustering setting.  The diamonds represent elements of the pre-given 

subsets X1 and X2.  The long black arrows represent the values in use: similarity values pertaining to 

two elements, one from each subset.  The shorter grey arrows stand for the disregarded similarity 

values within a subset. 

4.2.2   Three Alternative Coupled Clustering Cost Functions 

Given the setting described above, in order to identify configurations that accomplish the coupled 

clustering task, our next step is defining a cost function.  In formulating it, we closely follow the 

standard pairwise-clustering framework presented by Puzicha, Hofmann & Buhmann, (2000, see 

Subection 4.1.1 above).  Given a collection of similarity values S pertaining to the members of two 

pre-given subsets, X1 and X2, we formulate an additive cost function, H (S, C), which assigns a cost 

value to any coupled-clustering configuration C.  Given such a cost function and a search strategy 

(see 4.2.4 below) our procedure would be able to output a coupled clustering configuration specifying 

2
jc

 

1
jc

 

Subset X1 Subset X2
 

x x' 
sxx' 

cj 
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assignments of the elements into a pre-determined number, k, of coupled clusters.  We concentrate on 

Puzicha et al.'s H0 cost function (Subection 4.1.1, Eq. 4.6), which is limited to similarity values within 

each cluster and weighs each cluster's contribution proportionally to its size.  Below we present and 

analyze three alternative cost-functions derived from H0. 

As in clustering in general, the coupled clustering cost function should assign similar elements into 

the same cluster and dissimilar elements into distinct clusters (as articulated by the monotonicity 

axiom in Subsection 4.1.1).  A coupled-clustering cost function is thus expected to assign low cost to 

configurations in which the similarity values, sxx', of elements x and x' of coupled subs-clusters, 1
jc  and 

2
'jc , are high on average.  (The dual requirement to assign low cost whenever similarity values of 

elements x and x' from non-coupled sub-clusters 1
jc  and 2

'jc , j ≠ j' , are low, is implicitly fulfilled).  In 

addition, we seek to avoid influence of transient or minute components – those that could have been 

evolved from casual noise or during the optimization process – and maintain the influence of stable 

larger components.  Consequently, the contribution of large coupled clusters to the cost is greater than 

the contribution of small ones with the same average similarity.  This direction is realized in H0 

through weighting each cluster's contribution by its size. 

In the coupled-clustering case, one apparent option is to apply straightforwardly the original H0 cost 

function to our restricted collection of between-subset similarity values.  The average similarity of the 

coupled cluster cj = 1
jc ∪ 

2
jc  is then calculated as  

Avg'j   =    
)1(

21 ', '

−×
∑ ∈∈

jj

cxcx xx

nn

s
jj  , (4.10) 

where nj is the number of elements in cj (so that Eq. 4.10 differs from the standard average formula, 

Eq. 4.5, by setting all within-subset similarities to 0).   As in H0 (Eq. 4.6), the average similarity of 

each cluster is multiplied by the cluster size.  Thus, the following cost function, H1, is obtained: 

H1   =   − ∑j nj × Avg'j . (4.11) 

Alternatively, as we restrict the collection of similarities being considered in our calculations, we 

might want to take it into account in the averaging scheme as well.  The actual number of considered 

similarities in the restricted collection is, for each j, the product 1
jn × 

2
jn  of the sizes of the two sub-

clusters 1
jc  and 2

jc  forming cj.  The following averaging scheme might seem more natural for the 

coupled clustering setting: 

Avg''j   =    
21

', '21

jj

cxcx xx

nn

s
jj

×
∑ ∈∈  , (4.12) 
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Correspondingly, a second cost variant, H2, is given: 

H2   =   − ∑j nj × Avg"j . (4.13) 

One factor to which the weighting schemes of H1 and H2 does not refer is the inner partition of the 

coupled clusters.  Hence, we suggest yet another alternative that incorporates the proportion between 

the sizes of the two sub clusters, namely weighing the average similarity each cluster contributes to 

the cost by the geometrical mean of the corresponding coupled sub-cluster sizes: 
21
jj nn × .  This 

yields yet another cost function: 

H3   =   − ∑j 
21
jj nn ×  × Avg"j . (4.14) 

The weighting factor of H3 results in penalizing large gaps between the two sizes, 1
jn  and 2

jn , and in 

preferring balanced configurations, with coupled-cluster inner proportions maintaining the global 

proportion of the clustered subsets (1
jn / 2

jn  ≅ N1/ N
2 for each j, where N1 and N2 are the sizes of X1 and 

X2, respectively).  Later on we refer to the cost function H2 and H3, as the “additive” and the 

“multiplicative” cost functions. 

4.2.3   Properties of the Coupled Clustering Cost Functions 

Puzicha, Hofmann & Buhmann, (2000) based their characterization of pairwise-clustering cost-

functions on some properties and axioms (see Subsection 4.1.1 above).  In the previous subsection, we 

have followed their conclusions in adapting, in three different variants, one function, H0, that realizes 

the most favorable properties.  It is worthwhile to see if and how these properties are preserved 

through the adaptation for the coupled clustering setting.  As we show below, all the three cost 

functions that we have derived, H1, H2 and H3, are additive by construction and it immediately follows 

that they are also scale invariant.  They are not, except for H2, shift-invariant.  However, the effect of 

a constant added to all between-subset similarity values is bounded for H1 and H3, as well.  Finally, H1 

and H3 are robust (but not by H2). 

Lemma 4.1: H1, H2 and H3, are additive (Eq. 4.1). 

Proof: For each one of the three functions, each element pair with non-zero impact on the cost (i.e., 

members of the same coupled cluster from different subsets) adds to the cost a component of the form 

ψxx'
 (x, x', sxx', C).  This contribution amounts to the average similarity within the cluster to which both 

elements belong multiplied by a factor depending on this cluster.  Specifically, for each pair of 

elements x, x' ∈ cj, such that x ∈ X1 and x' ∈ X2, we have the following terms: 

1
''

1 −
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xxxx

n

sψ  ,   
21
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2

jj

xx
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nn

s
n

×
−=ψ ,   

21
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3

jj

xxxx

nn

s

×
−=ψ , (4.15) 

which explicate the non-zero summands forming H1, H2 and H3, respectively. �  
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Lemma 4.2: H1, H2 and H3, are scale invariant (Eq. 4.2). 

Proof: As '
1
xxψ , '

2
xxψ  and '

3
xxψ  of the previous lemma all depend linearly on sxx' (i.e., 

η 'xx
iψ (x, x', sxx', C) = 'xx

iψ (x, x', ηsxx', C)), it follows that the three cost functions satisfy the scale 

invariance property. �  

Lemma 4.3: H2 is shift invariant (Eq. 4.3). 

Proof: in the j-th cluster there are 1jn × 
2
jn  cross-subset pairs (x, x'), so that introducing a constant shift 

to all the considered similarities and summing '2
xxψ  (defined in the proof to Lemma 5.1) over all the 

relevant pairs within the j-th cluster gives: 
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Taking sum over the above cluster-dependent terms of Eq. 4.16 yields H2
 (S+∆, C) = H2

 (S, C) + N∆ , 

where the term N∆ depends on the shift constant and on the data (and not on C), as required for 

maintaining the shift invariance property. �  

Lemma 4.4: For H1 and H3, the effect on the cost value of adding a constant to all between-subset 

similarities is bounded. 

Proof:  Both H1 and H3 are are non-positive, thus bounded from above by 0.   

For H1
 , the j-th cluster's contribution to the modified cost resulting from increasing all similarities by 

a positive ∆ is ( 1
jn × 

2
jn / (nj − 1))∆  ≤  min{ 1

jn , 
2
jn } ∆  ≤  (nj/2) ∆ .  Therefore, 

H1
 (S+∆, C)  ≥  H1

 (S, C) − (N/2) ∆ . 

Similarly, for H3
 , the j-th cluster's contribution to the modification in cost value is 21

jj nn × ∆ ≤ (nj/2)∆, 

so that also for H3 the following holds: H3
 (S+∆, C) ≥ H3

 (S, C) − (N/2) ∆ . �  

We note that it is possible to modify H1 and H3 so to impose the shift-invariance property on them.  

For that, one can use the derivative of, say, H3 with respect to ∆, which is the increment for all 

between-data-set similarity values.  This is a linear function so the resulting derivative is 

D = ∑j
211 jj nn × .  Consequently, normalizing H3 by 1/D would result in perfect shift invariance.  

However, H3 in its non-normalized form is nearly shift-invariance with regard to configurations for 

which the clusters approximately maintain the global proportion of the clustered data sets X1 and X2, 

while highly imbalanced configurations are highly penalized.  Since our experiments use similarity 

measures with values between 0 and 1, we stick to the simpler formulation of Eqs. 4.11 and 4.14 

above, assuming that the normalized version would behave similarly. 
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Lemma 4.5: H1 is robust (Eq. 4.4); H3 is robust provided the ratio between the sub-cluster sizes of 

any coupled cluster is kept bounded as the number of elements grows. 

Proof:  For H1: 

N

1 | H1
 (S, C) − H1

 (S x+∆, C) |   ≤   
1

},max{
1 21

−
∆

j
jj n

nn
N

   ≤   
N

∆     → ∞→N
   0 , (4.17) 

where j is the index of the cluster to which x is assigned.  Similarly for H3: 

N

1 | H3
 (S, C) − H3

 (S x+∆, C) |      (4.18) 

≤   
21

21 },max{
1

jj

jj
nn

nn
N ×

∆    =   
},min{

    },max{  
21

21

jj

jj

nn

nn

N

∆     → ∞→N
   0 , 

where convergence relies on the assumption regarding the ratio between the sub-clusters. �  

Finally, we note that using the coupled sizes geometrical mean as a weighting factor, H3 tends to 

escape configurations that match minute sub-clusters with large ones, which are occasionally the 

consequence of noise in the input data or of fluctuations in the search process.  It turns that this 

property provides H3 with a notable advantage over H1 and H2, as our experiments indeed show (see 

Sections 4.3 and 4.4). 

4.2.4   Optimization Method 

In order to find the clustering configuration of minimal cost, we have implemented a stochastic search 

procedure, namely a variation of the simulated annealing method based on the sampling pattern of the 

Gibbs sampler algorithm (Geman & Geman, 1984; See also Chapter 2, Subsection 2.1.4.5).  Starting 

with random assignments into clusters, this algorithm iterates repeatedly through all data elements and 

probabilistically reassigns each one of them in its turn, according to a probability governed by the 

expected cost change.  Suppose that in a given assignment configuration, C, the cost difference ∆j |x,C 

is obtained by reassigning a given element, x, into the j-th cluster (∆j|x,C = 0 in case x is already 

assigned to the j-th cluster).  The target cluster, into which the reassignment is actually performed, is 

selected among all candidates with probability 

p(j)   ≡   p(j |x,C)   ≺   
}exp{1

1

,| Cxj∆−+ β
 (4.17) 

Consequently, the chances of an assignment to take place are higher as the resulting reduction in cost 

is larger.  In distinction from the original simulated annealing algorithm (Kirkpatrick, Gelatt & 

Vecchi, 1983), assignments that result in increased cost are possible, though with relatively low 

probability.   The β parameter, controlling the randomness level of reassignments, functions as an 

inverse “computational temperature”.  Starting at high temperature followed by a progressive cooling 
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schedule, that is initializing β to a small positive value and gradually increasing it (e.g. repeatedly 

multiply β by a constant that is slightly greater than one, 1.001 in our experiments), turns most 

profitable assignments increasingly probable.  As the clustering process proceeds, the gradual 

“cooling” systematically reduces the probability that the algorithm would be trapped in a local 

minimum (though global minimum is fully guaranteed only under an impracticably slow cooling 

schedule).  The algorithm execution stops after several repeated iterations through all data elements, 

in which no cost change has been recorded (50 iterations in our experiments). 

4.3 Experiments with Synthetic Data 

A set of experiments on synthetic data has been conducted for evaluating the performance of our 

algorithm, making use of the three cost functions introduced in Section 4.3 above.  These experiments 

have measured, under changing noise levels, how well each of the cost functions reconstructs a 

configuration of pre-determined clusters of various inner proportions. 

Each input similarity value (i.e. between-subset similarities) in these experiments incorporates a basic 

similarity level, dictated by the pre-determined clustering configuration, combined with an added 

random component introducing noise.  The basic similarity values have been generated so that each 

element is assigned into one of four coupled clusters.  Elements in the same cluster share the maximal 

basic similarity of value 1, while elements in distinct clusters share the minimal basic similarity 0.  

The noisy component combined with the basic value is a random number between 0 and 1. 

In precise terms, the similarity value sxx', of any x ∈ X
1 and x' ∈ X

2 (X1 and X2 are the pre-given 

subsets), has been set to 

sxx'   =   (1−α) δj(x)j(x') + α rxx' , (4.18) 

where δj(x)j(x') – the basic similarity level – is 1 if x ∈ X
1 and x' ∈ X

2 are, by construction, in the same (j-

th) coupled cluster or otherwise 0 and rxx' – the random component – is sampled uniformly between 0 

and 1, differently for each x and x' in each experiment.  The randomness proportion parameter α (i.e. 

level of added noise), also between 0 to 1, is fixed throughout each experiment, to maintain a steady 

average noise level. 

In order to study the effect of the coupled-cluster inner proportion, we have run four sets of 

experiments.  Given subsets X1 and X2 consisting of 32 elements each, four types of synthetic coupled-

clustering configurations have been constructed, in which the sizes 1jn  and 2
jn  of the sub-cluster pairs 

1
jc  ⊂ X

1 and 2
jc  ⊂ X

2, together forming the j-th coupled-cluster, have been set as follows: 
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Figure    4.2: Reconstruction of synthetic coupled-clustering configurations of the ‘10-6 coupling’ 

target configuration type from noisy similarity data.  Lines and columns of the plotted gray-level 

matrices correspond to members of the two sets.  On the left-hand side – original similarity values – 

the gray-level of each pixel represents the corresponding similarity value between 0 (black) and 1 

(white).  In the reconstructed data, gray level corresponds to average similarity within each 

reconstructed cluster.  The bottom part demonstrates that the multiplicative cost function, H3, 

reconstructs better under intensified noise. 

     (i)  1
jn = 

2
jn  = 8, for j = 1…4;  

     (ii)  1
jn = 10, 2

jn  = 6 for j = 1,2 and  
1
jn = 6, 2

jn  = 10 for j = 3,4; 

     (iii) 1
jn  = 12, 2

jn  = 4 for j = 1,2 and  
1
jn = 4, 2

jn  = 12 for j = 3,4;  

     (iv)  1
jn = 14, 2

jn  = 2 for j = 1,2 and  
1
jn = 2, 2

jn  = 14 for j = 3,4. 

These four configuration types, respectively labeled ‘8-8 coupling’, ‘10-6 coupling’, ‘12-4 coupling’ 

and ‘14-2 coupling’, have been used in the four experiment sets. 

It is convenient to visualize a collection of similarity values as a gray-level matrix, where rows and 

columns correspond to individual elements of the two clustered subsets and each pixel represents the 

similarity level of the corresponding elements.  The diagrams on the left-hand side in Figure 4.2 show 
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two collections of similarity values generated with two different noise levels.  White pixels represent 

the maximal similarity level in use, 1; black pixels represent the minimal similarity level, 0; the 

intermediate gray levels represent similarities in between.  The middle and right-hand-side columns of 

Figure 4.2 displays clustering  configurations  as reconstructed by our algorithm, using the additive H2 

and multiplicative H3 cost functions respectively, given the input similarity values displayed on the 

left-hand side.  Examples from the 10-6 coupling experiment set, with two levels of noise, are 

displayed.  Bright pixels indicate that the corresponding elements are in the same reconstructed 

cluster.  It demonstrates that, for the 10-6 coupling, the multiplicative variant H3 tends to tolerate 

noise better than the additive variant H2 and that this advantage grows when the noise level intensifies 

(bottom of Figure 4.2). 

The performance over all experiments in each set has been measured through the PURITY measure, 

introduced in Section 4.2.  Figure 4.3 displays average accuracy for the changing noise levels, 

separately for each experiment set.  The multiplicative cost function H3, is biased toward balanced 

coupled clusters, i.e. clusters in which the inner proportion is close to the global proportion of the 

subsets (which are equal in size in our case).  Our experiments indeed verify that H3 reconstruct better 

than the other functions, particularly in cases of almost balanced inner proportions. 

Figure 4.3 shows that the accuracy obtained using the restricted standard-clustering function H1 is 

consistently worse than the accuracy of H3.  In addition, for all internal proportions, there is some 

range, on the left-hand side of each curve, in which H3 performs better than the additive function H2.  

The range where H3 is superior to H2 is almost unnoticeable for the sharply imbalanced internal 

proportion (2-14 coupling) but becomes prominent as the internal proportion approaches balance.  

Consequently, it makes sense to use the additive function H2 only if both: (i) there is a good reason to 

assume that the data contains mostly imbalanced coupled clusters and (ii) there is a reason to assume 

high level of noise.  Real world data might be noisy, but given no explicit indication that the emerging 

configurations are inherently imbalanced, the multiplicative function H3 is preferable.  Consequently, 

we have used H3 in our experiments with textual data, described in the following sections. 
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Figure    4.3: Purity as a function of the noise level (randomness proportion) for different coupled 

size proportions, obtained through experiments in reconstructing synthetic coupled-clustering 

configurations.  For each proportion, results obtained using the straightforward adaptation of the 

original method (H1, termed here “standard clustering”), “additive” (H2) and “multiplicative” (H3) 

cost functions are compared. 

4.4  Identifying Corresponding Topics in Textual Corpora 

In this section, we demonstrate the capabilities of the coupled clustering algorithm with respect to 

real-world textual data, namely pairs of sets of keywords (the subsets X1, X2 mentioned in Subsection 

4.2.2) along with counts of co-occurring content words, taking the role of features.  The keywords 

have been extracted from given corpora focused on distinct domains.  Our experiments have been 

motivated by the target of identifying, by means of the induced coupled clusters, concepts that play 

similar or analogous roles in the examined domains.  In Subsection 4.4.1, the keyword sets are 

extracted from collections of news articles referring to two conflicts of different character that are 

nowadays in the focus of public attention: the Middle East conflict and the dispute over electronic 

media copyright, demonstrated through the Napster case.  Our experiments revealed some 

illuminating correspondences between the two seemingly unrelated conflicts.  In Subsection 4.4.2, we 

turn to larger corpora focused on various religions, specifically Buddhism, Christianity, Hinduism, 
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Islam and Judaism.  Hence, the task is to explicate common, or equivalent, aspects of the examined 

religions.  This inter-religion comparison is further analyzed and evaluated also in subsequent 

sections. 

In both conflict and religion comparisons, our setting assumes that the datasets are given or that they 

can be extracted automatically.   We have used the TextAnalyst software by MicroSystems Ltd.3, 

which is capable of identifying key-phrases in given text, to generate datasets for our experiments.  

From the terms and phrases that have been identified by the software, we have excluded the items that 

have appeared in fewer than three documents.  Thus, relatively rare terms and phrases that the 

software has inappropriately segmented have been filtered out. 

After extracting the datasets, between-subset similarities, if not pre-given, are calculated.  In general 

terms, every extracted keyword is represented by a co-occurrence vector, whose entries essentially 

correspond to the co-located words (concrete examples follow in the subsections bellow), excluding a 

limited list of function words.  Then, between-subset similarity values are calculated using methods, 

such as those described in Subsection 4.1.2, to adapt the data for the similarity-based coupled-

clustering algorithmic setting introduced in Section 4.2.  We differentiate between two optional 

sources that can provide the co-occurrence data for the similarity calculations.  One option is to base 

the calculations on co-occurrences within the same corpora from which the keyword sets have been 

extracted.  Thus, the calculated similarity values naturally reflect the context in which the comparison 

is being made.  This approach has underlay most of the coupled clustering experiments that we have 

conducted (Subsection 4.4.2).  However, sometimes the compared corpora might be of small size and 

there is a need to rely on a more informative statistical source.  An alternative option is to utilize the 

co-occurrences within an additional independent corpus for the required similarity calculations.  In 

order to produce reliable and accurate similarity values, such independent corpus can be chosen to be 

significantly larger than the compared ones, but it is important that it addresses well the topics that are 

being compared, so the context reflected by the similarities is still relevant.  This approach, making 

use of pre-given similarity values, is demonstrated in the following subsection. 

4.4.1   Conflict Keyword Clustering Based on Pre-given Similarities 

The conflict corpora are composed of about 30 news articles each (200–500 word tokens in every 

article), regarding the two above-mentioned conflicts: the Middle East conflict and the dispute over 

music copyright.  The articles were downloaded in October 2000. 

                                                      

3 An evaluation copy of TextAnalyst 2.3 is available for download at http://www.megaputer.com/php/eval.php3. 
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We have obtained the similarities from a large body of word similarity values that have been 

calculated by Dekang Lin, independently of our project (Lin, 1998).  Lin has applied the simL 

similarity measure (Subsection 4.2, Equation 4.9) to word co-occurrence statistics within syntactic 

relations, extracted from a very large news-article corpus.4  We assume that this corpus includes 

sufficient representation of the conflict keyword sets in relevant contexts.  That is: even if the articles 

in the corpus do not explicitly discuss the concrete conflicts, it is likely that they address similar 

issues, which are rather typical as news topics.  In particular, occurrences of the clustered keywords 

within this corpus are assumed to denote meanings resembling their sense within our small article 

collection. 

As Table 4.1 shows, the coupled-clusters that have been obtained by our algorithm fall, according to 

our classification, within three main categories: “Parties and Administration”, “Issues and Resources 

                                                      

4 This corpus contains 64 million word tokens from Wall Street Journal, San Jose Mercury, and AP Newswire. 

The similarity data is available at http://armena.cs.ualberta.ca/lindek/downloads/sims.lsp.gz. 

Table 4.1:  Coupled clustering of conflict related keywords.  Every row in the table contains the 

keywords of one coupled cluster.  Cluster titles and titles of the three groups of clusters were added 

by the author. 

 Middle-East  Music Copyright  

Parties and Administration 
Establishments city  state company  court  industry university 

Negotiation delegation minister committee  panel 

Individuals partner  refugee  soldier 
terrorist 

student 

Professionals diplomat leader artist  judge  lawyer 

Issues and Resources in Dispute 
Locations home  house  street block  site 

Protection housing  security copyright  service 

Activity and Procedure 
Resolution defeat  election  mandate meeting decision 

Activities1 assistance settlement innovation  program  swap 

Activities2 disarm  extradite  extradition  
face 

use 

Confrontation attack digital infringement label shut violation

Communication declare meet listen violate 

Poorly-clustered keywords 
low similarity 
values interview peace weapon 

existing found infringe listening medi um 
music song stream worldwide 

no similarity 
values 

armed diplomatic  
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in Dispute” and “Activities and Procedure”.  To improve readability, we have also added an 

individual title to each cluster. 

The keywords labeled “poorly-clustered”, at the bottom of Table 4.1, are assigned to a cluster with 

average similarity considerably lower than the other clusters, or for which no relevant between-subset 

similarities are found in Lin's similarity database.  Consequently, these keywords could be 

straightforwardly filtered out.  However, poorly clustered elements persistently occur in most of our 

experiments and we include them here for the sake of conveying the whole picture. 

Making use of pre-given similarity data is, on the one hand, trivially advantageous.  Apart from 

saving programming and computing resources, such similarity data typically relies on rich statistics 

and its quality is independently verified.  Moreover: in principle, pre-given similarity data could be 

utilized for further experiments in clustering additional datasets that are adequately represented in the 

similarity database.  However, there are several disadvantages in taking this route.  First, reliable 

relevant similarity data is not always available.  In addition, the context of comparing two particular 

domains might not be fully articulated within generic similarity data that has been extracted in a much 

broader context.  For example, the interesting case where the same keyword appears in both clustered 

sets, but it is used for different meanings, could not be traced.  A keyword used differently in distinct 

corpora would co-occur with different features in each corpus.  In contrast, when similarities are 

computed from a unified corpus, self-similarity is generally equal to the highest possible value (1 in 

Lin's measure), which is typically much higher than other similarity values.  In such case, the two 

distinct instances of a keyword presenting in both clustered sets would always fall within the same 

coupled-cluster. 

4.4.2   Religion Keyword Clustering 

This subsection introduces the main body of our data, to which, from this point on, the coupled 

clustering method is systematically applied, followed by detailed examination and evaluation of the 

outcome.  The same data is further analyzed, in the next chapter, through additional algorithmic 

extensions.  The data consists of five corpora, each focusing on a different religion: Buddhism, 

Christianity, Hinduism, Islam and Judaism, to which we apply our methods in order to compare the 

religions to one another and to identify corresponding aspects.  The corpora used here significantly 

extend the ones used by Marx, et al. (2002).   

As we have noted earlier, one of the options for inducing input similarity values is by using co-

occurrence statistics from corpora that are focused on the compared domains.  These can be the same 

corpora from which the clustered keywords are extracted.  In such case, it is clear that each keyword 

appears in its relevant sense or senses.  Hence, context dependent subtleties, such as identical 
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keywords denoting different meanings, can be revealed.  In this case, we rely on the assumption that 

there is a substantial overlap between the features, namely words commonly co-occurring in the two 

corpora, and that at least some of the overlapping features are used similarly within both.  

Specifically, we assume that the corpora to which we refer below – introductory web pages and 

encyclopedic entries concerning religions – contain enough common vocabulary directed towards 

some “average-level” reader, thus enabling co-occurrence-based similarity calculations that are fairly 

informative.  In summary, while pre-given similarity data might typically result from richer statistics 

over a unified set of features, the alternative might fit better the context of the task at hand, but 

depends on rich enough statistics of shared features. 

4.4.2.1   The Data 

The religion data consists of five corpora containing encyclopedic entries, electronic periodicals and 

additional introductory web pages that were downloaded from the Internet.  The five corpora contains 

1.5–2 million word tokens (8.5–13 Megabyte) each.  Using the TreeTagger5 software, we have filtered 

out all function words according to their part-of-speech (POS) and substituted each one of the 

remaining words by its lemma.  This way, each corpus has been shrunk to 0.8–1.2 million tokens 

(5.5–8.5 Megabyte).  More details about the corpora can be found in Appendix A.  In addition to the 

keywords extracted by TextAnalyst software (described above), the elements of the clustered sets 

include keywords that have been provided by comparative religion experts (the data provided by 

experts has been primarily used for quantitative evaluation, see Subsection 4.4.2.3).  The total size of 

each of the final keyword sets is 180–240, of which 15–20% were not extracted by TextAnalyst but 

solely by the experts.  Each keyword is represented by its co-occurrence vector, as extracted from its 

own corpus (so the same keyword that is relevant to two or more corpora has different representation 

with respect to each corpus).  In counting co-occurrences, we have used two-sided sliding window of 

±5 words, truncated by sentence ends (similarly to Smadja, 1993).  On one hand, this window size 

captures most syntactic relations (Martin, Al & van Sterkenburg, 1983).  On the other hand, this scope 

is wide enough to score terms that refer to the same topic in general – and not only literally 

interchangeable terms – as similar (Gorodetsky, 2001), which accords our aim of identifying 

corresponding topics.  Appendix A contains details of some of the features that are most common in 

the corpora.  The keyword sets are introduced through some of their items along with exemplifying 

features and corresponding co-occurrence counts. 

Each one of the clustered keywords is represented by a (sparse) vector, whose entries are the counts of 

the keyword's co-occurrences with each feature.  We have applied to the obtained vectorial 

                                                      
5 TreeTagger – a language independent POS tagger and lemmatizer – is available for download from 

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html. 
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representations the simDMM similarity measure, which incorporates detailed information on the data 

(Dagan, Marcus & Markovitch 1995; Subsection 4.1.2, Eq. 4.8; simL is less detailed in that it only 

distinguishes between features that are present in one of the two vectors: features that are present in 

both do not contribute to the dissimilarity even though the values might be different, while simDMM 

utilizes value differences for features that are positive in both vectors).  After calculating between-

subset similarities, we ran the coupled clustering algorithm on each pair of subsets. 

4.4.2.2   Qualitative Overview of the Results 

Appendix B contains a detailed sample of coupled-clustering results, with number of clusters k = 16, 

including four religion pairs: Buddhism–Christianity, Christianity–Hinduism, Hinduism–Islam and 

Islam–Judaism.  The coupled keyword clusters are ordered by their average similarity in descending 

order.  The poorly clustered elements – those in the 16th cluster with the lowest average similarity – 

are not shown.  We have attached intuitive titles to each cluster for readability and orientation. 

The following post-hoc thematic analysis combines careful examination of the results described in 

this section and some background reading (particularly Smart, 1989; see discussion in Section 4.5).  

The obtained clusters (and additional results that are not shown concerning other religion pairs) 

appear to reflect consistently several themes that share commonalities across the different subsets: 

∗ The religious experience: 

This theme incorporates, for instance, terms referring to spiritual and mental conditions that 

lead to, or are the result of, the search for the religious message or religious belief. 

∗ Theology and philosophy: 

This covers several aspects such as ethics and other basic principles to be followed.  Two 

notable subtopics that are typically expressed through distinct clusters: qualities and attributes 

that are admired, usually related to the nature of the divine and, in contrast, the issues of 

sorrow, suffering, sin and punishment, usually adjoined with terms referring to the reward 

promised to those who do not violate the religious way. 

∗ Institutional organizations: 

This topic covers the various schools and traditions within the religion and, sometimes, the 

history of their development.  It includes, for instance, terms referring to various types of 

priests serving at the particular religion.  It often involves names of places, where the various 

traditions have been originated, or are currently practiced. 

∗ Practice and custom: 

This topic includes ritual aspects of the religion, for instance, terms referring to dietary rules, 

pilgrimage, holy places and festivals. 
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∗ The scriptures: 

In addition to the names of holy writings, there are two notable sub-themes: terms referring to 

teaching and scholarship and terms related to myths and narratives.  The latter sub-theme 

often involves names of figures and places that are related with the narratives. 

Furthermore, keyword coupled clusters are a valuable source for additional specific analyses of varied 

sorts.  We shall exemplify this here only briefly: 

•  Religion founders.  The names of the central figures of each religion are often clustered 

together within the same coupled-cluster.  Whenever such a cluster is not focused on other 

personal names, the cluster's terms often convey prominent attributes of the central figure, thus 

provide in some sense the key to the whole religion – the ideal attribute it adopts.  Examples are 

being, practice and teaching with regard to Buddha, believing, faith, love regarding Jesus Christ 

and messenger, prophet, Quran regarding Mohamed. 

•  Family relations.  Family related terms – family, wife, husband, marriage, mother, sister, 

brother, daughter, child (excluding father and son, which often convey additional meaning) – are 

distributed differently over clusters, in different pairs of religions.  Islam plays a pivotal role with 

relation to these terms.  Clustering Islam terms against those of Christianity and Judaism, the 

family terms are concentrated within a single coupled cluster.  This provides a hint regarding the 

central part of family issues in the Islam, when it is viewed in light of the other western religions 

where comparable aspects are present (in contrast, comparing Christianity and Judaism with one 

another, the same terms are distributed among four different couple clusters).  When Islam is 

compared to Buddhism, the family-related terms are divided among varied contexts: “personal 

relationships” (enemy, fight, meet, responsibility, …), “sin and prohibitions” (forbid, kill , pain, 

punishment, …), “figures in narratives” (Abraham, Ishmael, Moses, caliph, tribe, …). 

We provide further qualitative evaluation of more results concerning comparison of religions in the 

following subsections. 

4.4.2.3   Expert Data Used for Evaluation 

As the previous section explicates, our empirical experiments have been concentrated on the 

comparative study of religions.  In fact, the existence of such a discipline and its presumed potential 

as a source for external standards was an initial reason for applying our framework for religion 

comparison.  The different religions are non-trivially related to one another.  Thus, religions seem to 

be liable to varied types of analysis and views that might underlie interesting correspondences 

between them.  Our working hypothesis is that corresponding aspects of distinct religions would be 

expressed through common features, i.e. commonly shared content words, implying close, or related, 
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meaning.  However, from the data contributed by the experts it also becomes apparent that there is no 

precise definition or consensual agreement with regard to the aspects of correspondence and the 

particular terms capturing them. 

We have asked human subjects, whose academic field of expertise is the comparative study of 

religions, to perform manually the coupled clustering task in the following manner.  The experts have 

been asked to explicate the most prominent equivalent aspects common to given pairs of religions.  

(To convey a broad notion of equivalency, we have included the following phrase in the instructions: 

“… features and aspects that are similar, or resembling, or parallel, or equivalent, or analogous in the 

two religions under examination…”; see Appendix C for the full instructions).  Then, the experts have 

been requested to specify representative terms that characteristically address each one of the identified 

similar aspects, within the content world of the two compared religions.  The resulting pairs of 

corresponding sets, or classes, of terms, each of which addressing one aspect of similarity between 

two compared religions, form our external standard – a class configuration (see Section 3.3).  Such a 

configuration is used for evaluating our results regarding the particular religion pair to which it refers. 

The task of explicating keywords, dissociated from any wider context, was new and somewhat 

unusual to our experts.  We have made efforts not to add on top of that any bias that further 

restrictions might cause. We have provided only rough guidelines regarding the number or content of 

equivalent aspects (i.e. expert classes), and the number and identity of terms that are associated with 

each aspect within each religion (i.e. the size of the coupled clusters; see Appendix C).  We have not 

set limits to the number of equivalent aspects with which any word can be associated. 

We have got responses from four people that have accomplished the task – two graduate students and 

two university professors, from Finland, Israel and New Zealand.  Perhaps due to the pretty 

permissive guidelines, we could not use some parts of the contributed data.  There were several terms 

that did not occur, or occurred rarely (i.e. less than 40 times in the relevant corpus), in our corpora.  A 

particular contribution, by one of the four experts, contained too few prevalent terms and thus has 

been discarded altogether, so we have been left with the expert class configurations contributed by the 

three remaining experts.  One of the experts has provided comparisons between all 10 possible pairs 

of the five religions.  Another expert has provided the following comparisons: Buddhism-Christianity 

Buddhism-Hinduism, Christianity-Islam and Christianity-Hinduism.  The third expert has provided 

the three possible comparisons among Christianity, Islam and Judaism. 

The data in use still included phrases conveying ideas that were far too composite than what we 

expected from key terms (e.g., the phrase not-admiring-something-that-belongs-to-someone-else).  

Most phrases of this type were excluded.  With regard to few of them we made some editorial 
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interpretations.  For example (one of the most extreme cases): identifying the single expert phrase 

obeying-God-and-not-mentioning-his-name-without-a-reason with co-locations of the terms obey and 

God.  Extensive work has been required also for other editing tasks, such as identifying alternating 

spellings.  In total, we discarded from the expert classes about 50 (10%) of the terms contributed by 

the three experts, so that a total of 448 terms were left to be used in the evaluation.  The detailed 

expert data is described further in Appendix C. 

As noted, the field of comparative study of religions does not lend itself to an absolute measure for 

assessing keyword-grouping results, through the experts' contribution.  Accordingly, our external 

standard cannot be regarded as conveying a definite academic directive.  Nevertheless, we suppose 

that our appliance to domain experts have yielded data that is both more reliable and richer than what 

could have been collected from, say, “educated human subjects”.  Note that even for experts the task 

of identifying corresponding themes in religions is intrinsically subjective, most likely because their 

skills do not underlie clear-cut criteria.  The fact that we have used data from three participants allows 

us to provide some notion of the maximal level of precision that we can, in principle, get. 

4.4.2.4   Examples of Expert Data versus Coupled Clustering Output 

Table 4.2 shows concrete examples for our results in comparison to the expert data used for 

evaluation.  The top of the table (A) displays a specific coupled class configuration contributed by one 

of the experts, pertaining to Christianity to Hinduism.  The expert configuration is followed by the 

output of our method.  The next two configurations, in (B) and (C), have been produced by our 

coupled clustering algorithm, making use of the multiplicative H3 and additive H2 cost functions 

respectively.  Although the expert configuration consists of five clusters, the most convincingly 

interpretable results, shown in the table have been obtained with eight clusters.  The table 

demonstrates that reconstruction of the expert configuration follows, in several cases, the right 

direction, but it is still imperfect.  There are several expert classes – e.g., the one titled “mysticism” – 

for which no trace is found in the various computerized outputs.  On the other hand, computerized 

configurations display some level of topical coherence, unrelated with the expert clusters, for 

example, the cluster that we have titled religious experience in Table 4.2 (B), referring to the 

multiplicative function performance.  The “one-to-many” coupled-clusters produced by the additive 

cost function (C) do reveal, as well, some interesting themes: symbols, doctrine, theological principles 

and so on.  The themes captured, however, are not balanced well over the two religions and 

consequently do not overlap well with the expert classes, even in cases where there is some thematic 

correspondence.  For comparison with standard single-set clustering, we used the IB method reviewed 

in the next chapter (Section 5.2).  The standard clustering results in Table 4.2 (D), place all Hinduism 

terms in one cluster, which disallow the detection of any correspondence between the two religions. 
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Table 4.2: Examples of the expert data and coupled clustering results. 

(A) Expert class configuration: The class configuration, comparing Christianity to Hinduism, contributed by 
expert I.   The titles are those given by the expert. 

Christianity Hinduism 
 1. Scriptures 
new_testament old_testament apostle bible john 
luke matthew paul revelation  

Gita mahabharata upanishad vedas  

 2. Beliefs and Ideas 
jesus_christ love_of_god devil god cross 
fish heaven  hell resurrection trinity  

holy_people trimurti moksha atman  

brahman reincarnation 
 3. Society and Politics 
catholic church  minister monk  priest protestant 
rome  vatican  

brahmin caste sadhu 

 4. Establishments 
bishop cardinal church pope priest  caste gift prie st temple 
 5. Mysticism 
eucharist crucifixion love miracle saint suffer  ashram chakra darshan guru yoga 

 

(B) Multiplicative cost function : Eight-cluster configuration produced by our program with the multiplicative 
function (the best score was obtained for this eight-cluster configuration, although the expert specified five classes).  
The eighth cluster, of lowest average intra-cluster similarity, is omitted from the multiplicative cost function results.  
The remaining seven clusters are shown in full.  The results are shown in full, including terms not used by the expert.  
(Cluster titles are by the author). 

Christianity Hinduism 
 (1. religious experience) 
being believing child death earth faith father 
find god 2 hear holy jesus love 5 man people 
prayer problem sin soul spirit suffer 5 word  

being child death fami ly find god 
human man people soul  

 (2. writings–1) 
america bible 1 book church 3,4  
evangelical history religious rome 3 
theology tradition write  

ancient art author book christian country history 
india language philosophy question religion 
religious sacred  sanskrit school science shri 
south study temple 4 tradition vedas 1 west write  

 (theology) 
divinity doctrinal experience human 
moral relationship religion 
spiritual 

animal attain brahman 2 consciousness dharma 
discipline divinity existence experience fait h 
freedom idea karma law liberation practice ritual 
sense shiva social society spirit spirituality 
teach universe word yoga 5  

 (writings–2) 
author chapter greek hebrew luke 1 
matthew 1 new_testament 1 old_testament 1 
passage revelation 1 scripture study text 
theory translate writer writing  

epic gita 1 hymn literature mahabharata 1 
purana ramayana rigveda scripture story sutra 
teaching text upanishad 1 writing  

 (doctrine / schools) 
ancient baptist bishop 4 catholic 3 
constantinople convert council establish foun d 
german jew luther organization orthodox pope 4 
protestant 3 university vatican 3 west  

aryan authority brahmin 3 buddhism 
caste 3,4  civilization doctrine found 
founder jain muslim scholar shaiva  

 (tradition / cutoms) 
christmas city disciple family friend 
home house jerusalem learn meet member 
minister 3 ministry school service sunday 
woman worship  

ashram 5 ceremony dance festival ganesh gift 4 
holy krishna learn meditation pilgrimage 
prayer priest 4 puja rama sadhu 3 son star 
student teacher  

 (narratives) 
abraham angel apostle 1 authority baptism baptize believer birth 
bless blood command confess devil 2 eat eye face faithful fire flesh 
forgiveness gift gospel grant heaven 2 hell 2 holy_ spirit israel 
jesus_christ 2 john 1 judgment kingdom law listen mankind moses m other 
paul 1 pay peace preach prophet punishment question redem ption refer 
repentance resurrection 2 reward righteousness sabbath sacrifice 
saint 5 sake salvation savior sinful sinner teach voice wa ter win  

birth devotee 
earth   guru 5 
heaven mother 
person sacrifice  
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Table 4.2 (cont.): Examples of the expert data and coupled clustering results 

(C) Additive cost function: Eight-cluster configuration produced by our program with the additive function.  All 
clusters are displayd, but terms not used by the expert are shown only in the cases they are the only ones in their cell.  
Expert terms are in bold font. Superscripts inticate expert class number.  (Cluster titles are by the author). 

Christianity Hinduism 
 (1. spirituality) 
spiritual guru 5 yoga 5  
 (2. religious ) 
religious ashram 5 brahmin 3 caste 3,4  priest 3,4  temple 4 
 (3. personal experience) 
apostle 1 bible 1 devil 2 god 2 hell 2 jesus_christ 2 john 1 
love 5 love_of_god 2 paul 1 resurrection 2 suffer 5   

Person 

 (4. history – writings) 
history gita 1 mahabharata 1 upanishad 1 vedas 1 
 (5. establishments) 
church 4 minister 3 saint 5  Devotee 
 (6. symbols) 
cross 2 fish 2 heaven 2 miracle 5 Heaven 
 (7. doctrine) 

bishop 4 cardinal 4 catholic 3 crucifixion 5 eucharist 5 
luke 1 matthew 1 monk3 new_testament 1 old_testament 1 
pope 4 priest 3,4  protestant 3 revelation 1 rome 3 vatican 3  

doctrine 

 (8. theological principles) 
trinity 2 atman 2 brahman 2 chakra 5 darshan 5 gift 4 holy_people 2 

moksha2 reincarnation 2 sadhu 3 trimurti 2 

 

(D) Single set clustering: Eight-cluster configuration produced by a standard clustering method (the information 
bottleneck iterative algorithm, producing soft clusters (Section 5.2); each term is assigned into its most probable 
cluster).  The Hinduism terms were all assigned in one cluster, so only Christianinity terms are shown.  Exemplifying 
terms not used by the experts are shown only in the cases where there have been no expert terms in their cluster.  
Expert terms are in bold font. Superscripts indicate expert class number.  (Cluster titles are by the author). 

Christianity Hinduism 
 (1. establishment-A) 
vatican 3 pope 4 cardinal 4 rome 3 bishop 4 catholic 3 protestant 3   
 (2. customs/<general for Hinduism> ) 
trade pilgrimage 

[All Hinduism terms were 

assigned to cluster 2] 

 (3. spirituality) 
holy_spirit holy reign spirit   
 (4. establishment-B) 
church 4 monk3 eucharist 5   
 (5. writings/figures) 
 luke 1 matthew 1  
 (6. doctrine) 
postmodern theology luther evangelical ethic tradit ion 
religious religion founder 

 

 (7. <general>) 
apostle 1 bible 1 devil 2 god 2 hell 2 jesus_christ 2 john 1 love 5 
love_of_god 2 paul 1 resurrection 2 suffer 5 minister 3 saint 5  cross 2 

fish 2 heaven 2 miracle 5 crucifixion 5 priest 3,4  revelation 1 trinity 2 

 

 (8. sacred writings) 
new_testament 1 old_testament 1  
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4.4.2.5   Quantification of the Overlap with the Expert Data 

We employed the Jaccard coefficient to quantify the overlap between our output clusters and the 

classes provided by the experts.  We used the version of Jaccard coefficient that is specifically 

adapted to the coupled clustering task, considering only cross-dataset element pairs (JACCARD-PROB-

CP; see Chapter 3, Subsection 3.3.2.2).  In order to lay common grounds for measuring the overlap, 

we eliminated from our clusters those terms that were not used by the expert.  Note that the data was 

clustered in full, so that the terms not used by the expert were deleted from the outcome, after the 

clustering process was completed.  This procedure differs from the one used by Marx et al. (2002), 

where the clustering algorithm was applied to partial datasets that included only expert's terms.  

Considering the noisy impact of those many items that are not in the target classes (about 400 items 

per couple of full datasets, compared to an average of 54 expert items used in each evaluation), the 

current procedure demonstrates a higher degree of robustness. 

We compared coupled clustering results obtained with the multiplicative cost function H3 to the 

additive function H2, as well as to random assignments and to the clusters produced by standard 

clustering method – the information bottleneck iterative algorithm (Tishby, Pereira & Bialek, 1999; 

reviewed in Chapter 5, Section 5.2) – applied to the union of the two coupled subsets.  The 

information bottleneck method produces soft probabilistic clustering, i.e., it assigns each element to 

all clusters with probabilistic assignment values that sum up to 1.  We turned these probabilistic 

assignments into hard ones, by considering each element as if it is assigned into its most probable 

cluster.  The original soft IB clusters can be evaluated through the methods we use as well, but in 

general, they score somewhat worse than the hard version. 

Figure 4.4 displays the results for all 17 evaluation cases examined.  High Jaccard coefficient values 

imply high degree of overlap with the expert classes.  The number of clusters indicated by each 

expert, which is denoted in the figure by a dotted vertical line, does not perfectly predict the number 

of clusters that actually obtain the highest score, so it cannot be assumed known in advance.  We 

rather examine output configurations with numbers of clusters that vary over a reasonable 

predetermined range: two to 16 clusters.  Averaged over all shown cluster numbers across all religion 

pair cases, the differences between the methods are all statistically significant, except for the 

difference between the additive cost function and the standard single-set clustering.  Particularly, 

Figure 4.4 exhibits the superiority of the multiplicative cost in the vast majority of cases, over the 

whole cluster number range.  In some cases, additionally to the highest scoring configuration, there 

are local picks (maxima) along the result graph, indicating that there is more than one meaningful 

interpretation to the data, corresponding to different levels of detail. 
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Figure 4.4:  The religion keyword coupled-clustering results evaluated relatively to the expert 

classes.  Jaccard scores are shown for cluster numbers range from two to 16, for all 17 cases: ten by 

expert I, four by expert II and three by expert III.  The methods in use: coupled clustering with the 

multiplicative and additive cost functions, and a standard clustering method (information 

bottleneck).  Scores of random assignments are shown as well. 

In most cases, the additive-cost and standard-clustering Jaccard scores shown in Figure 4.4 lie below 

the corresponding random-assignment scores.  The reason is that the version of Jaccard coefficient 

used here considers only cross-dataset element pairs (Chapter 3, Subsection 3.3.2.2).  The additive 

cost function tends to form “one-to-many” coupled clusters, i.e., clusters that contain only one, or 

very few, elements from one of the datasets (for an example, see Table 4.2 (C) ).  Standard clustering, 

as well, tends to follow within-dataset regularities, inducing similarly imbalanced clusters. 

 

Expert I: Buddhism vs. Christianity Expert I: Buddhism vs. Hinduism Expert I: Buddhism vs. Islam 

Expert I: Buddhism vs. Judaism Expert I: Christianity vs. Hinduism Expert I: Christianity vs. Islam 

Expert I: Christianity vs. Judaism Expert I: Hinduism vs. Islam Expert I: Hinduism vs. Judaism 

Expert I: Islam vs. Judaism Expert II: Buddhism vs. Christianity Expert II: Buddhism vs. Hinduism 

Expert II: Christianity vs. Hinduism Expert III: Christianity vs. Islam Expert II: Christianity vs. Islam 

Expert III: Christianity vs. Judaism Expert III: Islam vs. Judaism multiplicative cost  

additive cost  

random clusters 

the number of clusters 
indicated by the expert 

standard clustering 
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4.4.2.6   Agreement between the Experts 

 

Figure 4.5:  The religion keyword coupled-clustering results evaluated on partial sets of terms: those 

used by two experts for the same cross religion comparison.  The Jaccard scores of the 10 cases are 

shown for all cluster numbers from two to 16, three common to experts I and II, three common to 

experts I and III and one common to experts II and III.  For comparison, we show the level of 

agreement between the experts, i.e., the Jaccard score each expert configuration achieves in 

approximating the classes provided by the other expert. 

In this subsection, we quantify the subjectivity level that can be ascribed to the evaluation criterion in 

use and we examine the portion of our results comparable with the limits set by this subjectivity level.  

There was one religion pair (Christianity/Islam) to which all three experts generated evaluation data 

independently and five additional religion pairs to which two experts generated data independently 

(Buddhism/Christianity, Buddhism/Hinduism and Christianity/Hinduism by expert I and II; 

Christianity/Judaism and Islam/Judaism by experts I and III).  Together, evaluating data of an expert 

against data regarding the same religion pair contributed by another expert gave a total of 16 

evaluation cross-expert evaluation cases: ten cases resulting from the religion pairs addressed by two 

experts and six cases from the pair addressed by all experts, as this religion pair was actually 

addressed by three pairs of experts.  Note that each expert pair was judged twice, taking one expert as 

a gold standard and the other expert as the one being evaluated.   

Evaluating expert data through comparing it to data of another expert measures cross-expert overlap 

over the set of terms used in common by both experts, thus such evaluation results provide an 

indication for the level of agreement between the experts.  Figure 4.5 displays the Jaccard scores 

indicating these cross-expert agreement levels for each pair of religions, along with the results 

multiplicative cost relatively 
to the first expert 

the second expert 
relatively to the first one 

the first expert relatively 
to the second one 

multiplicative cost relatively 
to the second expert 

Expert III/I: Islam vs. Judaism Expert III/I: Christianity vs. Islam Expert II/I: Buddhism vs. Christianity 

Expert II/I: Buddhism vs. Hinduism Expert II/I: Christianity vs. Islam Expert III/II: Christianity vs. Islam 

Expert III/I: Christianity vs. Judaism Expert II/I: Christianity vs. Hinduism 
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obtained by our method on the same small sets of commonly used terms.  In order to set common 

grounds to our results with cross-expert agreement, after the clusters were formed the terms not used 

by either expert were discarded from our clusters, so that the term sets left are much smaller than the 

ones used for evaluation in the previous subsection.  The figure shows that our results approach the 

cross-expert agreement level in some of the cases.  However, the averaged results in table 4.4 show 

that even the best clustering results for each case (over the range of number of clusters) are 

significantly inferior to the agreement between experts.  In the next chapter, these results would be 

significantly improved. 

Table 4.4: Quantitative measures for cross-expert agreement, obtained through applying the 

evaluation methods to expert-classes using another expert class configuration as a criterion.  For 

comparison, we show mean scores of our results with respect to the 16 corresponding religion 

comparison cases, to which an additional expert has referred.  The evaluation is restricted to the 

items common to both experts.  In parentheses: the average over the best score of each case. 

 Jaccard Coefficient 

 Means ±±±± standard deviations for cross-expert agreement quantitative assessment 

Cross-expert Agreement 0.4500.4500.4500.450±0.249 
 Means ±±±± standard deviations over the 16 cross-expert scores averaged (best ) over all examined numbers of clusters 2–16    

Multiplicative Cost 0.2370.2370.2370.237±0.101  (0.344±0.114) 

Difference: Expert − Multiplicative 0.2140.2140.2140.214±0.194  (0.106±0.193) 

 

4.5  Discussion 

In this chapter we have formalized and implemented the coupled clustering problem that was 

introduced in general terms in the previous chapter: clustering two pre-given element subsets to 

matching parts so that each matched pair forms a coupled cluster.  Formalization of the task  took 

place in the familiar pairwise cost-based data clustering framework (Subsection 4.2.2).  The 

implementation has used the stochastic Gibbs Sampler search method (Subsection 4.2.4).  The 

requirement of matching the formed subset parts has been realized through restricting the pairwise 

clustering setting to only those similarities between members of distinct subsets (Subsection 4.2.1). 

The results demonstrate that our approach addresses the coupled clustering task fairly well, not only 

with respect to tailored synthetic task (Section 4.3), but also for tackling an interesting real-world 

problem (Section 4.4).  Neither standard clustering techniques nor simplistic approach, such as the 

one suggested by the straightforward additive cost function (Eq. 4.11), address the examined task as 
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well as the solution dedicatedly designed for the problem, namely the multiplicative cost function (Eq. 

4.14).   

The expertise of the individuals that participated in creating our evaluation criteria did not completely 

eliminate the subjectivity inherent to the task of identifying and matching terms related with various 

religions.  Given the inherently subjective task and the lack of clear-cut criteria for matching 

equivalent terms or themes within the studied data, we find the results encouraging and inherently not 

too far from the level of agreement among the experts. 

Yet, several aspects in the method that we have introduced seem as non-negligible limitations.  There 

is a source of information, the between-subset similarities, which are not utilized at all.  Should they 

really play no role in the formed correspondence between systems aligned with respect to each other?  

Another point to note is that the conversion from element-feature data to pairwise similarities 

(through methods as the ones described in Subsection 4.1.2) implies additional loss of information. 

In the next chapter of this work, we introduce another method that generalizes the coupled clustering 

setting across several aspects and, in addition, addresses the points we have mentioned. 
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Chapter 5Chapter 5Chapter 5Chapter 5: Cross: Cross: Cross: Cross----partition Clusteringpartition Clusteringpartition Clusteringpartition Clustering    

In this chapter, we move on from the elementary setting of the coupled-clustering approach described 

in the previous chapter to a more general approach, termed cross-partition (CP) clustering.  Section 

5.1 below details the differences between coupled clustering and the CP framework.  After a detailed 

review in Section 5.2 of methods grounding our approach, Section 5.3 introduces the CP method.  The 

method is demonstrated experimentally in Section 5.4 and is discussed further in the concluding 

Section 5.5. 

5.1   Cross Partition versus Coupled Clustering 
The CP setting generalizes some aspects of the problem treated by the coupled-clustering method.  

The aspects by which cross-partition clustering differs from the coupled-clustering method are: 

- Cross-partition clustering is in general “soft”.  A data element can be assigned to several 

clusters, in varying assignment levels, at the same time.  Specifically, the assignments are 

probabilistic, i.e., the assignment levels of any given element associating it with all clusters are all 

non-negative and sum up to 1 (see Chapter 2, Subsection 2.1.2.2). 

- The coupled-clustering framework models analogies through producing clusters that contain 

elements of two distinct subsets of the data.  However, other than the convention of thinking 

about analogies as involving two systems, there is no inherent reason for restricting the setting to 

two subsets.  The cross-partition clustering setting allows pre-given partitioning of the data 

element set to more than two subsets, across which correspondences are to be drawn (talking 

about ‘correspondence’ might seem more appropriate than ‘analogy’ for this generalized setting). 

- Formally, the cross-partition approach allows also ‘soft’ pre-partitions: elements can be 

probabilistically assigned to some or all of the pre-given subsets (which should not be confused 

with probabilistic assignments to clusters).  Our experimental work, however, was restricted to 

the hard pre-partition setting. 

- Another characteristic attribute of the coupled-clustering framework is that it assumes given 

pairwise similarity values that apply to pairs of elements of the two pre-given subsets.  While in 

principle data might happen to be readily available in this form, our practical experience was with 

data consisting of co-occurrence counts of data elements with features.  Co-occurrence counts can 

provide basis for calculating pairwise similarities (see Chapter 2, Subsection 2.1.3.4 and Chapter 

4, Subsection 4.1.2), but they can be utilized also more directly.  The cross-partition clustering 
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setting processes element-feature count distributions rather than pairwise similarities.  Thus the 

mediating stage of computing similarities, which necessarily implies loss of information, is 

avoided. 

- One last noticeable aspect of the coupled clustering method is that it ignores the whole 

collection of within-subset similarities altogether.  The cross-partition method tackles the 

neutralization of within-subset regularities in a more principled manner. 

5.2   Background: Information Theoretic Approaches 
The CP method takes an information-theoretic approach to data clustering, which is related with the 

“communicative” aspect of data clustering (see Chapter 2, Subsection 2.1.1).  Particularly, we 

elaborate on the information bottleneck data clustering method (IB, Tishby, Pereira & Bialek, 1999; 

Gilad-Bachrach, Navot & Tishby, 2003) and on an earlier variation on the same distributional-

clustering theme (Pereira, Tishby & Lee, 1993), which has been recently studied further under the 

name Information Distortion clustering (ID, Gedeon, Parker & Dimitrov, 2003). 

In Section 5.2.1, we discuss the ID method, which is taken as the basis for our elaboration, with an 

emphasis on the role of the maximum entropy principle (Jaynes, 1982) in this method.  As the two 

methods are tightly related, some results obtained originally with regard to the IB method are cited as 

well.  In Section 5.2.2, we refer more specifically to the IB method, which underlies additional 

variants of our CP algorithm.  Both methods are described as aiming at minimization problems (rather 

than constrained minimization or other types of optimization).  One further development around the 

IB theme, directly relevant to the CP task, is the method of information bottleneck with side 

information (IB-SI, Tishby & Chechik, 2003), reviewed in Section 5.2.3. 

5.2.1   The Information Distortion Method 

The ID method was introduced, under the name distributional clustering, by Pereira, Tishby & Lee 

(1993) and has recently been studied further by Gedeon, Parker & Dimitrov (2003).   

5.2.1.1   Input and Output 

As a probabilistic clustering method (see Chapter 2, Subsection 2.1.4.6), the ID method employs 

formal random variables X, Y and C with values ranging over all data elements, features and cluster 

labels, respectively.  The relative frequency p(x) of each data element x to occur in the given dataset 

and the conditional probabilities p(y|x) of each feature y to occur in association with each element x 

are given as input.  Based on this input, the ID method outputs a probability distribution p(c|x) over 

the clusters for each element x.  This distribution defines x's “assignment level” or “association level” 

with each cluster c.  In addition, the ID method constructs conditional probability distributions, p(y|c), 
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over all features for every cluster c.  The p(y|c) distributions can be considered as supplementary 

output, specifying a representative for each cluster c, a centroid in the feature space (Subsection 

2.1.4.4). 

5.2.1.2   Underlying Principles and Formulation 

The ID method designates the relevance features as the sole basis for directing the formation of 

clusters: clusters are formed so that they are optimally informative with regard to the feature 

distribution.  In order to determine the assignments of data elements into the formed clusters, the ID 

method applies also the maximum entropy principle (Jaynes, 1982) constrained by the first direction. 

Many optimization problems (including data clustering, see Chapter 2, Subsection 2.1.4.2) are 

formulated so that they are solvable through minimization of a cost term or a Lyapunov function 

(often, the minimum practically obtained is local, implying sub-optimal solution).  The ID method, as 

well, accomplishes the counterbalance between the two above principles, feature relevance and 

maximum entropy, through minimizing a single cost term – the ID functional: 

FID   ≡   − H(C|X) + β Ĥ(Y|C) . (5.1) 

β > 0 is a parameter counterbalancing the relative impact of the two principles.  H(C|X) is the entropy 

of cluster distribution conditioned on the distribution of data elements 

H(C|X)   ≡   − ∑c,x p(c,x) log p(c|x)   =   −∑x p(x) ∑c p(c|x) log p(c|x) , (5.2) 

where x and c range over all possible values of the variables X and C, i.e., the sum runs over all 

cluster-element combinations.  Ĥ(Y|C) is defined as 

Ĥ(Y|C)   ≡   − ∑c,x p(c,x) ∑y p(y|x) log p(y|c)   =   − ∑x p(x) ∑c p(c|x) ∑y p(y|x) log p(y|c) . (5.3) 

The conditional entropy H(C|X) is the expected length of a transmission, communicating that C has 

the value c under the assumption that the value of X is known to be x.  It quantifies the overall 

information that the data variable X leaves unexplained with regard to the cluster variable C, or in 

other words, the level of uncertainty regarding cluster distribution knowing the data distribution (see 

Thomas & Cover, 1991, p. 20)1.  Following the maximum entropy principle, the goal of the ID 

method is to maximize this uncertainty expressed by H(C|X) (subject to the constraint).  Accordingly, 

the ID method seeks to minimize the FID term, which counterbalances minus H(C|X) against Ĥ(Y|C). 

                                                      

1 In general, the definition in Eq. (5.3) employs base 2 logarithm.  However, as a change in the logarithm base 

adds a constant to the conditional entropy and other related values, we prefer to use throughout this chapter the 

natural log, which somewhat simplifies mathematical derivations. 
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The Ĥ(Y|C) term introduces the constraint of forming clusters that are informative with regard to the 

features (Ĥ(Y|C) = 0, for instance, implies that the clusters completely determine the feature 

distribution).  It incorporates an expected value of p(y|c) distributions, averaged over the feature 

distribution p(y|x) relatively to each data element x. 

The ID method follows one further assumption that we term here the ID conditional independence 

assumption (also known as the markovity assumption, Gilad-Bachrach, Navot & Tishby, 2003), 

stating that clusters and features are assumed independent given the data: 

p(c,y|x)   =    p(c|x) p(y|x) (5.4) 

for each x, c and y.  (Equivalently, one may require that clusters and features would share zero mutual 

information given the data: I(C;Y |X) = 0.2)  Taking the expected value over all x of both sides of Eq. 

5.4, we get 

p(c,y) = ∑x p(x) p(c,y|x) = ∑x p(x) p(c|x) p(y|x) . (5.5) 

It follows that under the conditional independence assumption, Ĥ(Y|C) is exactly equal to the entropy 

H(Y|C) of feature distribution conditioned on the clusters: 

H(Y|C)   ≡   − ∑c,y p(c,y) log p(y|c)   = 

             − ∑c,y ( ∑x p(x) p(c|x) p(y|x) ) log p(y|c)   =   Ĥ(Y|C) , 

(5.6) 

where c and y range over all possible values of the variables C and Y, i.e., the sum runs over all 

cluster-feature combinations.  Therefore, if the independence assumption holds (which turns to be the 

case, as shown in the next subsection), we can rewrite FID (Eq. 5.1) as 

LID   =   − H(C|X) + β H(Y|C) . (5.7) 

In conclusion, given that the independence assumption is satisfied, the ID method maintains a 

counterbalance between maximizing H(C|X), to keep high uncertainty level regarding assignments 

into clusters, and minimizing H(Y|C).  H(Y|C) measures the uncertainty about the feature distribution 

                                                      

2 The explicit formula for the equivalent form of the conditional independence assumption is: 

I(C;Y|X)  = ∑ ∑
x yc xypxcp

xycp
xycpxp

, )|()|(

)|,(
log)|,()(  =  0 . 

If for all c, x and y p(c,y|x) = p(c|x) p(y|x) (≠ 0) then the arguments of all log terms in the sum are equal to 1 and 

hence I(C;Y|X) = 0.  Suppose now I(C;Y|X) = 0.  Mutual information amounts to a sum of KL divergences, each 

of which is non-negative and is equal to zero if and only if its arguments are identical distributions (Cover & 

Thomas, 1991 p. 19), i.e., p(c,y|x) = p(c|x) p(y|x) for all c, x and y. 
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left after revealing cluster distribution and, therefore, minimizing H(Y|C) realizes the principle with 

which this subsection opens: clusters are expected to be informative about feature distribution.  As 

explained, the ID method follows this principle restrictedly: minimizing FID indeed decreases the 

above uncertainty so that formed clusters are informative with regard to the feature distribution, but 

only up to the level enabled by the maximum-entropy directed element assignments. 

5.2.1.3   The ID Algorithm 

The iterative ID algorithm was originally introduced by Pereira, Tishby & Lee (1993).  The algorithm 

consists of two steps that update the p(c|x) and p(y|c) distributions, each in its turn, so that they 

accomplish the weighed balance between minimizing H(Y|C) and maximizing H(C|X), through 

consistent decrease of the FID value. 

Set t = 0, and repeatedly iterate the two update-steps sequence below, till convergence (at time step 

t = 0, initialize pt(c|x) randomly or arbitrarily and skip step ID1): 
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where    pt(c)  =  ∑x t xcpxp )|()(  

t     = t + 1 

Figure 5.1: The iterative ID clustering algorithm (with fixed β, and |C|). 

At the starting iterative cycle, when t = 0, the ID1 step just initializes the p(c|x) distributions randomly 

or arbitrarily.  At all later cycles (with t > 0), step ID1 updates all p(c|x) values leaving p(y|c) 

unchanged, so that the value of FID (Eq. 5.1) decreases as the following lemma shows.  The second 

part of this lemma affirms that step ID2, which updates the p(y|c) values leaving p(c|x) fixed, 

decreases the value of FID as well. 
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Lemma 5.1: 

(A) At any iterative cycle with t > 0, update step ID1 decreases the value of FID by 

∆FID1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] . (5.8) 

(B) Update step ID2 decreases the value of FID by 

∆FID2
t   =   β ∑c pt(c)KL[pt(y|c)||pt−1(y|c)] . (5.9) 

Proof: see Appendix D (the proof of part (A) is original; (B) follows Gilad-Bachrach, Navot & 

Tishby, 2003)) �  

Note that step ID2 affects only one of the components of FID, namely Ĥ(Y|C), as the other component 

of FID, H(C|X), does not depend on p(y|c).  Step ID2 imposes the conditional independence 

assumption (Eq. 5.5).  Therefore, at the end of each iterative cycle also the alternative formulation of 

FID (Eq. 5.7) is guaranteed to decrease (ID1 is only assured to decrease the value of FID as given in 

Eq. 5.1, as the independence assumption does not hold). 

Lemma 5.2 (following Tishby, Pereira & Bialek, 1999): Stable points of the ID algorithm (i.e., 

probability distributions that remain unchanged under the update steps, so that pt+1(c|x) = pt(c|x) and 

pt+1(y|c) = pt(y|c) for all c, x and y) are local extremum points of  FID (Eq. 5.1). 

Proof: see Appendix D �  

Conclusion: The ID algorithm converges to a local minimum of FID (unless initialized to an extremal 

point of a different type). 

Proof:  From lemma 5.1, the value of FID decreases in each iterative cycle of the ID algorithm (with 

t > 0) by a non-negative quantity ∆FID
t = ∆FID1

t + ∆FID2
t .  As − H(C|X) ≥ − H(C) ≥ − log |C| and 

β H(Y|C) ≥ 0, the value of FID is bounded from below and the algorithm converges to a locally 

minimal value (unless initialized to a stable value that is not minimal).  From Lemma 5.2 it follows 

that those probability distributions, p(c|x) for each x and p(y|c) for each c, assigning to FID its stable 

value at the ID algorithm convergence point3 define an extremal, hence (locally) minimal, point of 

FID. �  

The ID algorithm is a version of the k-means scheme described in Chapter 2 (Subsection 2.1.4.4).  

Step ID1 assigns each element to each cluster in proportion to their similarity in the feature space as 

                                                      

3 Gilad-Bachrach, Navot & Tishby (2003) show that, assuming the number of local minima is finite, the 

convergence is onto particular definite limit distributions (otherwise, it could have been the case that the 

sequence of distributions assigning the converging sequence of values to FID do not converge). 
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calculated in the previous update cycle.  More concretely, each assignment pt(c|x) is in inverse 

proportion to the KL divergence between the feature vector representation of x ( p(y|x) ) and the 

centroid of c as calculated in the last iterative cycle ( pt−1(y|c) ).  The KL divergence is not an arbitrary 

dissimilarity measure, even though the general k-means scheme allows such arbitrariness.  Rather, the 

KL divergence emerges from the ID cost term, so that it is particularly tailored to address the 

considerations underlying this cost.  Step ID2 updates the pt(y|c) distributions so that they satisfy the 

conditional independence assumption and they are consistent with the input and the recently 

calculated pt(c|x) distributions. 

5.2.1.4   Controlling the Number of Clusters by Modifying the Value of β 

The value of the parameter β governs the tendency of the re-assignments performed by step ID1 to be 

probabilistic or deterministic.  With β = 0, implying that only the H(C|X) part of FID is articulated, 

assignments of each element x to all clusters c are in equal probability (so all clusters are in fact 

identical) as the unconstrained maximum entropy principle entails.  For larger β values, assignments 

turn more discriminative.  In the limit of β → ∞, each element is assigned, with probability 1, to a 

distinct singleton (assuming the number of clusters |C| is allowed to be as large as the number of data 

elements |X| and unless there are elements with identical feature representations). 

In between the above two extreme cases of zero and infinity, the value of β dictates the number of 

distinct clusters that can be formed in a manner resembling thermodynamics of physical systems, 

where β takes a role that is opposite to that of temperature.  The higher β is, i.e., the stronger is the 

bias to construct clusters that convey detailed information regarding feature distribution, a larger 

number of distinct clusters is enabled.  Specifically, for any given number of clusters |C| = 2, 3, …, 

there is a minimal β value enabling the formation of |C| distinct clusters.  Setting β to be smaller than 

this critical value corresponding to the current |C| would result in two or more duplications of the 

same cluster.  Once β is raised just above the critical value, the same cluster would not duplicate any 

more: it splits, or bifurcates, to two distinct clusters due to the stronger emphasis on the requirement 

to convey feature information. 

Based on the above dynamics, the iterative algorithm can be applied repeatedly within a gradual 

cooling-like, or deterministic annealing, scheme: starting with random initialization of the p0(c|x)'s, 

generate two clusters, to be discovered empirically, with the critical β value for |C| = 2.  Then, use a 

perturbation on the obtained two-cluster configuration to initialize the p0(c|x)'s for a larger set of 

clusters and execute additional runs of the algorithm to identify the critical β value for the larger |C|.  

And so on: each output configuration is used as a basis for a more granular one.  In our actual 

experiments, we always split one cluster – the largest one (of highest p(c)) – so each output 
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configuration includes one cluster more than its predecessor.  The final outcome is a “soft hierarchy” 

of probabilistic clusters. 

5.2.2   The Information Bottleneck Method 

The IB method interprets clustering as a distorted representation, optimized for conveying the 

meaningful part of the information embodied within given data.  In their presentation, Tishby, Pereira 

& Bialek (1999) base the IB method on the notion of mutual information rather than the conditional 

entropy we use.  They define the IB cost term to be minimized (the IB functional) as 

LIB  =  I(C;X) − β I(Y;C) . (5.10) 

As I(C;X) = H(C) − H(C|X) and I(Y,C) = H(Y) − H(Y|C), it turns that FIB closely resembles the ID cost 

term FID (Eq. 5.7).  The two terms differ by subtraction of β H(Y), which is a constant depending on β 

and the data, and by addition of H(C) that is not a constant factor.  Note that taking Eq. 5.10 as the IB 

cost term presumes an independence assumption, the same as in the ID method (Eqs. 5.4, 5.5).  Gilad-

Bachrach, Navot & Tishby (2003) explicate a Lyapunov function (corresponding to Eq. 5.1) that does 

not depend on this assumption. 

As the IB and ID cost terms resemble each other, also the iterative IB algorithm that finds a local 

minimum for FIB is similar to the ID algorithm (Figure 5.1): 

Set t = 0, and repeatedly iterate the three update-steps sequence below, till convergence (at time step 

t = 0, initialize pt(c|x) randomly or arbitrarily and skip step ID1): 
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t     = t + 1 

Figure 5.2: The iterative IB clustering algorithm (with fixed β, and |C|). 

There are two differences between the IB algorithm and the ID algorithm.  The IB algorithm includes 

a separate step for calculating pt(c).  In the ID algorithm, the same calculation actually takes place but 

pt(c) has the mere role of a normalization factor.  The other difference is that a prior of pt−1(c) is added 

to the term calculated in update step IB1.  We hence occasionally refer to the IB algorithm as a 
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priored version of the ID algorithm, and to the ID algorithm as a non-priored version of the IB 

algorithm. 

Lemma 5.3: The update cycle at time t decreases the value of LIB (Eq. 5.10) by 

∆FIB1
t + ∆FIB2

t + ∆FIB3
t, where 

(A) ∆FIB1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] ,  

(B) ∆FB2
t   =   KL[pt(c)||pt−1(c)] , 

(C) ∆FB3
t   =   β ∑x pt(c)KL[pt(y|c)||pt−1(y|c)] . 

(5.11) 

Proof: Minimizing LIB is equivalent, under the appropriate independence assumption (Eq. 5.5), with 

minimizing the following term  

FIB    ≡    H(C) − H(C|X) + β Ĥ(Y|C) . (5.12) 

(Ĥ is as in the definition in Eq. 5.3).  It can be shown that step IB1 decreases FIB by ∆FIB1
t and step 

IB-3 decreases it by ∆FIB3
t, following the same argumentation as in Lemma 5.1 (A) and lemma 5.1 

(B), respectively.  A proof that step IB2 decreases FIB by ∆FIB2
t, which relies on argumentation similar 

to that of the proof of lemma 5.1 (B), is given by Gilad-Bachrach, Navot & Tishby (2003). �  

Lemma 5.4 (Tishby, Pereira & Bialek, 1999): Stable points of the IB algorithm are locally extremal 

points of FIB (Eq. 5.10). 

Proof: The same idea as in the proof of Lemma 5.2 above (proved in Appendix D). �  

From Lemmas 5.3 and 5.4, proof of convergence for the IB algorithm follows, as in the convergence 

proof of the ID algorithm (Subsection 5.2.1.3).4 

5.2.2.1   The IB Method and Information Theory 

The IB method draws an illuminative relation between data clustering and Claude Shannon's 

information theory.  Rate-distortion theory (Thomas & Cover, 1991, ch. 13) shows that the average of 

number of bits needed for conveying a distorted (lossy) representation C of information X is the 

mutual information I(C;X).  (Minimizing this mutual information is equivalent with maximizing 

H(X|C) = H(X) − I(C;X), which is the number of bits that are saved due to lossy encoding being 

employed, out of the H(X) bits that are needed to represent X with no loss).  The complementary 

                                                      

4 In the same vein, for any cost term − H(C|X) + α H(C) + β H(Y|C) , with positive α  and β, there is an algorithm 

similar to the IB algorithm minimizing it.  The modification required in order that the IB algorithm will work in 

this general case is replacing, in step IB1, the prior pt−1(c) with pt−1(c)α.  Then, Lemma 5.3 holds, with (B) 

replaced by ∆FB2
t = α KL[pt(c)||pt−1(c)]. 
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constraint of the IB method, maximizing I(C;Y), which is completely equivalent with minimizing 

H(Y|C) as done by the ID method, is related with another topic in information theory – the channel-

capacity problem (Thomas & Cover, 1991, pp. 190–194).  By combining these two classical problems 

into one doubly constrained problem, the IB method interprets data clustering as minimizing data 

representation size, liable to preserving the part that is most informative with regard to the features. 

5.2.3   Information Bottleneck with Side Information 

Recently, Chechik & Tishby (2003) introduced the method of information bottleneck with side 

information (IB-SI).  Their approach emerged from recognizing that production of relevant clusters 

can be facilitated through considering attributes of the data that are irrelevant to the patterns to be 

revealed, in distinction from the standard relevance features.  In order to incorporate the effect of 

these additional attributes, the IB-SI method introduces an additional set of irrelevance features 

represented by a new variable Y−. 

The IB-SI method, like the IB and ID methods, aims at minimizing a cost term.  Specifically, the cost 

term to be minimized by the IB-SI method is: 

LIB-SI  =  I(C;X) − β I(Y+;C) + γ I(Y−;C) . (5.13) 

This term incorporates the impact of the irrelevance features Y− as if it symmetrically opposes the bias 

introduced by the relevance features (represented here by Y+, rather than by Y).  As in the derivation of 

the IB and ID algorithms, an iterative algorithm can be based on the IB-SI cost term: 

Set t = 0, and repeatedly iterate the four update-steps sequence below, till convergence (at time step 

t = 0, initialize pt(c|x) randomly or arbitrarily and skip step IB-SI1): 

          IB-SI1:  pt(c|x)    = ( ))]|(||)|([)]|(||)|([
1

11)(
),(

1 cypxypKLcypxypKL
t

t

ttecp
xz

−
−

−+
−

+ −−
−

β

β
 

where   zt(x,β)  =  ( )∑
−

−
−+

−
+ −−

−'

)]'|(||)|([)]'|(||)|([
1

11)'(
c

cypxypKLcypxypKL
t

ttecp β
 

          IB-SI2: pt(c)    = ∑x t xcpxp )|()(  

          IB-SI3: pt(y+|c)    = ∑ +

x
t

t

xypxcpxp
cp

)|()|()(
)(

1
 

          IB-SI4: pt(y−|c)    = ∑ −

x
t

t

xypxcpxp
cp

)|()|()(
)(

1
 

 t     = t + 1 

Figure 5.3: The IB-SI clustering iterative algorithm (with fixed β, γ and |C|). 
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The two lemmas below are the IB-SI equivalents of the ID and IB lemmas (Subsections 5.2.1.3, 

5.2.2). 

Lemma 5.5: The update cycle at time t subtracts from the value of LIB-SI (Eq. 5.13) 

∆FSI1
t + ∆FSI2

t + ∆FSI3
t − ∆FSI4

t, where 

(A) ∆FSI1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] ,  

(B) ∆FSI2
t   =   KL[pt(c)||pt−1(c)] , 

(C) ∆FSI3
t   =   β ∑x pt(c)KL[pt(y

+|c)||pt−1(y
+|c)] , 

(D) ∆FSI4
t   =   γ ∑x pt(c)KL[pt(y

−|c)||pt−1(y
−|c)] . 

(5.14) 

Proof: Minimizing FIB-SI is equivalent, under the appropriate independence assumption (as in Eq. 5.5, 

incorporating Y−, symmetrically to Y+), to minimizing the following term  

FIB-SI    ≡    H(C) − H(C|X) + β Ĥ(Y+|C) − γ Ĥ(Y−|C) . (5.15) 

(Ĥ is as in the definition in Eq. 5.3).  Following argumentation similar to that of Lemmas 5.1 and 5.3, 

it can be shown that step IB-SI1 decreases LIB-SI  by ∆FSI1
t, step IB-SI2 decreases it by ∆FSI2

t, step IB-

SI3 decreases it by ∆FSI3
t and step IB-SI2 increases it by ∆FSI4

t. �  

Lemma 5.6: Stable points of the IB-SI algorithm are extremal points of FIB-SI (Eq. 5.13). 

Proof: Following the same argumentation as in Lemmas 5.2 and 5.4 above. �  

However, the argumentation used for proving the convergence of the ID and IB algorithms 

(Subsections 5.2.1.3, 5.2.2) cannot be applied in the IB-SI case.  Convergence of the IB-SI algorithm 

depends on the ratio between ∆FSI1
t + ∆FSI2

t + ∆FSI3
t and ∆FSI4

t , thus cannot be proven for any 

arbitrary combination of β, γ, |C| and a given dataset. 

The IB-SI approach extends the IB method, thus it facilitates explaining clustering with side 

information in classical information theoretical terms.  A slightly different approach to clustering with 

side information is based on the ID method.  The underlying cost-term of this ID-based variant is 

LID-SI  =  − H(C|X) + β H(Y+|C) − γ H(Y−|C) . (5.16) 

From this cost term the following iterative algorithm is derived: 
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Set t = 0, and repeatedly iterate the three update-steps sequence below, till convergence (at time step 

t = 0, initialize pt(c|x) randomly or arbitrarily and skip step ID-SI1): 

ID-SI1:  pt(c|x)    = ( ))]|(||)|([)]|(||)|([ 11

),(

1 cypxypKLcypxypKL

t

tte
xz

−
−

−+
−

+ −−β

β
 

          where   zt(x,β)  =  ( )∑
−

−
−+

−
+ −−

'

)]'|(||)|([)]'|(||)|([ 11

c

cypxypKLcypxypKL tte β
 

ID-SI2:  pt(y+|c)    = ∑ +

x
t

t

xypxcpxp
cp

)|()|()(
)(

1
 

          where   pt(c) =   ∑x t xcpxp )|()(  

ID-SI3:  pt(y−|c)    = ∑ −

x
t

t

xypxcpxp
cp

)|()|()(
)(

1
 

          where pt(c) is as above 

    t   = t + 1 

Figure 5.4: The ID-SI clustering iterative algorithm (with fixed β, γ and |C|). 

Observations equivalent to the ones made above with regard to the IB-SI algorithm (Lemmas 5.5, 5.6) 

similarly hold with regard to the ID-SI algorithm. 

5.3   The Cross-partition Method 
Cross-partition (CP) data clustering aims at identifying, through clusters of data elements, themes that 

are common to several subsets that together form the given dataset.  To this end, the formed clusters 

should cut across the pre-given partition into subsets: each cluster is expected to contain elements 

from all subsets. As mentioned, the CP problem generalizes the coupled-clustering setting of the 

previous chapter (the noticeable differences between the methods are detailed in Section 5.1 above).  

The basic setting is described in Chapter 3.   

In this section, we introduce a novel approach to the CP clustering task.  This task is particularly 

challenging in cases where the given subsets are relatively homogenous, i.e., the elements within each 

subset are typically more similar to one another compared to their similarity to elements of other 

subsets.  The suggested method is designed to overcome such cases.  Lead by feature information that 

is shared across the subsets, it produces clusters that capture the commonalities while neutralizing 

possibly salient within-subset regularities.  Our method is inspired by the ID and IB methods 

reviewed above.  Below, we describe how the CP method extends the ID data clustering setting 
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(Subsection 5.3.1).  Then, we characterize the desired form of solution to this task (Subsection 5.3.2) 

and present the algorithm that we propose in order to accomplish it (Subsection 5.3.3).  Finally, we 

specify additional versions of our algorithm, motivated by the differences between the IB and ID 

methods (Subsection 5.3.4). 

5.3.1   The Cross-partition Data Clustering Task 

The CP method, which addresses the CP data clustering task introduced in Chapter 3, extends the 

standard probabilistic clustering setting in terms of both input accepted and output constructs being 

produced, as described below. 

5.3.1.1   Input: The Pre-partitioning Variable 

The identity of the pre-given subset to which a particular data element belongs is a source of 

information that plays a role in the CP clustering task, additional to the relevance feature distribution.  

In order to articulate this information, we introduce an additional formal variable W, the pre-

partitioning variable.  The values that W can get range over the labels of the subsets of the pre-given 

partition (two or more subsets).  We denote that a data element x belongs to a subset w, by writing 

p(w|x) = 1.  If x does not belong to w, we write p(w|x) = 0.  In our experiments (Section 5.4), we have 

restricted each element to be uniquely associated with one subset.  Allowing p(w|x) values between 0 

and 1 would enable probabilistic (“soft”) pre-partitioning, which accords with our formalism but have 

not been empirically tested.  The pre-partitioning information p(w|x) is supplemented to p(x) and 

p(y|x) as input considered by the CP method. 

We note that in order that the CP method produces meaningful results, the pre-partitioning variable W 

is expected to correlate to some extent with the feature variable Y (i.e., I(Y;W) > 0, or equivalently 

H(Y) > H(Y|W) ), additionally to the correlation between X and Y that is essential also for standard data 

clustering. 

5.3.1.2  Output: Re-association of Features and Clusters 

A common way to convey the essence of a cluster c in the probabilistic setting is to specify those 

elements x with highest p(c|x) scores.  It is interesting, as well, to specify in addition the features that 

are most typical to a cluster.  We note in Chapter 2 that the centroid of a cluster c – the p(y|c) feature 

distribution – indicates the location of the cluster in the feature space.  However, the features that are 

most characteristic for a cluster c are those features y with high p(c|y) scores rather than high p(y|c), as 

the latter might reflect the fact that the feature y appears frequently in all clusters and not 

discriminatively in c. 
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In the ID (or IB) setting, p(c|y) can be straightforwardly calculated through Bayes rule: 

p(c|y) = p(y|c) p(c) / p(y) .  A novel aspect of the CP method is that it quantifies differently the level of 

association of features with clusters.  Hence, along with the probability distributions p(c|x), the CP 

method outputs distributions that associate each feature y to each one of the clusters c.  We denote 

these probabilities by p*(c|y), to emphasize the fact that they are different than the p(c|y) distributions 

of the ID case. 

As in the ID case, the CP method produces representative probability distributions of features for each 

cluster.  These representative distributions are derived from the newly introduced p*(c|y), hence 

denoted p*(y|c).  Finally, the CP method produces yet another type of supplementary output, which 

has no correspondence in the ID and IB methods: for each combination of a cluster c and a pre-given 

subset w, a probability distribution over the features p(y|c,w).  Such distributions form feature-based 

centroids of c restricted to the elements originated in w or, as we term them, W-projected centroids. 

5.3.2   Underlying Principles Characterizing the Solution 

As stated above, there are four types of probability distributions that together form the CP method 

output: p(c|x), which can be considered as the main target of the method, and in addition p(y|c,w), 

p*(c|y) and p*(y|c) (where c, x, y and w denote cluster labels, data elements, features and pre-given 

subset labels, respectively).  These four types of distributions constitute the whole set of parameters 

that the CP method manipulates.   

The core idea of the CP method lies in the step implementing feature-cluster re-association conveyed 

through the p*(c|y) distributions (see Subsection 5.3.2.3 below).  The associations of the 

characterizing features with the formed clusters are biased so that these associations become 

independent of the given pre-partition of the data.  The conception and formulation of this imposed 

independence, underlying the focusing on relevant cross-system information and the defocusing of 

irrelevant system-specific information, is the basis to our original interpretation of the notion of 

analogy. 

Below, we characterize in detail how all four types of probability distributions link up together as a 

solution to the CP clustering task. 

5.3.2.1   Assignments of Elements to Clusters 

Similarly to the case with the ID and IB methods, the assignments of elements to clusters in the CP 

method follow a maximum entropy principle.  This is formalized through the following term: 

FCP1   ≡   − H(C|X) + β Ĥ*(Y|C) , (5.17) 
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where β > 0 is a counterbalancing parameter, Ĥ* (Y|C) is defined to be 

Ĥ* (Y|C)  ≡  − ∑c,x p(c,x) ∑y p(y|x) log p* (y|c)  =  − ∑x p(x) ∑c p(c|x) ∑y p(y|x) log p*(y|c) (5.18) 

and H(C|X) is the entropy of cluster distribution conditioned on the data (Eq. 5.2), the constrained 

value of which the CP method seeks to maximize.  The target of the CP method is thus to find p(c|x) 

values, constrained to sum up to 1 for each x, which bring the value of FCP1 to minimum.  Following 

this direction, the CP method maximizes H(C|X), subject to a further constraint involving the 

probability distributions p*(y|c).  For the purpose of assigning elements to clusters, the p*(y|c) 

distributions are considered as if they are given and fixed.  We will refer later to how the CP method 

modifies these distributions (Subsection 5.3.2.4). 

5.3.2.2   W-projected Centroids 

As the case is with the IB and ID methods, the CP method aims at identifying a partition of the data 

that is optimally informative about the relevance features, represented by the variable Y.  Such 

configuration may consider as an information source relevant to predicting feature distribution not 

only the partition to clusters, C, but also the pre-given partition W.  Consequently, optimizing the 

feature information extractable from the two partitions together would be carried out through 

minimizing the conditional entropy term H(Y|C,W).  To be more precise, the CP method actually 

minimizes a related term, which is equivalent, under an appropriate independence assumption 

(explicated below), to H(Y|C,W): 

FCP2   ≡  ∑x p(x) ∑c p(c|x) ∑y p(y|x) ∑w p(w|x) log p(y|c,w) . (5.19) 

The conditional independence assumption of the IB and ID methods (Eq. 5.4), is extended by the CP 

method to apply to W as well, namely C, Y and W are independent given X: 

p(c,y,w|x)   =    p(c|x) p(y|x) p(w|x) (5.20) 

(for each c, x, y and w), or equivalently I(C;Y;W|X) = 0. 

Summing up both sides of Eq. 5.20 over all x values, we obtain   

p(c,y,w) = ∑x p(x) p(c|x) p(y|x) p(w|x) . (5.21) 

Assuming Eq. 5.21 holds, we can re-write FCP2: 

FCP2   =   ∑c,y,w log p(y|c,w) ∑x p(x) p(c|x) p(y|x) p(w|x)   = 

    ∑c,y,w log p(y|c,w) p(c,y,w)   =   H(Y|C,W) . 

(5.22) 

As we will see in Subsection 5.3.3, the independence assumption is indeed maintained by the CP 

method.   Therefore, from Eq. 5.22 we conclude that by minimizing FCP2 the CP method minimizes 
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the conditional entropy term H(Y|C,W) or, in other words, it optimizes the level of information about 

the features provided by the combination of the clusters C and the pre-given partition W. 

5.3.2.3   Feature-cluster Re-association 

As said above (in Subsection 5.3.1.2), an innovative aspect of the CP approach is that it re-associates 

features with clusters differently than what is straightforwardly expected from the assignments of data 

elements into clusters.  Re-associating features with clusters is carried out so that the associations 

reflect the following fundamental principle: 

The way features (Y) and clusters (C) are associated is not supposed to correlate with 

the pre-partition (W). 

Assuming a triply joint probability distribution p*(c,y,w) (where the asterisk comes to distinguish 

between this probability to the one in Eq. 5.21), the above principle would be formulated as: 

P* (c,y,w)   =   p* (c,y) p(w) (5.23) 

(for each c, y and w), or equivalently I*(C,Y;W) = 0. 

Under the assumption that Eq. 5.23 holds, we formulate below a second maximum entropy principle 

that the solution to the CP problem is supposed to realize, which would direct the re-association of 

features with clusters.  Specifically, the CP method aims at minimizing the following term: 

FCP*1   ≡   − H*(C|Y) + η Ĥ(Y|C,W) , (5.24) 

where, H*(C|Y) is a conditional entropy term of cluster distribution conditioned on the distribution of 

features 

H*(C|Y)   ≡   − ∑c,y  p*(c,y) log p*(c|y)   =   −∑y p(y) ∑c p*(c|y) log p* (c|y) (5.25) 

(the sum runs over all cluster-feature combinations), and Ĥ(Y|C,W) is defined to be 

Ĥ(Y|C,W)  ≡  ∑c,y,w p*(c,y,w) log p(y|c,w)  =  ∑w p(w) ∑y p(y) ∑c p* (c|y) log p(y|c,w) . (5.26) 

η is a parameter with a positive value, counterbalancing the relative impact of the two components of 

FCP*1.  Ĥ(Y|C,W) articulates the constraint on the maximum entropy principle posed by the w-

projected centroids.  The target of the CP method is to find feature-cluster probabilistic associations 

p* (c|y), minimizing FCP*1 while being constrained to sum up to 1 for each y.  Thus, the CP method 

maximizes the conditional entropy H*(C|Y), subject to a further constraint posed by the probability 

distributions p(y|c,w).  Although we have already seen in the previous subsection how the p(y|c,w) 

distributions are to be determined, for the purpose of re-associating features with clusters these 

constraining distributions are referred to as if they are given and fixed. 
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5.3.2.4  Centroids that Cut Across the Pre-partition  

Finally, there are the centroids distributions used in characterizing the assignments of the solution to 

the CP problem (Subsection 5.3.2.1).  These distributions are expected to minimize the following 

term: 

FCP*2   =  ∑y p(y) ∑c p*(c|y) log p*(y|c) , (5.27) 

which is identical to the conditional entropy H* (Y|C), as p(y) p*(c|y) = p*(c,y).  However, the p*(y|c) 

values are referred by FCP*2 as variables, while p*(c|y) are treated as if they are given and fixed. 

5.3.3   The CP Algorithm 

Starting from a random or arbitrary clustering configuration, the CP algorithm updates iteratively the 

four types of probability distributions p(c|x), p(y|c,w), p*(c|y) and p*(y|c).  The algorithm's iterative 

update cycle follows the four principles described in the previous subsection.  Each step of the cycle 

optimizes one class of probability distributions relatively to one of the above principles, while the 

other distributions are held constant. 

Set t = 0 and repeatedly iterate the following update steps sequence, till convergence (in the first 

iteration, when  t = 0 randomly or arbitrarily initialize pt(c|x) and skip step CP1): 
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Figure 5.5: The cross partition clustering iterative algorithm (with fixed β, η, and |C|). 
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The CP method probabilistically associates, or assigns, elements to clusters in proportion to the 

element-centroid similarity (step CP1 of the algorithm; in this respect, the CP method follows the 

probabilistic representative-based clustering scheme, Chapter 2, Subsection 2.1.4.6).  More 

specifically, as in the IB and ID algorithms, an element x is assigned into a cluster c in proportion 

exponentially inverse to the KL divergence between the representative feature distributions p(y|x) and 

p* t−1(y|c).  The KL divergence is not an arbitrary proximity measure but it rather emerges from the 

first maximum-entropy principle described in 5.3.2.1 above (see also Lemma 5.8 below). 

Based on the assignments calculated by step CP1, the next step, CP2, calculates expected values of 

the current W-projected centroid distributions, pt(y|c,w).  This step conforms to the information 

maximization direction of 5.3.2.2 above.  Particularly, step CP2 imposes the extended conditional 

independence assumption (Eqs. 5.20, 5.21). 

Step CP*1 re-associates features with clusters, by calculating for every feature y probability 

distribution over the clusters p* t(c|y) proportional to biased (‘flattened’) geometric mean over all 

current pt−1(y|c,w) values.  This step facilitates feature-cluster associations that cut across the pre-

partitioned subsets: strong association of a feature y with a cluster c, i.e., a high p* t(c|y) value, 

requires high pt(y|c,w) values across all subsets w (in contrast to some y' and c' for which pt(y'|c',w) is 

high on average but varies across the w's).  The bias introduced within this weighted geometric-mean 

scheme is directed by a free parameter η.  Low values of η underlie loss of information: η = 0 implies 

that all features are uniformly assigned to all clusters regardless of the pt(y|c,w) values.  Higher η 

values preserve more of the information embodied within the W-projected centroids.  Regardless of 

the value of η, step CP*1 integrates pt(y|c,w) values over all values of W, so the result is independent 

of any particular w.  This scheme, which was motivated intuitively in Dagan, Marx & Shamir (2002), 

turns to realize the supplementary maximum-entropy direction introduced in Subsection 5.3.2.3. 

Step CP*2 derives the p* t(y|c) probability distributions, which are the centroids for the next update 

cycle, from the current p* t(c|y) values and the input p(y) distribution through Bayes rule.  It realizes 

the information-maximization principle of Subsection 5.3.2.4. 

In the case of the ID and IB algorithms, the existence of a cost term, that gets a smaller value at each 

update step, ensures the convergence to a configuration locally minimizing the value of the 

corresponding term.  For the CP method, we cannot specify a cost term that is reduced by each update 

step, or by the whole update cycle.  The algorithm, however, empirically converges in most examined 

test cases, particularly for all real-world and synthetic datasets where it has been reasonable to assume 

an underlying cross-partition structure (see Section 5.4 below).  Whenever the algorithm converges, 
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the resulting stable-point probability distributions p(c|x), p(y|c,w), p*(c|y) and p*(y|c) necessarily 

maintain the relations between the distributions explicated in Subsection 5.3.2. 

5.3.3.1   Further Observations 

Below, we show that each one of the CP algorithm update steps “improves” the currently given 

configuration relatively to the principle corresponding to this step (unless the current configuration is 

a stable point of the algorithm).  This is done by reducing the term associated with that step relatively 

to the particular distributions that the step updates (this, however, does not imply that the CP 

algorithm iterative cycle reduces the value of any single cost term). 

Lemma 5.7: In the update cycle of time t, the four CP algorithm update steps CP1, CP2, CP*1, CP*2, 

decrease the values of FCP1 (Eq. 5.17), FCP2 (Eq. 5.19), FCP*1 (Eq. 5.24), FCP*2 (Eq. 5.27) by 

(A) ∆FCP1
t   =   ∑x p(x)KL[pt−1(c|x)||pt (c|x)] , 

(B) ∆FCP2
t   =   ∑x pt(c,w)KL[pt(y|c,w)||pt−1(y|c,w)] , 

(C) ∆FCP*1
t   =   ∑y p(y)KL[p* t−1(c|y)||p* t (c|y)] , 

(D) ∆FCP*2
t   =   ∑y p* t(c)KL[p* t(y|c)||p* t−1(y|c)] , 

(5.28) 

respectively. 

Proof: see Appendix D �  

Lemma 5.8: A set of probability distributions that form a stable point of the CP algorithm (i.e., ones 

satisfying pt+1(c|x) = pt(c|x), pt+1(y|c,w) = pt(y|c,w), p* t+1(c|y) = p* t(c|y) and p* t+1(y|c) = p* t(y|c), for all 

c, x, y and w) specifies locally extremal points for: FCP1 with respect to p(c|x) (p*(y|c) held fixed), FCP2 

with respect to p(y|c,w) (p(c|x) held fixed), FCP*1 with respect to p*(c|y) (p(y|c,w) held fixed) and FCP*2 

with respect p*(y|c) (p*(c|y) held fixed). 

Proof: see Appendix D �  
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Figure 5.6: A schematic illustration of the dynamics of the ID algorithm versus that of the CP 

algorithm.  In the ID algorithm, convergence is onto a configuration where the two systems of 

parameters complementarily balance one another, bringing a cost term to a locally minimal value.  

In the CP algorithm, stable configurations maintain balanced inter-dependencies (equilibrium) of 

four distinct systems of parameters. 

During the execution of the CP algorithm, each of the four probability distribution types, p(c|x), 

p(c|y,w), p*(c|y) and p*(y|c), directs the formation of distributions of another type.  In the resulting 

solution, the four types of conditional probability distributions take part in a closed cycle of 

dependencies, as described in Subsection 5.3.2.  The dynamics characterizing the CP algorithm, in 

comparison to that of the ID algorithm, is illustrated in Figure 5.6. 

Argumentation as used in the ID and IB cases cannot be used for proving convergence of the CP 

algorithm.  Lemmas 5.7 and 5.8 do not provide information regarding how each of FCP1, FCP2, FCP*1 

and FCP*2 is affected by the changes that occur in practice in factors that are considered to be fixed by 

the principle underlying its modification. 

5.3.3.2   The Parameters β and η 

Gradual increase of the value of β works in practice for the CP method much the same as it works for 

the IB and ID methods (Subsection 5.2.1.4): increasing β along subsequent runs enables the formation 

of configurations of growing numbers of clusters, each initialized based on a configuration of fewer 

clusters obtained previously.  In general, we have experimented with η values that are fixed during a 

CP 
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−−−− H*(C|Y) 
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whole cycle of runs, while only β is gradually incremented in order to produce increasing number of 

clusters.  Understanding better the role of η and the inter-dependencies between the given data, η and 

β would be an interesting topic for future research. 

There are two cases where the scheme of incrementing β gradually while η is held fixed, in order to 

produce a growing number of clusters, seems not to work.  First, we encountered cases of synthetic 

datasets (randomly drawn with no underlying pre-tailored cross-partition structure) where the 

algorithm eventually did not converge but rather went through an endless oscillatory pattern.  This 

behavior, characterized further in Subsection 5.4.1.3, took place for restricted ranges of η values.  

Convergence was always obtained for some η values outside these ranges.  Further, for those datasets 

where underlying cross-partition either existed by construction or was expected to exist based on the 

content of the data (as in the experimental work Section 5.4) the algorithm converged with no 

exception. 

The other potentially problematic scenario is where the CP algorithm converges to fewer clusters than 

initialized: some clusters are gradually vanished as update cycles keep being performed.  Note that 

this never happens in the iterative IB and ID algorithms, where the formation of a centroid (step 

ID2/IB3) implies that there is some mass of data elements concentrated around it, ensuring that some 

points would be reassigned to the corresponding cluster in the next re-assignment step (ID1/IB1).  In 

contrast, the formation of a CP centroid (step CP*2) does not guarantee that the centroid is backed 

with enough mass of data elements from all subsets.  As a result, it might happen that the dominant 

features in a centroid formed in the previous update cycle are not sufficiently weighty in one or more 

of the subsets and hence the relative total weight of the cluster might tend to zero as the iterations are 

carried on.5  This behavior was observed in a variety of cases.  Particularly for very detailed pre-

partitons (high |W|), we were not able to produce even small numbers of clusters.  On the other hand, 

in the |W| ≤ 5 cases to which the experimental part of this work was restricted, setting a lower η value 

whenever such behavior occurred consistently lead to the formation of the desired number of clusters.  

The effect of |W| on the behavior of the algorithm (in interaction with other factors) should be studied 

further, both experimentally and theoretically. 

                                                      

5 Somewhat related to this might be our empirical observation that the IB/ID iterative algorithms, although 

formally guaranteed to converge, often produce small clusters that do not capture significant themes in the data. 
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5.3.4  CP Algorithmic Variations Inspired by the IB Method 

The IB method reviewed in Subsection 5.2.2 minimizes the cost term LIB (Eq. 5.10), which, up to a 

constant factor, can be re-written as H(C) − H(C|X) + β H(Y|C).  As already noted, this term is 

reminiscent of the ID method cost term LID = − H(C|X) + β H(Y|C) (Eq. 5.7).  The difference lies in the 

non-constant term H(C).  In a like manner, it is possible to modify the two maximum-entropy-based 

terms of the equations underlying the CP method, namely FCP1 and FCP*1 (Eqs. 5.17 and 5.24).  Thus, 

we may replace FCP1 by 

FCP1'   ≡    H(C) − H(C|X) + β Ĥ* (Y|C) . (5.29) 

 

Regardless of the modification explicated by Eq. 5.29, we can also replace FCP*1 by 

FCP*1'  ≡   H* (C) − H* (C|Y) + η Ĥ(Y|C,W) , (5.30) 

where H(C) and H* (C) are the entropy of C based on p(c) and p* (c) respectively. 

Set t = 0 and repeatedly iterate the following update steps sequence, till convergence (in the first 

iteration, when  t = 0 randomly or arbitrarily initialize pt(c|x) and p* t(c) and skip step CP1): 
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Figure 5.7: The CPIII  iterative algorithm (with fixed β, η, and |C|). 
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In case both above modifications take place, i.e. FCP1 is replaced by FCP1' and FCP*1' is replaced by 

FCP*1', a new algorithm, the CPIII  algorithm (Figure 5.7), is derived in much the same way the CP 

algorithm (Figure 5.5) is derived.  This algorithm was introduced, grounded on a different 

information-theoretic motivation, by Marx, Dagan & Shamir, 2004. 

It is possible to replace only one of the two terms: either FCP1 by FCP1', or FCP*1 by FCP*1'.  If only FCP1 

is replaced by FCP1', we derive the CPII algorithm, which consists of update steps CP1', CP2', CP3' of 

the CPIII  algorithm and steps CP*1, CP*2 of the original CP algorithm.  The CPII algorithm was 

introduced with intuitive motivation by Dagan, Marx & Shamir, 2002.  If only the FCP*1 term is 

replaced by FCP*1', we derive the CPI algorithm, with iterative cycle consisting of update steps CP1, 

CP2 of the original CP algorithm and CP*1', CP*2', CP*3' of the CPIII  algorithm. 

5.4   Experimental Work 
In order to examine the capabilities of the algorithmic framework described above, we have 

conducted experiments on both artificial and real-world (textual) data. 

The method of IB and ID with side information (IB-SI and ID-SI, described in Subsection 5.2.3) 

suggests a seemingly sensible alternative to our approach to CP clustering.  As we aim at obtaining 

clusters that are not correlated with the given pre-partition, our setting is naturally mapped to the side 

information setting by considering the pre-partition W as the additional set of irrelevant features Y−.  

Adapting this convention, our experimental results include comparison with IB-SI and ID-SI results 

and thus also with the plain IB and ID algorithms, which are equivalent to their corresponding SI 

version when the parameter γ is set to 0. 

5.4.1   Experiments with Synthetic Data 

In general, the CP method is designed to tackle cases where each one of the pre-given subsets is 

relatively homogenous and might be characterized by salient subset-specific structure.  The target of 

the CP method is to neutralize such within-subset homogeneities and regularities and to reveal 

structure that is persistent across the pre-partition part, even if it is not as salient on average.  The 

following setting aims at assessing the level by which the CP method reveals hidden cross-partition 

structure in the presence of more salient clustering configuration, with clusters that do not cut across 

the given pre-partition but are rather restricted to elements of one of the pre-given subsets. 
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5.4.1.1   Setting 

Our synthetic setting consisted of 75 virtual elements, pre-partitioned into three 25-element subsets, 

corresponding to three admissible values of the variable W (in our formalism, for each element x in 

the w-th subset, w = 1, 2, or 3, p(w|x) = 1).  On top of this pre-partition, we tailored together two 

independent (exhaustive) clustering configurations.   One of them – the target configuration – will 

capture cross-subset correspondences, while the other – a masking configuration – will represent 

within dataset structure.  We would like to see if and how the CP method reveals the target 

configuration, even in cases where the masking configuration is considerably more salient. 

1. The target cross-W clusters: five clusters, each with representatives from all three pre-given 

subsets.  In different experiments, we used three distinct cross-partition configurations, differing in 

the level of global balance (equal vs. diverging cluster sizes) and cross-partition balance (equal vs. 

diverging sizes of cluster-subset intersections).  Figure 5.8 provide the details of the three different 

cross partition configurations that were used. 

2. The Masking within-w clusters: six clusters, each consisting of either 13 or 12 of the 25 elements 

of a particular subset with no representatives from the other subsets. 

The same set of features was used to direct formation of clusters.  However, each cluster, of both 

target and masking configurations, was characterized by a designated subset of the features.  

Associating an element with the cross-W cluster and with the within-w cluster to which it is assigned 

by construction was carried out by specifying a count of co-occurrences with each one of the features 

designated as characteristic to both clusters.  The masking within-w clusters were systematically 

designed to be more salient than the target cross-W clusters.  The within-w clusters had more 

designated features than the cross-W clusters, per cluster (60 vs. 48) and in total (6 × 60 = 360 vs. 

5 × 48 = 240).  In addition, the simulated co-occurrence counts associating elements with their within-

w cluster (a base level of 900) were higher than the co-occurrence counts associating elements with 

cross-W cluster (700 in a salient CP configuration setting, 400 in a non-salient CP configuration 

setting).  Noise (a random positive integer < 200) was added to all counts associating elements with 

the designated features of their within-w and cross-W clusters, as well as to approximately one quarter 

of the zero counts associating elements with features designated for other clusters. 
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Figure 5.8: The three different cross-partition clustering configurations used in the synthetic data 

experiments.  The numbers of elements in the intersections of each one of the five CP clusters and 

each one of the three pre-given subsets are indicated. 

5.4.1.2   Results 

Performance level in the synthetic data experiments was measured relatively to the target cross-W 

configuration – one of B/B, B/nB and nB/B (see Figure 5.8) – that was used in constructing the 

particular data being tested.  Each one of the three cross-W configurations underlay two different 

types of datasets, distinguished by the saliency levels of the target relatively to the masking 

configuration (400 or 700 target co-occurrence counts versus 900 masking co-occurrence counts; see 

previous subsection).  This gives a total of six experimental settings.  The variance between the 

different test cases within each experimental setting was the result of two random factors: the random 

noise added and the overlap, i.e., the number of shared elements, between within-w clusters and cross-

W clusters (partition of elements to clusters was random hence cluster overlap was random too). 

In each one of the six experiment settings, we tested six different methods – the four CP method 

variants (5.3.3, 5.3.4) and the two SI variants (5.2.3) – each over a range of values of the parameters γ 

in the SI algorithms, and η in the CP algorithms.  The values of γ and η were kept fixed throughout 

each run, while the β parameter was gradually incremented in order to produce the target five clusters 

(see Subsection 5.3.3.2).  For values outside the tested parameter ranges, the majority of runs did not 

end with five clusters.  Reasons for not obtaining the target number of clusters were that the run did 

not converge after a large number of iterative cycles or, in the CP case, it could also converge to too 

few clusters (Subsection 5.3.3.2).  Each one of the reported results was averaged over 200 runs, 

differing by the noise and by within-w and cross-W cluster overlap. 
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Figure 5.9: The results of the experiments with synthetic data by the six algorithms tested – CP, 

CPI, CPII, CPIII , ID-SI and IB-SI – in the six experimental settings.  See the previous subsection 

for the description of the B/B, B/nB and nB/B cross-partition configurations and the difference 

between the   salient and non-salient CP configuration settings. 

As the target number of clusters was given by construction, we used the straightforward purity 

measure (the overall proportion of elements correctly assigned; Chapter 3, Subsection 3.3.1).  Our 

measurements refer to the “hardened” version of the probabilistic output of the tested methods, i.e. the 

deterministic clustering configuration where each element x is considered a member in the cluster c 

with highest p(c|x). 

Figure 5.9 displays purity results produced by the six algorithms tested in the six experimental 

settings.  The graphs displayed indicate that the various versions of the CP approach perform better 

than the SI approach in the majority of cases examined.  The difference is most notable in the easier 

tasks, i.e., in the more balanced configurations and especially in the “salient” setting, where some of 

the CP variations consistently achieve almost perfect reconstruction of the target configuration, over a 

<−−−−−−−−−−− γ<−−−−−−−−−−− γ<−−−−−−−−−−− γ<−−−−−−−−−−− γ −−−−−−−−−−−>−−−−−−−−−−−>−−−−−−−−−−−>−−−−−−−−−−−> 

P
u

ri
ty

 

CP 
CPI 

CPII  
CPIII  

ID-SI 
IB-SI  

   nnn BBB /// BBB    

   BBB /// nnn BBB    

   BBB /// BBB    

SSSaaalll iii eeennnttt    CCCPPP   CCCooonnnfff iii ggguuurrr aaattt iii ooonnn   NNNooonnn---sssaaalll iii eeennnttt    CCCPPP   CCCooonnnfff iii ggguuurrr aaattt iii ooonnn   

<−−−−−−−−−−−<−−−−−−−−−−−<−−−−−−−−−−−<−−−−−−−−−−−    ηηηη  −−−−−−−−−−−>−−−−−−−−−−−>−−−−−−−−−−−>−−−−−−−−−−−> The value of γγγγ  (SI) and ηηηη  (CP):  



   95 

large part of the tested η range.  In addition, the SI algorithms tend to have a relatively narrow best-

performance picks around certain γ value, while the CP performance is in general more stable across a 

large range of η values. 

The “priorred” CP variations, especially CPI and the CPIII  which include the prior in their first step, 

tend to produce along with clusters that capture the target patterns small clusters that are often not part 

of the target configuration but rather seem to be the result of the added noise and interactions with the 

masking configuration.  The plain CP algorithm was overall the best among the CP variations, while 

CPIII  was the worst.  The differences between the four versions are less noticeable in the lower η 

value range.  Finally, there is a persistent advantage, though very small, to the ID-SI over the IB-SI.  

We will discuss possible reasons for the differences between the methods in the concluding section of 

this chapter. 

5.4.1.3   Oscillatory Endless Loops 

The previous subsection described the behavior of the CP algorithm (several variants) in cases where 

the data was drawn based on a prominent underlying cross partition structure and the algorithm 

converged in most cases.  In the next section we will see that this nice behavior is indeed the case with 

the real world datasets we worked on.  The current subsection shed some light on those cases where 

the underlying cross partition structure is not as prominent and consequently the algorithm is 

sometimes trapped in an endless loop. 

We investigated this behavior experimentally through setting similar but simpler than the one 

described in Subsection 5.4.1.1 above.  This simpler setting included eight virtual elements, pre-

partitioned into two four-element subsets, with competing cross-W and within-w configurations.  The 

two cross-W clusters included four elements each, two from each subset; the four within-w clusters, 

two within each subset, consisted of two elements each.  The competing configurations were set to be 

in disagreement: the two elements of any within-w cluster were assigned to different cross-W clusters.  

Each cluster of both types was characterized by a single feature.  As in the first setting, the within-w 

clusters were designed to be more salient with virtual element-feature co-occurrence count fixed on 

100 (for the two elements of each cluster).  The virtual cross-W co-occurrence counts varied in the 

different experiments between 0 and 100.  Noise was added to all counts associating elements with the 

designated features of their within-w and cross-W clusters, as well as to approximately one quarter of 

the zero counts associating elements with features designated for other clusters. 

On the eight-element dataset described above, we ran the (non-priorred) CP algorithm and applied the 

procedure of modifying the β value gradually in order to find the exact value inducing a split into two 

CP clusters.  Table 5.1 shows the change in the proportion of times where the algorithm encountered 
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an endless oscillatory loop as a function of the saliency of the cross-W clusters.  The more salient the 

cross-W clusters are, less cases of an endless loop are observed.  These results are based on 200 runs 

for each tested value of cross-W count.  In order to decide on an endless loop we counted 500,000 

iterations (convergence whenever obtained typically occurred in tens or hundreds of iterations and 

never more than a few thousands).  The η value was fixed on 1.0 in these experiments. 

Table 5.1:  The proportion of endless loop cases decreases as the relative weight of the Cross-W 

element-feature count increases.  The Cross-W element-feature counts in this table are weighed 

comparatively to a fixed “within-w feature count” of 100. 

Cross-W element-
feature avg. count 0–55 60 65 70 75–85 90–100 

Proportion of 
endless loop cases 40-44% 25% 9% 5% 2% 1% 

As Table 5.1 shows, in this simple setting when the relative weight of the features associated with CP 

clusters is low, the CP algorithm is trapped in a loop in 40% or more of the cases.  Table 5.2 brings 

one such example where the weight of the cross-W relative weight is fixed on zero (so its 

corresponding features are not present at all).  In this example, the CP algorithm oscillated for β 

values between 1.858 and 2.738.  For lower β values no split occurred in the data.  In this example, 

but not always, two clusters were produced for β values higher than 2.738.  Note that this behavior 

and parameter values can change due to exact values of initial assignments, split initialization, etc. 

Table 5.2:  An example for a setting where the CP algorithm does not converge (for particular β 

and η values).  Each line in the table contains the co-occurrence count information for another one 

of the eight data elements.  The underlying structure, as reflected by the feature counts, includes 

four within-subset clusters of two elements each, plus “noise” associating elements with clusters 

to which they are not assigned by construction. 

Features associated with … 
Data 

Elements: 
Within-A 
cluster 1 

Within-A 
cluster 2 

Within-B 
cluster 1 

Within-B 
cluster 2 

A1 10 — — — 
A2 9 1 — — 
A3 1 9 — — 

S
ub

se
t A

 

A4 — 8 — 2 
B1 — — 10 — 
B2 — 2 8 — 
B3 — — — 10 

S
ub

se
t B

 

B4 1 — 1 8 
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5.4.2   Application to Religion Data 

For testing our method on real world data, we used the religion-related datasets and the evaluation 

method (Jaccard coefficient scores) that were used in the previous chapter and were described in 

detail in the experimental part of the previous chapter (Chapter 4, Subsection 4.4.2.1; see also 

Appendix A).  We note that the CP method, in difference from the coupled clustering method, can be 

used for identifying correspondences across more than two religions at a time, as demonstrated in the 

following subsection. 

5.4.2.1   Results 

We survey below some of the CP clustering output, exemplifying it through results produced by the 

plain CP algorithm with η = 0.48, applied to all five religions together (|W| = 5).  We have found that 

even the most coarse two-cluster partition generated by the above method is highly informative and 

illuminating.  It reveals two major aspects that seem to be equally fundamental in the religion domain, 

which we termed “spiritual” and “establishment” aspect.  The cluster that corresponds to the 

“spiritual” aspect of religion incorporates terms related with theology, underlying concepts and 

religion-related personal experience.  Many of the terms assigned to this cluster with highest 

probability, such as heaven, hell, soul, god and existence, are in common use of several religions, but 

there are religion-specific words such as atman, liberation and rebirth, which are key concepts of 

Hinduism.  The “establishment” cluster contains names of schools, sects, clergical positions and other 

terms related with religious establishment, geographical locations and so on.  Keywords assigned to 

this cluster with high probability are mainly religion specific: protestant, vatican, university, council 

in Christianity; conservative, reconstructionism, sephardim, ashkenazim in Judaism and so on (there 

are few keywords that are common to several religions, for instance east and west). 

The same two-theme partition consistently repeats also when the CP method is applied to pairs and 

triplets of religion.  As far as our corpora represent faithfully the domain and our method extracts well 

the relevant information, these two factors can be considered the two universal constituents upon 

which the very notion of religion is laid. 
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CLUSTER 1 “Schools”  
Buddhism : america   asia   japan   west   east   korea   india   china   tibet   

Christianity : orthodox   protestant   catholic   west   orthodoxy   organization   rome   council   
america    

Hinduism : west   christian   religious   civilization   buddhism   aryan   social   founder   shaiva    
Islam : africa   asia   west   east   sunni   shiah   christian   country   civilization   philosophy   

Judaism : reform   conservative   reconstructionism   zionism   orthodox   america   europe   sephardim   
ashkenazim   

 
CLUSTER 2 “Divinity”  
Buddhism : god   brahma   
Christianity : holy-spirit   jesus-christ   god   father   savior   jesus   baptize   salvation   reign   

Hinduism : god   brahma   

Islam : god   allah   peace   messenger   jesus   worship   believing   tawhid   command   
Judaism : god   hashem   bless   commandment   abraham   

 
CLUSTER 3 “Religious Experience”  
Buddhism : phenomenon   perception   consciousness   human   concentration   mindfulness   physical   

livelihood   liberation   
Christianity : moral   human   humanity   spiritual   relationship   experience   expression   

incarnation   divinity   
Hinduism : consciousness   atman   human   existence   liberation   jnana   purity   sense   moksha   

Islam : spiritual   human   physical   moral   consciousness   humanity   exist   justice   life   
Judaism : spiritual   human   existence   physical   expression   humanity   experience   moral   connect   

 
CLUSTER 4 “Writings”  
Buddhism : pali-canon   sanskrit   sutra   pitaka   english   translate   chapter   abhidhamma   book   
Christianity : chapter   hebrew   translate   greek new-testament   book   text   old-testament   luke   

Hinduism : rigveda   gita   sanskrit   upanishad   sutra   smriti   brahma-sutra   scripture   
mahabharata   

Islam : chapter   surah   bible   write   translate   hadith   book   language   scripture   

Judaism : tanakh   scripture   mishnah   book   oral   talmud   bible   write   letter   

 
CLUSTER 5 “Festivals and Rite”  
Buddhism : full-moon   celebration   stupa   ceremony   sakya   abbot   ajahn   robe   retreat   
Christianity : easter   tabernacle   christmas   sunday   sabbath   jerusalem   pentecost   city   season   

Hinduism : puja   ganesh   festival   ceremony   durga   rama   pilgrimage   rite   temple   

Islam : kaabah   id   ramadan   friday   id-al-fitr   haj   mecah   mosque   salah   
Judaism : sukoth   festival   shavuot   temple   passover   jerusalem   rosh-hashanah   temple-mount   

rosh-hodesh   

 
CLUSTER 6 “Sin, Suffering and Material Existence”  
Buddhism : lamentation   water   grief   kill   eat   hell   animal   death   heaven   
Christianity : fire   punishment   eat   water   animal   lost   hell   perish   lamb    
Hinduism : animal   heaven   earth   death    water   kill   demon   birth   sun   

Islam : water   animal   hell   punishment   paradise   food   pain   sin   earth   

Judaism : animal   water   eat   kosher   sin   heaven   death   food   forbid   

 
CLUSTER 7 “Community and Family”  
Buddhism : child   friend   son   people   family   question   learn   hear   teacher   
Christianity : friend   family   mother   boy   question   woman   problem   learn   child   
Hinduism : child   question   son   mother   family   learn   people   teacher   teach   

Islam : sister   husband   wife   child   family   marriage   mother   woman   brother   

Judaism : child   marriage   wife   mother   father   women   question   family   people   

Figure 5.10: A sample from a seven-cluster output CP configuration of the religion data: the first 

members – up to nine – of highest p(c|x) within each religion in each cluster.  Cluster titles were 

assigned by the author.  See appendix E for the full configuration. 
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Partitions into clusters of finer granularity still seem to capture fundamental, though more focused, 

ingredients of religion.  The partition into seven clusters reveals the following topics (our titles): 

“schools”, “divinity”, “religious experience”, “writings”, “festivals and rite”, “material existence, sin, 

and suffering” and “community and family”.  The relation between this seven-cluster configuration to 

the coarser two-cluster configuration can be explained in soft-hierarchy terms: the “schools” cluster 

and, to some lesser extent “festivals” and “family”, are related with the “establishment” aspect 

reflected in the partition to two,  while “divinity”, “religious experience” and “suffering” are clearly 

associated with the “spiritual” aspect of religion.  The remaining topic, “writings”, is equally 

associated with both.  The probabilistic framework enabled the CP method to cope with these 

composite relationships between the coarse partition and the finer one.  Figure 5.10 details the first 

members – up to nine – of highest p(c|x) within each religion in each of the seven clusters.  The whole 

two- and seven-cluster configurations produced by the CP method, including p(c|x) and p(c) values, 

are given in Appendix E. 

It is interesting to have a notion of those features y with high p* (c|y) (Subsection 5.3.2.3).  Many of 

those features are in fact identical with some of the corresponding cluster's terms, especially ones that 

are common to several religions but, occasionally, also ones that are specific to one religion but are 

mentioned in discussions regarding other religions.  We exemplify those typical features, for each one 

of the seven clusters, through four of the highest p* (c|y) features that did not have a dual role of 

clustered keywords (more comprehensive lists are brought in Appendix E.):  

•  “schools” cluster: central, dominant, mainstream, affiliate;  

•  “divinity” cluster: omnipotent, almighty, mercy, infinite;  

•  “religious experience” cluster: intrinsic, mental, realm, mature;  

•  “writings” cluster: commentary, manuscript, dictionary, grammar;  

•  “festivals and rite” cluster: annual, funeral, rebuild, feast;  

•  “material existence, sin, and suffering” cluster: vegetable, insect, penalty, quench;  

•  “community and family” cluster: parent, nursing, spouse, elderly.   

The above terms were not initially pre-marked but rather the CP clustering approach, through its 

feature-cluster re-association mechanism, has pointed each such feature as particularly informative 

with regard to the cluster with which it is associated.   

The topic-based perspective on the religion domain, as obtained from the demonstrative results above, 

can be related with works in the field of the comparative study of religion.  One notable source for 

drawing such relation is Ninian Smart's work, for instance his book dimensions of the sacred (1996).  
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Smart specifies six different dimensions spanning those essential aspects, in the light of which world 

religions can be understood and compared.  These dimensions are the ritual dimension, the mythic or 

narrative dimension, the experiential and emotional dimension, the ethical and legal dimension, the 

social dimension and the material dimension.  In addition, Smart separately mentions political effects 

of religion.  It is obvious that this analysis is not geared by keyword counts, but leans on what appears 

to be abstract and deep considerations and knowledge.  However, these dimensions fit rather nicely to 

the partition to “spiritual” versus “establishment” aspects suggested by the two-cluster partition of the 

keyword data produced by the CP method.  Specifically, the mythic or narrative and the experiential 

and emotional dimensions are related with the “spiritual” aspect, while the other dimensions, 

including political effects have to do with the “establishment” aspect.  In addition, some relations to 

our seven-cluster based topics can be observed.  Two dimensions that are unambiguously mapped 

onto our clusters are the ritual dimension, which is mapped to the “festivals and rite” cluster, and the 

experiential and emotional dimension, which is mapped to the “religious experience” cluster.  More 

associations, though less obvious, exist such as the ones relating the mythic or narrative dimension 

with the “writings” cluster and the social dimension with the “community and family” cluster. 

Another example of a theoretical view on religion that is related with our empirical outcome is Kedar 

Nath Tiwari's book Comparative Religion (1992).  This book systematically reviews several religions 

including the five religions we refer to, each religion in a separate chapter.  Subsection titles are 

identical in all chapters.  Thus, the repeating titles give a notion of what the author considers as the 

main factors common to all religions.  The subsection titles are specified as follows (we indicate the 

ones that are unambiguously mapped to one of our seven clusters): god (mapped to our “divinity” 

cluster), world, man, evil and suffering (mapped to “material existence, sin, and suffering” cluster), 

life after death, human destiny, discipline and sects (mapped to “schools” cluster). 

To summarize viewing our results in light of related studies of comparative religion, our findings 

cannot be said to capture the details of any particular theory.  From the two examples above, we see 

that we can not expect such theories to largely overlap with one another.  Interesting partial mapping 

between the clusters generated by the CP method and ingredients of existing theoretical views 

nevertheless exist and worth mentioning.  In the next subsection, we relate our results further with 

knowledge from religion studies, this time more systematically and in quantitative terms. 

5.4.2.2   Quantification of the Overlap with the Expert Data 

We quantitatively evaluated results of the cross-partition clustering method applied to the religion 

data.  Results by three different versions of the CP algorithm, produced with different fixed η values, 

were examined.  As baselines, we used the basic Information Bottleneck (IB) method applied to the 
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union of the subsets, Information Bottleneck with Side Information (IB-SI) and our coupled clustering 

method (Chapter 4). 

As in the previous chapter, we compared our results to classes of terms manually constructed by 

experts of comparative study of religion (as described in detail in Chapter 4, Subsection 4.4.2.3; see 

also Appendix C).  The same 17 test cases involving pairs of religions were examined: all ten datasets 

made of pairs of subsets corresponding to all possible ten religion pairs were compared to the classes 

contributed by expert I.  Four out of the same ten religion pairs could be further compared to classes 

contributed by expert II and three of the ten could be compared to the classes by expert III.  Here as 

well, keywords not used by the expert were eliminated from the evaluated output after the completion 

of the clustering process.  Again, we quantify the agreement between the output resulting from 

applying the CP method to a pair of religions at a time and the classes provided by the experts in 

terms of Jaccard coefficient (see Chapter 3, Subsection 3.3.2). 

Given that the CP method produces probabilistic “soft” clustering, we had the option of using the 

“soft” Jaccard score variant.  However, the scores produced by the soft version were similar to the 

standard Jaccard scores obtained from a “hardened” configuration (i.e., the “soft” scores did not 

reflect the potential added value of identifying real multi-assignments or ambiguities).  We therefore 

used the standard version applied to the hard configuration resulting from assigning each element x to 

the cluster c with highest p(c|x), but the expert data was considered probabilistic in cases of multi-

assignment (as explained in more detail in Chapter 3, Subsection 3.3.2.1) similarly to the way the IB 

method was evaluated (as a baseline) in the previous chapter. 

One further aspect regarding Jaccard scores, which is independent of the hard versus soft issue 

discussed above, refers to the adaptation of the scores to the cross-partition clustering setting.  In the 

previous chapter, we used a version specifically adapted to coupled-clustering.  This version counts 

only cross-subset pairs, while discarding the within-subset pairs altogether in a manner resembling the 

actual calculations conducted by the coupled clustering method, which relies solely on between-subset 

similarity values.  Since the cross-partition approach of this chapter is essentially centroid-based and, 

as such, can be viewed as oriented towards clusters as wholes rather than towards the cross-subset 

associations set by the output configuration (Chapter 3, Subsection 3.3.2.1), we found it appropriate to 

apply here the standard version, which counts both within-subset and cross-subset pairs.6 

                                                      

6 Without specifying the detailed scores, we denote that the Jaccard coefficient version adapted to coupled 

clustering produces in general higher scores in evaluating the CP method results, but the difference is not as 

noticeable as it is for the coupled clustering case described in Chapter 4. 
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Figure 5.11:  The religion keyword cross-partition clustering results evaluated relatively to the expert 

classes.  Jaccard scores are shown for cluster numbers range from two to 16, for all 17 cases: ten by 

expert I, four by expert II and three by expert III.  The algorithms in use: different versions of the CP 

clustering method with different η values (the plain version with η = 0.48, CPII with η = 0.83 and 

CPIII  with η = 0.83), the Information Bottleneck method and the Information Bottleneck with Side 

Information (with γ = 0.07).  Note the different scale used for the “Expert II: Christianity vs. 

Hinduism” case, marked by a dotted frame.  

Expert I: Buddhism vs. Christianity Expert I: Buddhism vs. Hinduism Expert I: Buddhism vs. Islam 

Expert I: Buddhism vs. Judaism Expert I: Christianity vs. Hinduism Expert I: Christianity vs. Islam 

Expert I: Christianity vs. Judaism Expert I: Hinduism vs. Islam Expert I: Hinduism vs. Judaism 

Expert I: Islam vs. Judaism Expert II: Buddhism vs. Christianity Expert II: Buddhism vs. Hinduism 

Expert II: Christianity vs. Hinduism Expert III: Christianity vs. Islam Expert II: Christianity vs. Islam 

Expert III: Christianity vs. Judaism Expert III: Islam vs. Judaism 

Number of Clusters 

          Plain CP, η = 0.48 
          CPII, η = 0.83 
          CPIII, η = 0.83 
          IB-SI, γ = 0.07 
          IB (IB-SI with γ = 0) 

          Num. clusters indicated by expert 
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The results of the experiments from all 17 test cases are displayed in Figure 5.11.A.   The variations 

on the CP algorithm are demonstrated through three of the different versions: CP (with η = 0.48), CPII 

(with η = 0.83) and CPIII  (with η = 0.83).  The other methods represented in Figure 5.11 are 

Information Bottleneck method and the Information Bottleneck with Side Information (with γ = 0.07).  

As already demonstrated, the CP method can be applied to data pre-divided into more than two 

subsets.  Hence, apart from the 17 pairwise test cases, we also tailored a triple Christianity-Islam-

Judaism keyword classification, based on the pairwise cross-religion comparisons provided by expert 

III.  Similarly, we tailored also a configuration of term classes involving all five religions, based on 

the contribution of expert I.  These configurations were used for evaluating the performance of the CP 

method on data pre-partition into three and five subsets.  The results are displayed in Figure 5.11.B.  

As in the coupled clustering case (Chapter 4), the numbers of clusters indicated by each expert, 

denoted by dotted vertical lines in Figure 5.11, do not predict the actual number of clusters in the 

highest scored configuration.  Thus, the target number of clusters was not assumed known, so that a 

whole range of output configurations of two to 16 clusters is scored.  Figure 5.11 demonstrates that 

those CP versions using no prior or prior of one kind – CP (with η = 0.48) and CPII (with η = 0.83) – 

perform better than the CPIII  version (with relatively high η = 0.83) using both priors.  All CP 

versions, however, perform better than the IB and IB-SI methods. 

As discussed before (Section 5.3.3.2), parameter values outside a certain range prevent some of the 

examined algorithms from converging to sufficiently many clusters, or direct convergence to smaller 

number of clusters than the desired number.  In our experiments, we used parameter values that 

allowed the formation of 16 clusters for all datasets.  The existence of such parameter values is not 

obvious, as the datasets involving different pairs of religions differ from one another to much higher 

extent than the synthetic datasets (Subsection 5.4.1).  However, it was not hard to find η values that 

worked well for all religion datasets. 

Table 5.3 specifies, separately for each of several examined methods – CP, IB/IB-SI, and coupled 

clustering with the multiplicative cost function (Chapter 4) – an average over the 17 mean-values 

obtained by averaging over the range of examined numbers of clusters.  As the table shows, the 

various η values that we tried yielded results that were similar on average, with the exception of 

slightly deteriorated performance by the CPIII  version with the higher η value (which is in apparent 

agreement with the results of the synthetic experiments, Section 5.4.1).  In contrast, the highest γ 

value that worked reasonably well for the IB-SI experiments, 0.07, was not sufficient for producing 

the desired number of clusters in the five religion case (note that this value is far lower than the 

optimal values in the synthetic experiments). 
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Table 5.3:  Averages, over all 17 religion pair comparison cases, of means of 2–16 cluster Jaccard 

scores, recorded for the four CP method versions, each with four different η values. 

 η = 0.48 η = 0.56 η = 0.67 η = 0.83 

CP 0.2789 0.2778 0.2829 0.2816 

CPI 0. 2700  0.2716 0.2854 0.2954 

CPII 0.2701 0.2727 0.2820 0.2779 

CPIII  0. 2664 0.2733 0.2656 0.2241 

SI   (γ = 0.07)    0.1812 

CC (multiplicative) 0.1806 

IB 0.1634 

 

Table 5.4:  Average Jaccard scores over the 17 religion comparison evaluation cases.  Each case is 

represented by the mean value (and, in parentheses, the best value) of all examined number of 

clusters.  In parentheses: the average over the best score of each case.  In the lower part of the table, 

difference values that were not found statistically significant (two-tailed t-test with 16 degrees of 

freedom, significance level 0.05) are marked with an asterisk. 

Algorithm Jaccard Score 

Means ± standard deviations of the 17 scores averaged over (best of) all examined numbers of clusters 2–16 

CP (η = 0.48) 0.27890.27890.27890.2789±0.1283 (0.3540±0.1692) 

CPII (η = 0.83) 0.27790.27790.27790.2779±0.1319 (0.3452±0.1579) 

CPIII  (η = 0.83) 0.22410.22410.22410.2241±0.0676 (0.2651±0.0809) 

IB-SI (γ = 0.07) 0.18120.18120.18120.1812±0.0525 (0.2214±0.0804) 

CC (multiplicative) 0.18060.18060.18060.1806±0.0514 (0.2475±0.0725) 

IB 0.16340.16340.16340.1634±0.0472 (0.1889±0.0601) 

Means ± standard deviations of the 17 coupled differences between scores averaged over (best of) 2–16 clusters 

CP − CPII 0.00090.00090.00090.0009±0.02298*  (0.0088±0.0610* ) 

CP − CPIII  0.05480.05480.05480.0548±0.0793 (0.0889±0.1282) 

CPII − CPIII  0.05380.05380.05380.0538±0.0835 (0.0801±0.1055) 

CPIII  −  IB-SI 0.04290.04290.04290.0429±0.0583 (0.0437±0.0949*) 

CPIII  − CC 0.04350.04350.04350.0435±0.0518 (0.0176±0.0858*) 

IB-SI −  CC 0.00060.00060.00060.0006±0.0393*  (−0.0261±0.0657*) 

CC − IB 0.01720.01720.01720.0172±0.0489*  (0.0586±0.0861) 

IB-SI − IB 0.01770.01770.01770.0177±0.0342 (0.0325±0.0528) 
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Along with the same averages over 17 mean-values, Table 5.4 specifies (in parentheses) averages 

over 17 scores, each of which is the best of all examined numbers of clusters in a test case.  In 

addition to the five methods exemplified in Figure 5.11, the table incorporates results of the coupled 

clustering (CC) method (Chapter 4) with the multiplicative cost function.  The lower part of Table 5.4 

confirms, based on the same data, the statistical significance of the differences between the CP 

versions and the IB, IB-SI and CC methods, which were recorded already in Figure 5.11 and Table 

5.3. 

5.4.2.3   Agreement between the Experts 

Agreement between each two experts that contributed evaluation data for the same pair of religions is 

quantified through measuring the overlap between the classifications provided by the two experts, 

based on the commonly used terms.  Together, there was a total of 16 cross-expert evaluation cases 

involving religion pairs: there was one religion pair (Christianity-Islam) to which all the three experts 

generated evaluation data and additional five religion pairs for each of which evaluation data was 

provided by two of the three experts.  The average of the Jacccard scores quantifying agreement in the 

16 cases is specified in the first line of Table 5.5 (same as in Chapter 4).  In order to have common 

grounds for comparison with the common-term-based agreement between experts, terms not used by 

either expert were discarded also from the evaluated clusters (after the clusters were formed) leaving 

in the evaluated clusters only the terms used by both experts.   

Table 5.5:  The cross-expert agreement Jaccard score, along with the coupled differences of this 

score from means over of the 16 cross-expert religion pair evaluation cases (means over 2–16 

cluster Jaccard scores, see text).  The methods examined are CP, CPIII , SI and CC.  The difference 

between the expert agreement and the plain CP method is marked with an asterisk to denote it is not 

statistically significant (two-tailed t-test with 16 degrees of freedom, significance level 0.05) in 

contrast to the other differences recorded. 

 Jaccard Score 

 Means ± standard deviations for cross-expert agreement scores 

Cross-expert Agreement 0.40.40.40.466667777±0.2246 

 Means ± standard deviations of the 17 coupled differences from expert agreements averaged over all 2–16 clusters  

Expert agreement − CP (η = 0.48) 0.405 (0.0620±0.1403*)    

Expert agreement − CPIII (η = 0.83) 0.293 (0.1741±0.1552)    

Expert agreement − SI (γ = 0.07) 0.201 (0.2657±0.2087)    

Expert agreement − CC (multiplicative) 0.202 (0.2651±0.2630) 
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Table 5.5 compares the agreement between experts to the clustering produced by the various methods 

examined, evaluated based on terms common to the two experts between which agreement is 

measured.  It is not surprising that the Jaccard scores obtained based on those relatively few 

“consensual” terms are considerably better than the results in the previous subsection. 

Table 5.5 explicates evidence that, on average, the results produced by the plain CP and the CPII 

methods score closely to the cross expert agreement, up to a level where the difference is not 

statistically significant.  Particularly, the CP and CPII scores are noticeably closer to the expert 

agreement score than then the score of any of the other methods, including IB-SI and the CC methods 

and the CPIII  variation as well. 

5.5   Discussion 
In this chapter, we have introduced and demonstrated the cross partition clustering method.  In order 

to address the cross-partition clustering task, this method follows the regularities of the feature 

distribution in the data, in much the same manner as done by familiar standard probabilistic clustering 

methods, such as IB and ID methods (reviewed extensively above in Section 5.2).  In difference from 

the standard clustering techniques, the CP method considers an additional source of information, 

namely a pre-partition of the data.  It turns that the target regularities in the feature distribution – those 

cutting across the subsets of the given pre-partition – are not straightforwardly distinguishable from 

the subset-specific information that the CP method seeks to neutralize.  Providing the means for 

distinguishing the cross-subset part of feature information from the subset-specific part is a key 

innovative aspect of the cross-partition method. 

The initial motivation to developing the CP method was studying the notion of analogy (see Chapter 

2, Section 2.2), with which it copes from a novel perspective.  Each subset of the given pre-partition 

of the data represents one of the several systems between which analogy is drawn.  Our method 

stresses those attributes that are common to the analogized systems within a framework similar to that 

of standard feature-based data clustering, which also realizes additional constraints related to the 

target of identifying a correspondence between the systems. 

The maximum entropy principle plays in the CP method a key role in interleaving the principles that 

direct the CP task within one iterative loop.  The iterative loop of the CP algorithm is divided to two 

parts, each taking care of one of two principles: forming clusters based on the relevance feature 

distribution and ensuring that formation of clusters is carried out independently of the pre-partition to 

subsets.  Accordingly, the maximum entropy principle is also applied twice.  The fact that the iterative 

loop of the cross partition algorithm realizes separately, through different update steps, two different 

directions has to do with our inability to specify a cost function that is minimized by the cross 
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partition algorithm as can be done for many other related methods (such as the information distortion, 

information bottleneck and information bottleneck with side information methods; all reviewed above 

Subsections 5.2.1, 5.2.2 and 5.2.3). 

As mentioned, the core idea of the CP method's algorithmic mechanism lies in the step implementing 

feature-cluster re-association (Subsection 5.3.2.3).  The associations of the characterizing features 

with the formed clusters are biased so that these associations become independent of the given pre-

partition of the data. 

The IB-SI approach (Chechik & Tishby, 2003; Subsection 5.2.3), which we consider a natural 

alternative to our method, can be understood in similar terms.  In the way we implemented the IB-SI 

method (5.4), with the set of pre-given subset labels (our W variable) taken as the set of “negative 

features” (the IB-SI's Y− variable), the IB-SI method aims at overall de-correlation of the formed 

clusters C from the information regarding the given pre-partition.  As Y+ and Y− are correlated to some 

extent (otherwise there is initially no problem), such global treatment to C implies that de-correlating 

the unwanted C-Y− association seems to affect undesirably the wanted C-Y+ association and vice 

verse.  In distinction, the CP method de-correlates the associations between features and the formed 

clusters, i.e., the detailed C-Y joint distribution, from the pre-partition.  That way, the relation between 

C and Y is selectively focused on those regularities that cut across W, which fits our target more 

accurately as verified by the empirical results. 

The IB-SI method, like the ID and IB methods (Section 5.2) and in distinction from the CP method, 

incorporates all its underlying considerations, including the target de-correlation between the set of 

“negative features” and the formed clusters as discussed above, within a single cost term (Eq. 5.13).  

This seems to be advantageous from the point of view of clarifying what the method aims at.  The 

behavior of the CP method, namely convergence onto a steady state involving several equations is 

more complex and less intuitive to describe.  The CP method, however, consistently outperforms the 

IB-SI and the other tested methods in the cross-partition clustering experiments we have conducted.  

This empirical superiority might suggest, for instance, a potential utility in expressing each one of the 

considerations underlying a composite task through a different term and seeking a solution that 

mutually constrains all terms relatively to one another rather than optimizes an all-encompassing cost 

term.  Of course, such direction is yet to be formulated and examined in general terms – the CP 

method only exemplifies this option. 

One further aspect in the comparison between the IB-SI to the CP approach is that both iterative 

algorithms are not guaranteed to converge (particularly, the iterative IB-SI algorithm is not guaranteed 

to minimize the IB-SI cost term).  Nevertheless, the CP iterative algorithm have shown an empirical 
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advantage throughout our experiments in being more tolerant to changes in its parameter values, while 

the IB-SI requires tuning its parameter within a more restricted range for optimal performance. 

The CP method improves significantly also relatively to the coupled clustering method introduced in 

the previous chapter.  The coupled clustering method is a heuristics that is bound to some 

oversimplifications, most notably the assumption of a given similarity measure and the restriction to 

utilize only between subset similarities.  The CP method not only utilizes the data more directly and 

thoroughly, but it does so in a more principled manner based on considerations of maximizing 

relevant information and the maximum entropy principle.  Comparing the empirical results of the two 

chapters, we notice the difference in the Jaccard scores resulting from the two methods.  Further, also 

the demonstrative examples show, to the best of our judgment, that while the CC results give an idea 

regarding a seemingly random selection of themes that are part of the religion domain, the CP 

outcome provides much more of an exhaustive and balanced sub-topical picture of the whole domain.  

The CP method reveals meaningful constituents that, to our understanding, indeed can be considered 

as the main building blocks of religion along various resolution levels. 

We conclude this chapter with a remark regarding the priorred versus the non-priorred versions of the 

CP algorithm (Subsection 5.3.4).  Including priors allow the formation of clusters of more diverging 

sizes, while the lack of priors poses a bias towards the limit of uniform distribution of elements over 

the clusters.  On one hand, it can be argued that in some well-motivated information theoretic sense 

the methods that apply prior reveal what is “really” in the data.  On the other hand, allowing small 

clusters along with large ones gives rise also to small clusters that are the result of “noise” rather than 

“true” information.  Our conclusion is that it might be worth to include priors in cases where there is a 

reason to believe that the process is going to capture the “true” underlying structure very accurately.  

If this is the case, the utility of using a prior is intensified as far the (“true”) distribution of elements 

over the clusters is from uniform distribution.  It seems, however, that in many real data clustering 

applications high purity level cannot be granted.  We believe that the superiority of the non-priorred 

version of the CP algorithm in our religion comparison task demonstrates well the widespread case 

where it is better not to apply any type of prior.  Also in the synthetic experiments the non-priorred 

CP algorithm lost its superiority in settings of both imbalanced configuration and relatively low level 

of noise (see bottom left hand side of Figure 5.9). 
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Chapter 6:Chapter 6:Chapter 6:Chapter 6:    

DiscussionDiscussionDiscussionDiscussion and Further Directions and Further Directions and Further Directions and Further Directions    

In this work, we have defined and studied a new unsupervised computational learning task: automated 

identification of correspondences across a dataset pre-divided into several – two or more – subsets.  

We have developed methods that accomplish this task and we have demonstrated them on synthetic 

data as well as on real world data extracted from un-annotated texts.  As our methods are introduced 

using general formulation that does not depend on their application to texts, our approach is 

potentially utilizable for a wide variety of real-world problems.  At the same time, it opens new 

perspectives on the analogy making task, which has been typically associated with cognitive concepts 

and mental processes such as discovery and creation. 

Our work extends the data clustering task, in a way that enables coping with analogy or 

correspondence identification.  Correspondences are identified by way of assigning together 

corresponding elements from different subsets into the same cluster.  As we have emphasized (Section 

3.1), the straightforward application of a standard clustering technique would not address well the 

above task.  This is particularly true when each of the pre-given subsets given as input is relatively 

homogenous and overall not very similar to the other subsets.  In such cases, a standard clustering 

method would tend to produce clusters with elements restricted to a single subset.  Our results, 

however, demonstrate the capability of modified clustering techniques to reveal correspondences 

between the subsets as required, rather than subset-specific themes. 

As mentioned (Subsection 2.1.1.2), the data clustering problem is formally ill posed.  In practice, the 

quality of a proposed solution for a specific is assessed in terms of the requirements of the specific 

application.  Our modified data-clustering problem is subject to the same type of ambiguity and, in 

fact, the potential source of ambiguity is even heaped on.  While ambiguity in the original data 

clustering task results from the lack of a definite criterion for how elements should be grouped 

together, the extended task adds on top of that a potential ambiguity regarding constructing the 

matches across two or more given subsets.  In spite of being formally ill posed, the data clustering 

task has been studied extensively.  We hope our new task would be recognized as a useful tool that 

deserves further study just as the standard data-clustering notion on which it is based. 
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We have developed two different data-clustering based computational methods that identify 

correspondence across several given subsets of data elements.  The first of which, coupled clustering 

(Chapter 4), is based on a recent cost-based pairwise clustering framework.  In this setting, the 

distributional data representation that is typically given needs conversion to pairwise similarities.  The 

second method, cross partition clustering (Chapter 5), extends clustering methods grounded on 

information theoretic accounts and is directly based on co-occurrence distribution.  Each of these two 

methods bases its strategy on few principles, pertaining to the essence of the task of identifying 

correspondences. 

There are several advantages to starting from studying a setting based on deterministic (“hard”) data-

clustering, as we have done in Chapter 4, rather than the probabilistic or “soft” variations.  

Deterministic clustering is technically and conceptually simpler and it constructs more definite and 

easily interpretable clustering configurations.  The coupled clustering method restricts the similarity 

values generally considered by pairwise clustering methods to similarities of elements that are not in 

the same subset (“between-subset similarities”).  It is thus guided by the working assumption that 

information within a subset is not supposed to impact directly the correspondences formed across 

subsets but, rather, the information resulting from comparing two subsets, i.e., similarities between 

members of the different subsets, should be the factor to consider in constructing such 

correspondences.  This assumption motivates the main original mechanism underlying the coupled 

clustering method: the cost-function that we have proposed (H3, Eq. 4.14), which incorporates two 

complementary principles.  The first one is the underlying principle of pairwise clustering in general: 

A cluster should contain elements that are similar to one another. 

The second principle turned to be the underlying idea of the coupled clustering method: 

In order to be formed, a cluster must exceed some level of prominence in both subsets 

(as opposed to a cluster that is overall more prominent, but most of its members are 

concentrated in one of the subsets). 

This second direction is realized through a geometric-mean term that is used for calculating average 

similarity in each cluster. 

In summary, the coupled clustering method is a rather straightforward elaboration on the standard 

cost-based pairwise clustering setting, which only restricts the collection of similarity values under 

consideration to the collection of between-subset similarities.  The essential drawback of the coupled 

clustering method might lie in its presumed working assumption.  It is probable that similarities 

between elements of distinct subsets are more important for the emerged correspondence, but the 

policy of restricting the attention to these similarities is, in retrospective, just a preliminary rough 
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direction.   The coupled clustering method does not accommodate studying further this axiomatic 

assumption, so the questions of whether and to what extent the non-considered within-subset 

similarities are utilizable for the task of constructing context-dependent correspondences remain open.  

In addition, the intermediate stage of calculating pairwise similarity implies yet another source for 

loss of information, which could have contributed to the revealed correspondences. 

The cross partition data clustering method, introduced in Chapter 5, extends coupled clustering along 

several aspects: it enables the identification of correspondences across more than two pre-divided 

subsets, and it produces probabilistic rather than deterministic clustering output.  It also saves the 

intermediating similarity calculation stage, as it relies on vectorial (probabilistic) representation of the 

data, which is the original format of the data in many cases.  Like coupled clustering, the cross-

partition clustering method follows two guiding principles.  The first of which is the underlying idea 

of probabilistic centroid-based clustering (Subsection 2.1.4.6): 

Clusters are formed around feature-distribution based centroids. 

(The centroids are averaged over individual distributions of members in proportion to their 

membership probability, and thus expected to approximate the feature distribution for the 

cluster elements).  The other principle is the main novel idea in the cross-partition method: 

The formed associations between the clusters and the feature distributions 

characterizing them should maintain independence from the given pre-partition to 

subsets. 

In order to illustrate the kind of impact this principle has on outcome resulting from the first principle 

(that is, standard probabilistic clustering), assume that some features distinguish well between groups 

of elements within one of several pre-determined subsets, while having no discriminative value within 

other subsets.  Such features are not expected to direct the formation of cross-partition clusters, as 

they would push toward clusters made of elements restricted to one subset.  Rather, features that push 

towards inclusion of members from all subsets in some cluster are expected to guide the formation of 

clusters, even if overall they are not as salient. 

This direction is analogous to the second principle guiding the coupled clustering cost term.  Both 

give rise to a geometrical mean term.  In the coupled clustering case, the scheme involving 

geometrical mean has been justified by the intuitive direction of keeping both cluster parts of a 

considerable size.  However, a restrictive working assumption such as the one taken by the coupled 

clustering method (restricting attention to between subset similarities) is not present in the cross 

partition framework.  As a rough equivalent to our coupled clustering restriction, we mention the use 

of the maximum entropy principle, which is applied to highlight the constraints posed by the two 
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principles above.  Rather than posing some initial guess regarding where to look for the desired 

information, the maximum entropy principle enforces the assumption that nothing is known beyond 

constraints derived from the stated guiding principles. 

There are several technical matters in the cross partition framework that need to be studied further.  

For example: clarifying the role of the external parameters (η and β) and their interplay and 

understanding how the number of pre-given subsets (|W|) – especially when this number is large – 

affects the behavior of the algorithm.  

An optional direction, where the CP method can be practically applied is identifying repeating 

themes, or “roles”, in topical news articles (which is directly related to the task of template induction 

for information extraction).  We did a preliminary investigation in this direction at earlier phases of 

the research (Marx, Dagan & Shamir, 2002).  The news articles that we examined were focused on the 

topic of terrorist attacks.  In this domain, the target roles – the organization that carried out an attack, 

the location, the weapon used and so on – are typically addressed by different terms in each article.  

We applied a method that clustered together terms associated with each different role.  Thus, each of 

the generated clusters reveals a correspondence across the given articles, which may underlie a slot in 

an information extraction template. 

A related direction currently being implemented is extending the cross-partition framework to semi-

supervised learning.  As we indicated (Subsection 2.1.5.3), several recent works proposed to constrain 

(or “to seed”) data clustering, e.g., by pre-specifying lists of element pairs that must, or must not, 

share a cluster.  This idea can be adapted to the information distortion and information bottleneck 

methods, as well: if assignment probabilities of some data elements are pre-specified (or constrained 

in other ways), a straightforward modification of the algorithm would minimize a cost term just like 

the original methods do1.  By the same token, also the cross partition framework can enable pre-

specifying, or constraining, assignments of some of the elements.  In an ongoing project, we study a 

setting where the assignments of all elements of one of the pre-given subsets are known, so this subset 

forms a training set, while elements of the other subset are assigned to clusters as in the original CP 

method.  The idea mentioned above of applying the maximum entropy principle to highlight these 

additional constraints through separate iterative update steps is incorporated as well in the same 

project. 

                                                      

1 This can be verified with slight modification of lemmas 5.1 and 5.3; specifically, the sums in Eqs. (5.8) and 

(5.11) should be modified to reflect the constrained assignments. 
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In this work, we have approached a task related with abstract cognitive functions – construction of 

correspondences and analogies – through a simple extension of the elementary data-clustering setting.  

We see our success in coping with a seemingly complicated task by means of a relatively simple 

setting an appealing aspect of our work.  There are additional unsupervised tasks, however, which aim 

at constructs more complex than standard clustering, for example Bayesian nets, or graphical models.  

As mentioned, the information bottleneck method described in Section 5.2 has already been 

generalized to producing more complex types of constructs (multivariate information bottleneck; 

Friedman et al., 2002).  Extending the cross partition clustering method along the same direction 

would form a natural and interesting continuation of the current work, which might lead to more 

insights regarding analogy making and related tasks. 

This work provides an original perspective on the study of analogies.  Analogy making is one of those 

slippery tasks with no consensual pre-given definition or characteristics, but very central to 

intelligence and creativity.  Each one of the existing approaches to analogy making indicates different 

aspects of analogy as the essential ones (as exemplified in Section 2.2, and discussed a bit further 

below).  In fact, there is a deep disagreement with regard to what are the considerations that underlie 

analogies in practice (see for example Ch. 4 in Hofstadter et al., 1995).  Suggesting a computational 

framework applicable to this notion, as we have attempted to do here, has been a fascinating 

challenge, even though it is clear that such suggestion is not going to achieve consensus among 

researchers in the field. 

Our approach to analogy making relies on word co-occurrence distribution in the given data, rather 

than on hand-written rules or pre-coded data representation of the type used by some previous studies.  

This approach thus bridges between cognitive motivations and observations regarding analogy 

making and the familiar vector model, which has been extensively used for practical tasks such as 

similarity assessment and classification.  The data clustering task on which our methods elaborate can 

be seen as a basic “cognitive” tool for concept discovery.  Our work takes this general tool and adapts 

it to discovery of concepts that form an analogy or other non-trivial context-dependent 

correspondence. 

The setting underlying our computational approach is considerably different than previous views of 

analogy making.  As noted above, the two methods that we introduced ascribe the correspondence 

being formed to interplay between two different principles.  In coupled clustering, these are shared 

pairwise similarity (across subsets) and simultaneous prominence of the formed cluster in both 

subsets.  In the cross partition method, the underlying factors are communal feature distribution 

patterns and their independence on the pre-partition variable.  To the best of our knowledge, the cross 
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partition framework is the first to characterize correspondence formed across several subsets in terms 

of statistical independence. 

Previous works have considered other issues as central to analogy making.  Analogy is ordinarily 

conceived as a means for problem solving (“analogical reasoning”), an aspect on which we have not 

focused here.  The mapping of relational structure is a crucial conception at the core of the structure 

mapping theory (Gentner, 1983), but our method does not elaborate on this aspect as well.  Further 

developments of our framework might aim at capturing and emphasizing relational structure. 

Several other works also considered the retrieval problem: identifying the optimal object, which 

would allow the construction of an analogy to a given target object (Forbus, Gentner and Law, 1995).   

Our work does not address this point, as well: we examine two or more given element subsets, 

without accounting for how these subsets, or the systems they represent, have been chosen at the first 

place.  The approach that we have introduced, however, is formulated in a general enough manner to 

allow the incorporation of aspects such as the above ones.  For instance, in order to compare the 

quality of several candidate analogies, we might use cost-related criteria (in coupled clustering), or 

examine the dynamics of the algorithm (in cross partition clustering; e.g., assessing the quality of 

candidates according to the β value required for producing a fixed number of clusters). 

There is a notable aspect that has been raised by other authors, particularly Hofstadter et al. (1995), 

which our approach seems to address in some sense: the emergent and fluid nature of the formed 

solution, which has to do with mental processes of creation and discovery.   In some resemblance to 

the Copycat program (Subsection 2.2.2), our clustering mechanisms are based on aggregation of local 

changes that gradually evolve to a global solution of the problem at hand, while a temperature 

variable gradually introduces a more deterministic configuration.  Further, our approach allows the 

formed solution to depend greatly on the context.  When a particular subset is matched with different 

subsets, different themes might be revealed and mapped onto one another, in distinction, for example, 

from an approach that first clusters each subset independently and then map the independently 

clustered subsets onto one another.  In this respect, as well, our approach accords with Hofstadter et 

al.'s view regarding the context dependent nature of analogies. 

The computational mechanisms that we employ are essentially simpler than the ones suggested by 

Hofstadter et al. (refer to Subsection 2.2.2.2) and hence they are more liable to inspection and 

analysis.  Hofstadter et al. advocate restricting the scope of investigation to artificial toy problems, 

allowing “looking at a problem together with its ‘hallo’ of variant problems” (Hofstadter et al., 1995).  

We have started with an approach that is inherently simpler.  Thus, our approach might capture the 

analogy making problem only partially (though having potential to incorporate more aspects later on).  
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Particularly, our methods at their current stage might lack some subtleties addressed within the 

Copycat program.  On the other hand, the principled computational machinery that we suggest allows 

cleaner demonstration of the impact of systematic manipulations on the input (see description of our 

experiments with synthetic data, Sections 4.3 and 5.4.1).  Yet, without getting to the complex issue of 

how to evaluate and compare analogies, we think that our method captures something of their 

emergent and fluid nature.  And above all, the most notable advantage we recognize in comparison to 

previous methods pertaining to analogy making is the immediate applicability of our methods to real-

world problems and data. 

In this work we have demonstrated our approach mainly on textual data.  With no prior specialization 

or training in the study of religions, our program was able to identify analogous factors shared by 

several religions in varying levels of resolution: “spiritual” versus “establishment” dimensions in a 

coarse view and aspects such as “sacred writings”, “rite and festivals” and “sin and suffering” in a 

more detailed level.  These findings are in apparent agreement with previous specialized comparative 

religion studies that are based on a systematic comparable approach.  For the purpose of systematic 

evaluation, we have measured the overlap between our outcome and religion-related term clusters 

provided by experts and found their match very close to the level of agreement between experts.   

Co-occurrence data and, more generally, data in vectorial representation are very common in many 

fields: artificial vision, biology, psychology and competitive intelligence, to mention just a few.  As 

the formulation of the methods introduced in this work does not depend on any specific application, 

we hope they will be applied in the future to a large variety of problems and domains. 
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Appendix Appendix Appendix Appendix AAAA::::    Religion Religion Religion Religion DataDataDataData    

A.1  The Sub-corpora 

 Buddhism Christianity Hinduism Islam Judaism 

Original corpus size  1.44 (8.66) 1.89 (10.77) 2.14 (12.99) 1.51 (8.72) 1.56 (9.18) 

Lemmatized corpus  0.76 (5.57) 0.98 (6.71) 1.20 (8.63) 0.77 (5.38) 0.83 (5.87) 

 size in millions of word tokens (megabytes) 

     # documents 58 44 44 52 44 
Encyclopedic entries 8 8 8 8 8 

FAQ files 4 4 4 2 5 
Online periodicals 4 4 1 6 5 
Other web-sites / 

online books 
42 28 31 36 26 

• The sub-corpora used for this work contain the sub-corpora used by Marx, Dagan, Buhmann and Shamir 

(2002), extending them by 25-50%. 

• Inclusive documents have been chosen: ones that essentially refer to a religion as a whole, rather than 

being pre-limited to a specific aspect or school.  This way, we have tried to create sub-corpora of general 

character that repeatedly refer to a variety of aspects on roughly the same level of detail.  This makes the 

practice of filtering out key-terms appearing on less than four documents somewhat more reliable. 

• Some of the documents have been created as a merge of several pages appearing on the same Internet 

site.  For example, each “online-periodical” document consists of up to tenth of individual articles. 

• We have made efforts to exclude texts that literally repeat over different web pages. 

• The use of a POS tagger and lemmatizer is also new relatively to Marx et al. (2002).  There, filtering of 

function words was controlled by a pre-determined list.  Here, we have identified content words by their 

part of speech, leaving only the lemmatized nouns (including names), verbs, adjectives and adverbs.  

Numbers tagged as cardinal or ordinal numbers were replaced by ~card~ and ~ord~ signs 

• Some of the most prevalent alternative part-of-speech tags have been attached to the lemmatized word 

tokens.  For example, mean/V stands for occurrences of the lemma ‘mean’ tagged as a verb, while mean 

stands for the noun sense, which is more prevalent within our sub-corpora, as well as for any other part 

of speech that the tagger has (erroneously) attached to the same lemma.  Other tags are /N for names or 

nouns and /J for adjectives and adverbs.  The alternative tags are attached whenever the alternative 

repeats 50 times or more (in all sub-corpora). 
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A.2  The Features 

For each specific cross religion comparison, the features used – i.e., counted content words co-located with 

the clustered key-terms – are those occurring in both compared sub-corpora (at least twice in each corpus).  

The numbers of features used for each comparison: 

Common to all 5 religions: 6796 Christianity, Islam and Judaism: 7768 

Buddhism and Christianity: 8717 Buddhism and Hinduism: 9905 

Buddhism and Islam: 7973 Buddhism and Judaism: 8735 

Christianity and Hinduism: 10410 Christianity and Islam: 8604 

Christianity and Judaism: 9641 Hinduism and Islam: 9438 

Hinduism and Judaism: 10454 Islam and Judaism: 8563 

Following is the list of the 58 features that are among the 100 most common features in at least four of the 

five sub-corpora.  The numbers in brackets indicate the number of joint occurrences in which the feature is 

involved (in order to calculate p(y) for any feature y within the configuration incorporating all sub-corpora, 

one should divide the number in brackets by the total count of co-occurrences in all sub-corpora): 

have  ( 99303 ), not  ( 71697 ), god  ( 54503 ), do  ( 42993 ), one  ( 36608 ), say  ( 30779 ), 
life  ( 25722 ), man ( 20262 ), other  ( 20243 ), people  ( 20219 ), make ( 19733 ), only  ( 19065 ), 
give  ( 18919 ), come ( 17978 ), world  ( 17579 ), so  ( 17402 ), time  ( 17059 ), also  ( 17020 ), 
being  ( 16685 ), ~card~  ( 15591 ), many ( 15433 ), as  ( 15258 ), way ( 15077 ), know  ( 15029 ), 
more  ( 14830 ), see  ( 13531 ), then  ( 13507 ), word  ( 13203 ), day  ( 13160 ), go  ( 13115 ), 
first  ( 13014 ), take  ( 12690 ), most  ( 12570 ), become ( 12336 ), good  ( 12277 ), even  ( 12273 ), 
great  ( 12037 ), believe  ( 11307 ), human ( 10786 ), call  ( 10656 ), out  ( 10527 ), year  ( 10076 ), 
live  ( 9990 ), find  ( 9937 ), own ( 9877 ), such  ( 9575 ), use/V  ( 9260 ), book  ( 8928 ), 
very  ( 8889 ), up  ( 8880 ), two  ( 8875 ), person  ( 8411 ), mean/V  ( 8386 ), now ( 8271 ), 

state  ( 8194 ), same ( 8149 ), bring  ( 8135 ), teach  ( 8050 ). 

The total co-occurrence  count in the corpus (all sub- corpora): 4892150  

The rest of the 100 most common features within each individual corpus follow.  The numbers in brackets 

indicate the co-occurrence count within the individual corpus.  In order to calculate feature probability 

conditioned on the corpus p(y|Xi) for any feature y one would divide the bracketed number by the total 

number of co-occurrences within the corpus, which appear at the end of each list. 
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Buddhism 

buddhist  ( 8452 ), buddha  ( 7601 ), buddhism  ( 6470 ), practice  ( 3344 ), teaching  ( 3236 ), 
mind  ( 3036 ), meditation  ( 2307 ), monk ( 2068 ), path  ( 1949 ), suffering  ( 1869 ), 
tradition  ( 1866 ), thing  ( 1774 ), right  ( 1733 ), truth  ( 1717 ), develop  ( 1678 ), 
just  ( 1622 ), religious  ( 1620 ), death  ( 1586 ), action  ( 1569 ), understand  ( 1538 ), 
religion  ( 1490 ), enlightenment  ( 1468 ), sense  ( 1467 ), follow  ( 1448 ), teacher  ( 1439 ), 
lead  ( 1430 ), nature  ( 1426 ), order  ( 1421 ), think  ( 1385 ), three  ( 1372 ), other/N  ( 1357 ), 
term  ( 1352 ), text  ( 1343 ), spiritual  ( 1295 ), experience  ( 1284 ), form  ( 1269 ), 
different  ( 1214 ), part  ( 1202 ), arise  ( 1200 ), existence  ( 1199 ), sangha  ( 1174 ), 
well  ( 1168 ), school  ( 1165 ), four  ( 1163 ). 

The total co-occurrence  count in the corpus: 812850  

Christianity 

jesus  ( 15446 ), christ  ( 14275 ), church  ( 7144 ), lord  ( 6303 ), sin  ( 5438 ), son  ( 5041 ), 
holy  ( 4918 ), bible  ( 4260 ), faith  ( 4226 ), thing  ( 3833 ), christian  ( 3740 ), father  ( 3693 ), 
christian/J  ( 3251 ), save  ( 3131 ), gospel  ( 3127 ), death  ( 2993 ), heaven  ( 2954 ), 
tell  ( 2803 ), speak  ( 2803 ), power  ( 2700 ), work  ( 2655 ), just  ( 2609 ), paul  ( 2539 ), 
heart  ( 2513 ), prayer  ( 2472 ), john  ( 2430 ), salvation  ( 2415 ), write  ( 2393 ), name ( 2339 ), 
get  ( 2334 ), baptism  ( 2277 ), think  ( 2268 ), ever  ( 2240 ), body  ( 2232 ), receive  ( 2211 ), 
love  ( 2151 ), law  ( 2144 ), grace  ( 2144 ), child  ( 2143 ), therefore  ( 2078 ), holy/J  ( 2067 ), 
scripture  ( 2062 ), testament  ( 2035 ), want  ( 2021 ), die  ( 2009 ). 

The total co-occurrence  count in the corpus: 1281079  

Hinduism 

hindu  ( 10614 ), india  ( 5554 ), hinduism  ( 4262 ), religion  ( 3975 ), temple  ( 3529 ), 
religious  ( 2854 ), spiritual  ( 2835 ), indian  ( 2748 ), yoga  ( 2672 ), worship  ( 2612 ), 
lord  ( 2535 ), child  ( 2387 ), soul  ( 2204 ), ancient  ( 2160 ), family  ( 2097 ), culture  ( 2067 ), 
vedic  ( 1943 ), sri  ( 1864 ), body  ( 1835 ), mind  ( 1774 ), include  ( 1726 ), part  ( 1725 ), 
form  ( 1689 ), school  ( 1681 ), system  ( 1644 ), swami  ( 1627 ), krishna  ( 1625 ), 
philosophy  ( 1617 ), tradition  ( 1607 ), knowledge  ( 1590 ), different  ( 1586 ), 
dharma  ( 1581 ), nature  ( 1534 ), vedas  ( 1519 ), karma  ( 1502 ), practice  ( 1480 ), 
sacred  ( 1475 ), new ( 1473 ), place  ( 1452 ), ritual  ( 1449 ), today  ( 1447 ), scripture  ( 1423 ), 
high  ( 1420 ). 

The total co-occurrence  count in the corpus: 1002100  

Islam 

allah  ( 12391 ), prophet  ( 8795 ), islam  ( 7799 ), muhammad ( 4130 ), muslims  ( 3980 ), 
messenger  ( 3254 ), islamic  ( 3097 ), religion  ( 2994 ), follow  ( 2663 ), muslim  ( 2483 ), 
law  ( 2207 ), woman ( 2132 ), belief  ( 2079 ), worship  ( 2078 ), faith  ( 2058 ), reveal  ( 1975 ), 
prayer  ( 1973 ), muslim/N  ( 1965 ), ask  ( 1903 ), knowledge  ( 1844 ), peace  ( 1843 ), 
verse  ( 1842 ), heart  ( 1749 ), holy  ( 1685 ), true  ( 1658 ), revelation  ( 1612 ), jesus  ( 1587 ), 
order  ( 1573 ), accord  ( 1570 ), create  ( 1484 ), name ( 1442 ), qur~an  ( 1429 ), fact  ( 1406 ), 
accept  ( 1367 ), fast  ( 1359 ), send  ( 1357 ), thing  ( 1333 ), lord  ( 1333 ), message  ( 1322 ), 
truth  ( 1319 ), right/N  ( 1300 ), place  ( 1293 ), last  ( 1292 ), believer  ( 1287 ), well  ( 1275 ). 

The total co-occurrence  count in the corpus: 913241  

Judaism 

jewish  ( 10726 ), torah  ( 6557 ), rabbi  ( 4150 ), judaism  ( 3666 ), jews  ( 3541 ), law  ( 3482 ), 
israel  ( 3456 ), woman ( 2562 ), jew  ( 2328 ), moses ( 1940 ), child  ( 1935 ), name ( 1845 ), 
prayer  ( 1793 ), community  ( 1738 ), temple  ( 1723 ), religious  ( 1706 ), write  ( 1687 ), 
commandment ( 1604 ), create  ( 1585 ), part  ( 1569 ), tell  ( 1514 ), land  ( 1511 ), begin  ( 1507 ), 
just  ( 1438 ), include  ( 1421 ), place  ( 1396 ), talmud  ( 1352 ), spiritual  ( 1351 ), 
speak  ( 1350 ), synagogue  ( 1348 ), tradition  ( 1336 ), new ( 1330 ), father  ( 1313 ), 
reform  ( 1305 ), movement  ( 1275 ), service  ( 1259 ), accord  ( 1238 ), abraham  ( 1238 ), 
well  ( 1206 ), rabbinical  ( 1206 ), understand  ( 1199 ), jerusalem  ( 1192 ). 

The total co-occurrence  count in the corpus: 881569  
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A.3  The Clustered Keyword Sets 

The sizes of the keyword sets are as follows: 

Buddhism – 227; Christianity – 235; Hinduism – 177; Islam – 221; Judaism – 232. 

The whole sets can be seen in the results Appendix E.  Here, the clustered keyword sets are exemplified 

through arbitrarily chosen ~10% subsets (we have picked elements number 1, 11, 21, … and so on, 

according to their lexicographic order).  Along with each element, we indicate its three most prominent 

features that are not included in any of the above lists of common 100 features per corpus.  The individual 

feature lists below demonstrate well the information conveyed by the thousands of features that are not very 

frequent.  Each feature is preceded by its relative rank in terms of number of co-occurrences with the 

particular element. The bracketed numbers, that is the count of joint occurrences, divided by the total co-

occurrence count of the element x, gives the respective conditional probabilities p(y|x).  The total number of 

x co-occurrences divided by the total number of co-occurrences within the corpus (or within all sub-

corpora), which has been indicated previously, gives the probability p(x|Xi) (or p(x)). 

 

Buddhism   
  Key-term Features (co-occurrence count) Total count 
   Abbot 2. monastery ( 13) 4. here ( 7) 7. there ( 5) 461  
Asceticism 4. five ( 33) 8. wander ( 20) 13. austerity ( 16) 2307  
Being 6. sentient ( 200) 13. living ( 122) 35. happiness ( 77) 24953  
Burma 1. thailand ( 36) 2. lanka ( 35) 5. cambodia ( 15) 795  
conditioning 3. process ( 9) 4. consciousness ( 8) 5. condition ( 7) 544  
Discipline 2. rule ( 31) 6. monastic ( 27) 7. code ( 21) 2683  
Emptiness 3. phenomenon ( 25) 5. realize ( 22) 8. realization ( 20) 2132  
Family 6. friend ( 30) 10. leave ( 24) 11. member ( 20) 3239  
full~moon 1. month ( 26) 3. moon ( 15) 5. night ( 12) 505  
Hinduism 15. caste ( 13) 23. principle ( 9) 24. orthodox/J ( 9) 2194  
Karma 5. result ( 91) 6. bad ( 79) 8. rebirth ( 71) 7730  
Liberation 8. achieve ( 20) 9. insight ( 20) 12. attain ( 19) 2754  
Meet 10. group ( 17) 13. need ( 16) 28. attend ( 12) 3041  
noble~truths 6. suffer ( 47) 8. noble ( 44) 10. cause ( 36) 2937  
Phenomenon 1. mental ( 34) 3. emptiness ( 29) 4. physical ( 27) 2472  
psychologist 2. modern ( 7) 4. philosopher ( 4) 5. view ( 3) 311  
Robe 1. wear ( 35) 4. bowl ( 18) 5. yellow ( 14) 1297  
Sanskrit 1. pali ( 44) 5. language ( 24) 9. translate ( 17) 1616  
Society 5. individual ( 32) 7. social ( 28) 14. member ( 20) 4698  
Student 4. western ( 18) 10. master ( 13) 14. zen ( 11) 1806  
Text 4. pali ( 67) 6. early ( 55) 14. group ( 36) 7680  
Universe 8. phenomenon ( 19) 16. everything ( 16) 18. entire ( 15) 2566  
Wisdom 2. compassion ( 100) 5. perfection ( 63) 12. virtue ( 38) 6313  
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Christianity   
  Key-term Features (co-occurrence count) Total count 
   Abraham 2. promise ( 91) 4. seed ( 50) 10. isaac ( 32) 2866  
Association 4. unitarian ( 9) 7. evangelical ( 9) 8. universalist ( 8) 668  
Believing 32. baptize ( 75) 43. ye ( 60) 50. reason ( 55) 19264  
Cardinal 2. bishop ( 13) 3. pope ( 10) 4. elect ( 9) 285  
Confess 11. forgive ( 30) 19. mouth ( 22) 27. faithful ( 15) 3468  
Doctrinal 8. trinity ( 67) 21. christianity ( 39) 26. principle ( 34) 8561  
Evangelical 2. theology ( 67) 19. century ( 22) 22. group ( 19) 5851  
Fire 1. lake ( 68) 4. hell ( 48) 6. burn ( 39) 3234  
Gift 18. tongue ( 37) 20. christmas ( 35) 21. prophecy ( 33) 5455  
Heaven 4. earth ( 268) 14. kingdom ( 100) 18. hell ( 84) 12142  
Idolatry 4. forme ( 4) 12. note ( 3) 14. inordinate ( 3) 335  
Jew 8. gentile ( 40) 12. christianity ( 31) 17. roman ( 23) 5074  
Law 9. keep ( 72) 24. divine/J ( 39) 25. break ( 38) 9470  
Mary 3. virgin/N ( 40) 6. mother ( 33) 7. joseph ( 28) 2248  
Moral 5. goal ( 38) 8. evil/N ( 33) 10. acceptable ( 25) 4218  
Passage 11. refer ( 29) 12. read ( 25) 14. meaning ( 22) 3843  
Pope 5. ii ( 39) 6. bishop ( 33) 7. roman ( 25) 2273  
Question 6. answer/V ( 118) 7. answer ( 106) 10. raise ( 45) 8434  
Revelation 16. chapter ( 19) 22. special ( 16) 37. divine/J ( 12) 3480  
Salvation 21. plan ( 52) 28. eternal ( 43) 32. necessary ( 37) 9720  
Soul 8. win ( 64) 20. winner ( 45) 25. immortal ( 36) 7894  
Teach 11. pray ( 56) 12. doctrine ( 56) 31. disciple ( 26) 7404  
Trinity 2. doctrine ( 66) 16. incarnation ( 17) 20. unity ( 12) 2160  
Worship 10. music ( 47) 24. sunday ( 30) 27. praise ( 28) 7227  
 

Hinduism   
  Key-term Features (co-occurrence count) Total count 
   Advaitha 8. theory ( 5) 13. pure ( 4) 15. doctrine ( 4) 419  
Attain 4. liberation ( 51) 12. eternal ( 32) 13. bliss ( 32) 4421  
brahma~sutra 1. commentary ( 21) 2. upanishads ( 15) 3. gita ( 11) 293  
classical 1. music ( 85) 3. dance ( 58) 9. sanskrit ( 16) 1942  
divinity 9. mother ( 81) 17. self ( 59) 22. society ( 48) 12320  
festival 4. celebrate ( 51) 7. annual ( 38) 9. hold ( 32) 3622  
gita 2. upanishads ( 49) 10. commentary ( 23) 17. sutra ( 20) 3349  
hymn 2. veda ( 41) 3. collection ( 30) 4. rig ( 29) 2263  
karma 10. reincarnation ( 78) 11. bad ( 73) 13. past ( 62) 9117  
mahabharata 1. epic ( 73) 3. gita ( 23) 7. puranas ( 18) 1788  
philosophy 23. six ( 42) 35. science ( 34) 37. upanishads ( 33) 10430  
question 3. answer ( 83) 4. answer/V ( 72) 13. scend ( 25) 4432  
rigveda 2. hymn ( 46) 3. veda ( 35) 8. old ( 19) 1929  
scholar 3. sanskrit ( 30) 4. western ( 30) 14. leader ( 15) 2707  
smriti 4. manu ( 15) 5. remember ( 13) 6. literature ( 12) 784  
student 5. university ( 55) 15. learn ( 29) 20. college ( 25) 5771  
tradition 22. value ( 52) 33. art ( 44) 44. preserve ( 34) 14172  
west 5. east ( 93) 12. astrology ( 63) 21. eastern ( 42) 11606  
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Islam   
  Key-term Features (co-occurrence count) Total count 
   abraham 7. noah ( 54) 10. ishmael ( 39) 12. adam ( 36) 3195  
army 3. battle ( 16) 6. fight ( 10) 10. commander ( 9) 1648  
bible 20. mention ( 7) 25. statement ( 7) 29. difference ( 6) 1306  
christian 35. doctrine ( 24) 44. trinity ( 21) 46. missionary ( 21) 7241  
creature 7. creator ( 28) 10. mercy ( 22) 11. universe ( 18) 1880  
earth 16. creation ( 34) 20. face ( 26) 21. belong ( 26) 5823  
faith 20. article ( 52) 26. deed ( 48) 44. reject ( 28) 9806  
food 1. eat ( 57) 4. drink ( 33) 10. abstain ( 17) 2239  
guide 12. mankind ( 54) 22. clear ( 36) 24. seek ( 35) 6521  
house 5. enter ( 32) 7. build ( 28) 11. pilgrimage ( 24) 2838  
ishmael 4. isaac ( 20) 7. jacob ( 17) 8. build ( 15) 854  
kaabah 1. mecca ( 23) 4. build ( 17) 6. house ( 16) 996  
marriage 6. wife ( 58) 8. divorce ( 42) 16. husband ( 26) 3801  
mother 8. wife ( 30) 12. sister ( 26) 23. baby ( 15) 2758  
pilgrimage 1. hajj ( 99) 2. mecca ( 77) 5. duty ( 38) 3113  
purification 5. wealth ( 18) 23. alms ( 7) 24. intention ( 7) 1343  
responsibility 11. hold ( 22) 12. social ( 21) 14. society ( 20) 3145  
science 6. modern ( 34) 7. technology ( 33) 19. art ( 18) 4308  
social 2. economic ( 78) 4. political ( 72) 8. society ( 49) 4999  
submission 5. obedience ( 44) 9. total ( 24) 13. complete ( 17) 2005  
testimony 6. confirm ( 12) 7. bear ( 12) 12. ramadan ( 8) 704  
water 7. drink/V ( 21) 8. jug ( 19) 12. down ( 16) 2489  
writing 12. read ( 5) 15. jail ( 4) 16. leaf ( 4) 685  
 

Judaism   
  Key-term Features (co-occurrence count) Total count 
   abraham 2. isaac ( 92) 5. sarah ( 66) 6. jacob ( 52) 5074  
ashkenazim 8. jewry ( 10) 12. germany ( 9) 15. custom ( 7) 1094  
canaan 2. egypt ( 18) 7. israelite ( 7) 9. jacob ( 7) 674  
command 12. keep ( 17) 14. love/V ( 16) 17. sanctify ( 16) 2980  
discuss 4. issue ( 41) 14. debate ( 16) 15. chapter ( 16) 3951  
europe 2. eastern/N ( 42) 5. western/N ( 17) 6. century ( 16) 1476  
family 4. member ( 71) 5. friend ( 62) 14. home ( 31) 6527  
gemara 2. commentary ( 14) 3. together ( 8) 7. answer ( 7) 620  
hebrew 6. language ( 40) 11. union ( 29) 12. hebraic ( 28) 4374  
humanity 11. creation ( 7) 14. history ( 6) 20. image ( 5) 1046  
jesus 4. messiah ( 18) 15. consider ( 7) 19. individual ( 6) 1001  
law 7. oral ( 126) 14. custom ( 75) 24. code ( 63) 17337  
member 8. congregation ( 32) 12. committee ( 21) 13. group ( 18) 3391  
mourn 2. period ( 36) 8. house ( 13) 12. destruction ( 9) 1088  
people 27. choose ( 87) 38. egypt ( 73) 47. covenant ( 62) 26564  
rabbi 8. ben ( 99) 10. congregation ( 98) 14. role ( 89) 21829  
revelation 2. sinai ( 27) 6. creation ( 14) 8. divine/J ( 13) 1658  
salvation 5. miracle ( 8) 9. redemption ( 6) 12. covenant ( 6) 776  
service 7. healing ( 54) 9. morning ( 50) 16. attend ( 35) 6049  
spirit 4. healing ( 35) 11. evil ( 16) 26. letter ( 9) 2535  
talit 1. wear ( 34) 4. shawl ( 12) 5. corner ( 11) 714  
text 6. biblical ( 46) 7. read ( 40) 9. meaning ( 31) 5107  
wisdom 10. understanding  ( 19)  15. solomon ( 15) 26. divine ( 10) 2555  
zionism 10. secular ( 13) 12. political ( 12) 16. century ( 10) 1478  
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Appendix Appendix Appendix Appendix BBBB::::            

Examples of Religion Examples of Religion Examples of Religion Examples of Religion Coupled ClusteringCoupled ClusteringCoupled ClusteringCoupled Clustering    

Table B.1:  Coupled clustering of Buddhism and Christianity keywords.  Cluster labels were added by the 
authors.  The 16th cluster of lowest average similarity is shown as well in this case. 

Buddhism  Christianity  
1. Institutional Organizations, Different Schools (Ori ginating Places)  (0.119308)  
asia china establish india japan religion 
religious sangha society tibet tradition 

america catholic church establish 
evangelical jew rome tradition 

2. Doctrine / Philosophy / Theology A 
begin cause connect consciousness discipline 
doctrinal element enlightenment ethic exist 
existence history moral phenomenon philosophy 
precept question rebirth social study west 
word zen 

doctrinal history question religion 
religious theology 

3. Sorrow / Suffering, Sin, Punishment and Reward  

being death experience find human 
man meditation people sense suffer 

being believing bible child death devil faith 
find god heaven jesus love man people sin soul 
suffer 

4. Spiritual / Psychological States  

anger attain attitude awaken awareness emotion 
family focus freedom impermanence karma 
liberation nirvana pain peace perception 
physical problem realm relationship root 
spiritual universe wisdom 

experience human moral problem 
relationship spiritual 

5. The main figures with some of their characteristics /companions  

buddha dharma monk practice teaching apostle baptis m father gospel holy holy- spirit 
jesus- christ john paul prayer prophet salvation 
scripture spirit teach word worship write 

6. The Written System / Scripture  

book chapter literature pali-canon 
sanskrit scripture sutra text translate 
write 

author book chapter greek hebrew language 
luke matthew new-testament old-testament 
passage refer translate writing 

7. Elements of Narrative A 

country disciple house meet member monastery 
nun project retreat temple thai 

city family jerusalem meet member 
ministry school service sunday 

8. Elements of Narrative  B  

child friend hear master son teacher abraham angel baptize bless boy face faithful 
f riend hear listen mother preach savior teacher 
voice woman 

9. Elements of Narrative  C  

animal eat forest kill robe sit tree 
water 

animal blood bread earth eat eye fire fish 
home house pay water 

10. Elements of Narrative D  
birth king prince siddhartha-  
gautama 

birth crucifixion disciple isaiah israel king 
kingdom lamb messiah minister moses perish 
predict reign win 

11. Institutional Organizations, Different Schools and Traditions (Places)  

america burma christian east found 
hinduism mahayana north role s cholar 
school south sri-lanka Theravada 

ancient baptist bishop council luther 
organization orthodox orthodoxy protestant 
role west 

12. Doctrine / Philosophy / Theology B 

bodhisattva faith god law authority command commandment confess divinity 
flesh forgi veness foundation gentile gift grant 
judgment justification law mankind mary miracle 
redemption resurrection revelation righteousness 
sabbath sacrifice saint sinner teaching 

13. Doctrine / Philosophy / Theology C 

asceticism concentration eightfold- path 
generosity guide intention learn mindfulness 
noble speech spirit strength student teach 
training 

believer guide learn peace repentance 
study 
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14. Doctrine / Philosophy / Theology D 

abhidhamma argue argument author canonical 
discourse discussed emptiness english five-
precepts foundation meditator metaphysical 
noble-truths psychologist skilful tantra 
theory vehicle vinaya writer writing 

argue argument ethic incarnation 
postmodern text theory trinity writer 

15. Admired / Glorified Qualities  

arhat behavior buddhahood buddha- nature 
deliverance deva dukkha gift grief heaven 
hell humanity karmic- law painful purity 
sacrifice salvation samsara sentient soul 
unwholesome 

atonement condemnation earthly elect 
expression godly good- work hell humanity 
jeremiah love-of-god obey- god passion 
punishment reward sake sinful sinless 
violence 

16. (poor match) 

abbot ajahn amida authority bhikkhu 
bodhi-tree branch celebration ceremony 
conditioning dalai-lama experiment 
founder full-moon hinayana instruction 
koan korea lama lamen tation livelihood 
mandala mantra missionary ordain 
pilgrimage pitaka reincarnation sacred 
sakya samadhi story stupa trade vajrayana 
veda vietnam vipassana worship 

adultery apostolic association bearing 
bethlehem cardinal christmas constantinople 
convert cr oss easter elijah eucharist found 
founder german good- friday idolatry 
instruction intercession john-the- baptist 
jordan-river lost mass monk no-other- god 
patriarch pentecost pilgrimage pope 
priestly reading-bible sacrament season 
soul-winning story student tabernacle 
thomas trade university vatican zion 
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Table B.2:  Coupled clustering of Buddhism and Christianity keywords.  Cluster labels were added by the 
authors.  The 16th cluster of lowest average similarity is not shown. 

Christianity  Hinduism  
1. Doctrine / Philosophy / Theology basic principles  

being believing death father god heaven holy 
jesus jesus-christ love man people sin spirit 
suffer word 

being child god human man people soul 

2. Doctrine / Philosophy / Theology  A  

history religion religious theology 
tradition 

art bhakti caste civilization history language 
meditation philosophy question ritual sacred 
sanskrit science social south study teach theory 
tradition vedas 

3. Institutional Organizations  

bible book church evangelical find john 
write 

ancient book find india shri temple west 
word write yoga 

4. Spiritual / Psychological States  

divinity experience human moral 
relationship spiritual 

attain brahman consciousness discipline divinity 
experience freedom idea karma law purity sense 
shiva spirituality universe 

5. Doctrine / Philosophy / Theology — Writings  

apostle argument chapter confess 
foundation language prophet refer 
revelation scripture study 

scripture teaching text 

6. Doctrine / Philosophy / Theology  

authority doctrinal establish faith 
gospel law paul question rome salvation 
teach teaching worship 

christian dharma faith practice religion 
religious society 

7. Tradition  

america family home meet member ministry 
school service sunday 

ashram ceremony country dance family 
festival foundation ganesh pilgrimage 
priest sadhu school student teacher 

8. Elements of Narrative  

animal blood child devil eat eye face 
fire soul water 

animal death earth fire food kill spirit 
water 

9. Sorrow / Suffering, Sin, Punishment and Reward  

baptism believer birth command flesh 
forgiveness gift grant hell holy-spirit 
judgment kingdom moses pay peace problem 
punishment repentance resurrection reward 
righteousness sacrifice season sinner 

birth heaven person sacrifice 

10. Elements of Narrative  

abraham baptize bless boy disciple 
faithful friend hear learn listen 
minister mother prayer preach saint 
savior voice win woman 

devotee gift guru learn mother prayer son 

11. Doctrine / Philosophy / Theology  

adultery ancient apostolic argue 
commandment constantinople expression 
gentile guide instruction isaiah luther 
mary matthew messiah orthodoxy patriarch 
pope role sabbath teacher theory 
translate violence 

authority doctrine upanishad 

12. Institutional Organizations  

Baptist bishop catholic convert council 
found german jew organization orthodox 
protestant university vatican west 

aryan brahmin buddhism found founder jain 
muslim scholar shaiva 

13. Scripture / Writings  

author greek hebrew luke new-testament 
old-testament passage text thomas writer 
writing 

author buddha classical epic gita hymn 
indus literature mahabharata poem poet 
purana ramayana rigveda story sutra writing 

14. Elements of Narrative A 

angel city earth house israel jerusalem 
king 

demon hero holy indra king krishna rama 
sita star sun valley Vishnu 

15. Doctrine / Philosophy / Theology  

atonement condemnation crucifixion 
earthly ethic godly humanity incarnation 
justification love-of-god mankind predict 
redemption reign sake sinful trinity 

atman existence humanity liberation 
manifestation moksha rebirth reincarnation 
samsara shakti 
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Table B.3:  Coupled clustering of Buddhism and Christianity keywords.  Cluster labels were added by the 
authors.  The 16th cluster of lowest average similarity is not shown. 

Hinduism  Islam  
1.  

being find god india man people religion 
vedas 

allah god mohamad people prophet quran 
religion word 

2.  

caste law religious social society economy establis h law moral practice 
problem responsibility social society 

3.  

animal art death divinity experience food 
human karma meditation practice sacred 
shiva soul spirit teach temple tradition 
west yoga 

being find human life man 

4.  

ancient book language question sanskrit 
shri study text word write writing 

arab book language religious scholar write 

5.  

dharma faith person authority believer believing de claration 
deed enemy facing faith fast fight forbid 
jihad justice mankind messenger peace 
punishment question sin teach witness 
worship 

6.  

brahmin child devotee family kill mother 
son 

brother child death father friend home 
husband marriage mother sister son wife 
woman 

7.  

gita guru scripture teaching command companion guid e hadith holy imam 
jesus learn moses revelation sheikh 
statement sunnah tawhid teaching 

8.  

author buddha classical dance epic 
foundation founder history idea literature 
mahabharata philosophy ramayana 
reincarnation scholar science shaiva 
spirituality theory upanishad yogi 

civilization history philosophy science 
study tradition 

9.  

aryan buddhism christian civilization 
country found indus muslim south valley 

africa arabia asia christian city country 
east empire india jew west 

10.  

ceremony darshan festival ganesh holy 
pilgrimage prayer priest puja rite ritual 

haj house id kaabah mecah mosque 
pilgrimage prayer ramadan 

11.  

atman attain bhakti brahman consciousness 
discipline element existence liberation 
manifestation moksha purity rebirth 
samsara sense shakti universe 

consciousness divinity exist existence 
physical spirit spiritual submission 
universe 

12.  

ahram jain learn school student teacher bank compan y family meet school service 
student university 

13.  

birth earth fire gift heaven sacrifice sun 
vishnu water 

animal bless creature earth food heaven 
hell paradise soul water 

14.  

authority doctrine freedom humanity attitude calif charity code commandment 
doctrine female finance foundation freedom 
humanity judge judgment lawful master 
mission pain polygamy poverty preach 
purification race racial ruler share sufi 
testimony ummah wisdom 

15.  

agama brahma-sutra hymn poem purana 
ramanuja rigveda samkhya smriti sutra 
trimurti 

author bible chapter dua fiqh hijrah noah 
pillars-of-faith ritual sacred scripture 
shariah shiah shii succession sunni surah 
translate writing 
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Table B.4:  Coupled clustering of Buddhism and Christianity keywords.  Cluster labels were added by the 
authors.  The 16th cluster of lowest average similarity is not shown. 

Hinduism  Islam  
1.  

being find god india man people religion 
vedas 

allah god mohamad people prophet quran 
religion word 

2.  

caste law religious social society economy establis h law moral practice 
problem responsibility social society 

3.  

animal art death divinity experience food 
human karma meditation practice sacred 
shiva soul spirit teach temple tradition 
west yoga 

being find human life man 

4.  

ancient book language question sanskrit 
shri study text word write writing 

arab book language religious scholar write 

5.  

dharma faith person authority believer believing de claration 
deed enemy facing faith fast fight forbid 
jihad justice mankind messenger peace 
punishment question sin teach witness 
worship 

6.  

brahmin child devotee family kill mother 
son 

brother child death father friend home 
husband marriage mother sister son wife 
woman 

7.  

gita guru scripture teaching command companion guid e hadith holy imam 
jesus learn moses revelation sheikh 
statement sunnah tawhid teaching 

8.  

author buddha classical dance epic 
foundation founder history idea literature 
mahabharata philosophy ramayana 
reincarnation scholar science shaiva 
spirituality theory upanishad yogi 

civilization history philosophy science 
study tradition 

9.  

aryan buddhism christian civilization 
country found indus muslim south valley 

africa arabia asia christian city country 
east empire india jew west 

10.  

ceremony darshan festival ganesh holy 
pilgrimage prayer priest puja rite ritual 

haj house id kaabah mecah mosque 
pilgrimage prayer ramadan 

11.  

atman attain bhakti brahman consciousness 
discipline element existence liberation 
manifestation moksha purity rebirth 
samsara sense shakti universe 

consciousness divinity exist existence 
physical spirit spiritual submission 
universe 

12.  

ahram jain learn school student teacher bank compan y family meet school service 
student university 

13.  

birth earth fire gift heaven sacrifice sun 
vishnu water 

animal bless creature earth food heaven 
hell paradise soul water 

14.  

authority doctrine freedom humanity attitude calif charity code commandment 
doctrine female finance foundation freedom 
humanity judge judgment lawful master 
mission pain polygamy poverty preach 
purification race racial ruler share sufi 
testimony ummah wisdom 

15.  

agama brahma-sutra hymn poem purana 
ramanuja rigveda samkhya smriti sutra 
trimurti 

author bible chapter dua fiqh hijrah noah 
pillars-of-faith ritual sacred scripture 
shariah shiah shii succession sunni surah 
translate writing 
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Table B.5:  Coupled clustering of Islam and Judaism keywords.  Cluster labels were added by the authors.  
The 16th cluster of lowest average similarity is not shown. 

Islam  Judaism  
1.  

allah being believing faith find god life  
man messenger mohamad people prayer 
prophet religion word 

death find god israel law man people 
prayer rabbi torah women word 

2.  

book hadith question quran revelation 
scholar tradition write 

bible book discuss hebrew history letter 
oral question talmud text tradition write 

3.  

authority economy law practice religious 
social society 

authority community conservative establish 
intellectual member mitzvah orthodox 
rabbinical reform religion religious 
ritual role service social society status 

4.  

animal earth food forbid lawful water animal eat fo od forbid kosher water 
5.  

creature divinity exist existence guide 
human mankind physical spirit spiritual 
universe wisdom 

connect divinity exist existence 
experience expression human humanity 
physical relations hip revelation soul 
spirit spiritual universe wisdom 

6.  

africa arab arabia asia christian 
civilization country east india jew west 

america area ashkenazim center christian 
country east europe german north sephardim 

7.  

brother child daughter death fam ily father 
friend home husband kill marriage mother 
sister wife woman 

child family father hear home kill 
marriage mother son wife 

8.  

attitude charity code declaration facing 
fight foundation freedom humanity jihad 
justice meet moral problem responsibili ty 
share submission teach teaching ummah 
witness 

faith freedom moral 

9.  

history learn philosophy school science 
student study sufi 

ancient argue language learn liturgy 
mystic philosophy reconstructionism 
scholar school student study teacher 
teaching theology zionism 

10.  

city house kaabah madinah mecah mosque city egypt exile house israelite jerusalem 
menorah priest scroll sea star synagogue 
temple temple-mount wear 

11.  

angel believer bless command deed enemy 
heaven hell judgment master pain paradis e 
peace remember satan sin soul 

angel bless command hashem heaven hide 
peace redemption reward sin teach 

12.  

fast friday haj id id-al- fitr pilgrimage 
ramadan salah surah 

atonement calendar candle celebration 
festival holiday meal mourn passover purim 
read-torah rosh-hashanah rosh- hodesh 
sabbath sacrifice shavuot sukoth 

13.  

abraham abu- bakr ali companion holy imam 
jesus moses son 

abraham chapter covenant david esther 
exodus holy isaac jacob joseph king moses 
mount-sinai prophet sarah 

14.  

army baghda d calif descendant empire 
establish israel istanbul jerusalem ruler 
succession tipu tribe 

babylon canaan judah kingdom pharaoh rome 
tribe yhwh 

15.  

author bible chapter doctrine english fiqh 
judge language scripture shariah statement 
sunnah testimony translate writing 

argument author code gemara halachah 
kabalah literary mishnah scripture siddur 
statement story tanakh writer writing 
zohar 
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Appendix C: The Expert DataAppendix C: The Expert DataAppendix C: The Expert DataAppendix C: The Expert Data    

This appendix explicates the details regarding the data contributed by the experts for the religion comparison 

experiments in chapters 4 and 5.  The first part contains a copy of the instructions that were provided to the 

experts.  The second part includes the classes themselves. 

C.1  Instructions for Participants 

We run a research on fully automated detection of similar features within distinct but related domains.  With 
your kind help, we would have the opportunity to validate our computational information-retrieval methods 
through a comparative investigation of religions.   

Please follow the instructions below.  Thank you very much for your contribution! 

Zvika Marx , student in neural computation Ph.D. program  

For the following five religions – Buddhism, Christianity, Hinduism, Islam, Judaism – you are 
requested to provide a simplified framework for comparing each two of them (Buddhism-Christianity, 
Buddhism-Hinduism, etc.) with one another. 

For each one of the possible 10 pairwise comparisons, please write down in English: 

(I) A list of titles for the main features and aspects that are similar (or resembling, or parallel, or 
equivalent, or analogous) in the two religions under examination. 

(II) For each such a feature, for each one of the two religions under comparison, write down a list of 
key-terms that are associated with this feature. 

Notes: 

(1) Additional Guidelines: 

(a) Please, try to address features that are commonly discussed in the literature and to use key-terms that are relatively 
wide spread.  Please avoid the use of very rare terms as much as possible (even if they are much more to the point). 

(b) Feature titles and key-terms may repeat (over different religion comparisons, repetition of the same key-term for 
both religions in the same feature etc.).  However, keep in mind that we have an interest in exploring unique 
properties of each comparison. 

(c) It would be much helpful if you could specify in brackets alternative spelling and strictly interchangeable terms to 
your key-terms, whenever such exist. 

(d) The key-terms may definitely be names of people, places etc., but please try thinking also of key-terms that are 
not names, whenever such exist. 

 (2) Expected numbers of features and key-terms (rough, non-definite guidelines): 

    ∗  Features    –   minimum:  about 5; maximum: about 15    (for each pair) 

    ∗  Key-terms  –  minimum:  2-3;  maximum: about 10    (for each religion in each pair) 

(3) This task is not meant to be laborious and the output is not expected to become an ultimate reference for 
comparative religion studies.  It is more of getting a view on what you might have in mind now.  Please do not 
consult the literature too extensively (unless you do it for your own reasons).  Do concentrate on currently available 
knowledge.  Whenever pointing out additional features and key-terms is not fluent, tend to the minimum values 
specified in (2) above. 
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(4) We would like very much to get your contribution also with respect to religions about which you feel less 
confidence, even if in such cases you are significantly less accurate and detailed. You are requested to fill in a self-
estimated indication to your level of expertise for each comparison, so we could potentially monitor consequential 
effects if any. 

(5) Although the list of all 10 pairwise religion comparisons is what we are after, partial contribution (resulting from 
lack of time, lack of knowledge, or any other reason) is still very much welcomed. 

(6) Your name will not be associated with your specific contribution.  Please let us know if you prefer not to be 
acknowledged at all. 

(7) We might come back to you with a request to feedback in a later stage in our research.  However, by participation in 
this stage you do not make any commitment to take part in the later stages. 

 (8) We would like very much to get comments and suggestions regarding your impressions of taking part in this 
procedure.  We would be happy to explain and discuss further any aspect of our research. 

The instructions above were followed by 10 pages, each containing a table such as the following, where the 
words Religion1 and Religion2 are respectively replaced by the following religion pairs: 

 (1) Buddhism and Christianity ,       (2) Buddhism and Hinduism,  (3) Buddhism and Islam, 

(4) Buddhism and Jusaism,            (5) Christianity  and Hinduism,  (6) Christianity  and Islam, 

(7) Christianity  and Jusaism,             (8) Hinduism and Islam,  (9) Hinduism and Jusaism        

and  (10) Islam and Jusaism,  

Religion1 Religion2 1 

Features of 

Similarity  
Key-terms Lists 

   

   

   

   

   

   

   

   

Level of confidence –  please indicate a number between 1 to 5    

1 – indicates minimal confidence (features and key-terms are based on very partial knowledge or even on mere 
intuition, I am not sure if many relevant aspects are covered, etc.) 

5 – indicates maximal confidence (features and key-terms are based upon comprehensive knowledge, they seem to me 
as representing well the whole range of potential correspondences, etc.) 
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C.2  Religion-Related Term Classes Contributed by Experts 

C.2.1  The Data Contributed by Expert I 
Table C.1: We present the data contributed by this expert, as a cross-comparison involving all five religions.  The 
expert provided the titles for the aspects of similarity, i.e. classes, and the list of religion pairs to which each similarity 
aspect is relevant.  This data was conveyed to us in printed form, so we show the final version, after filtering out about 
30% of the terms and further editorial changes, such as spelling modifications (the data from the other 2 experts, 
presented in the following sections, allows more detailed trace of filtered terms and changes that have been made).   

Buddhism Christianity Hinduism Islam Judaism 
Scriptures.  (relevant for all religion pairwise comparisons) 
pali~canon 
koan mandala 
mantra sutra  

new~testament 
old~testament 
apostle bible 
john luke matthew 
paul revelation  

gita 
mahabharata 
upanishad 
vedas  

hadith mohamad 
shariah sunnah  

halachah mishnah 
siddur talmud tanakh 
torah  

Beliefs and Ideas   (relevant for all religion pairwise comparisons) 
buddha~nature 
noble~truths 
dharma dukkha 
emptiness 
nirvana 
reincarnation 
suffer tantra  

jesus~christ 
love~of~god 
devil god cross 
fish heaven 
hell 
resurrection 
trinity  

holy~people 
trimurti 
moksha atman 
brahman  
re-  
 incarnation 

pillars~of~ 
faith  
muhammad~the~pr-

ophet~of~allah  
tawhid allah 
heaven hell  

judgment 
divine~creation 
mount~sinai 
no~other~god 
principles~of~faith 
temple~mount temple 
hell yarmulke exodus 
heaven menorah talit 
tefilin teshuvah  

Ritual, Prayer and Holy Days  (relevant for all religion pairwise comparisons, less Christianity–Hinduism) 
Gift 
meditation 
sacrifice 
stupa  

eucharist baptism 
christmas confess 
sunday  

kumbhamela 
festival 
meditation 
puja 
sacrifice  

id~al~fitr 
charity fast 
friday haj 
kaabah mecah 
prayer ramadan  

atonement read~torah 
circumcision 
passover prayer 
synagogue tefilin  

Society and Politics  (relevant for the following comparisons: Budd.–Judd., Chris.–Hind., Chris.–Islam., Hind.–Islam, Islam–Judd.) 
Dalai~lama 
bodhisattva 
lama monk  

catholic church 
minister monk 
priestly 
protestant rome 
vatican  

brahmin 
caste sadhu  

calif ali imam 
shariah sheikh 
shiah sufi 
sunnah  

hasid saint 
ashkenazim community 
david prophet rabbi 
sephardim Solomon 
synagogue  

Establishments  (relevant for the following comparison only: Christianity–Hinduism) 
monastery 
school 
temple  

bishop cardinal 
church pope 
priestly  

caste gift 
priest 
temple  

imam mosque  high~priest temple 
priest levi mikveh 
rabbi synagogue 
yeshivah  

Mysticism   (relevant for all religion pairwise comparisons) 
meditation 
nirvana 
samadhi 
tantra  

eucharist 
crucifixion love 
miracle saint 
suffer  

ashram 
chakra 
darshan guru 
yoga  

sufi  zohar ezekiel angel 
ari daniel kabalah 
malchut messiah 
sefirot shechinah  

Learning and Religious Education  (relevant for the following : Budd.–Chris., Budd.–Islam, Chris.–Islam, Hind.–Islam, Hind.–Judd.) 
meditation 
monastery 
monk sutra  

divinity moral 
theology 
university  

ashram guru  sheikh  gemara parsha talmud 
yeshivah  

Names and Places  (relevant for the following religion comparisons: Budd.–Hind., Chris.–Islam., Chris.–Judd., Islam–Judd.) 
siddhartha~

gautama 
buddha  

jesus~christ 
john~the~baptist 
jordan~river bethlehem 
jerusalem jesus john 
luke luther mary matthew 
paul rome thomas  

varanasi 
arjuna brahma 
durga ganesh 
kali Krishna 
rama shakti 
shiva vishnu  

jerusalem 
ali baghdad 
istanbul 
madinah 
mecah 
mohamad  

isaac joseph 
jacob abraham 
adam 
jerusalem moses 
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C.2.2  The Data Contributed by Expert II 

The second expert has provided the data presented in Tables C.2–C.5. 

Table C.2: Buddhism–Christianity expert classes. 

 Buddhism Christianity 
   Life after death Reincarnation,  

nirvana (nibbana) 
karma 
samsara 

Resurrection 
heaven 
hell 
the day of judgement 

Creatures that 
have special 
forces or 
abilities 

Buddha 
Bodhisattva 
Deva 

God 
Jesus 
Devil 
Angel 

Cause and 
effect 

The law of karma 
the cycle of reincarnation 
samsara 

Sin – punishment 
good act  - reward 

Sacred places Temple 
monastery 
the places related to the life of 
the Buddha  

Jerusalem 
Betlehem 
church 
cathedral  
gr aveyard  

Recommended 
acts 

Dharma (dhamma) 
meditation 
ascetism 
bhavana  
the way  (faith, strength, 
mindfulness, concentration, 
wisdom) 
merit - making  
pilgrimage 

Praying 
reading Bible 
good works 
converting 
believing 

Sacred times Full-moon day 
the day of the bir th and 
enlightenment of the Buddha  

Christmas 
Easter 
Pentacostal day 
Sunday 

Special places 
for religious 
experts  

Sangha 
monastery 

Monastery  
convent  
monk 
nun  

Sacred texts Tripitaka 
Kanjur  
Tanjur  

The Bible 
New Testament 
Old Testament 

 

Table C.3: Christianity–Hinduism expert classes. 

 Christianity Hinduism 
Trimurti Father 

Son and the Holy Ghost 
Brahma 
Vishnu 
Shiva 

sacred texts The Bible 
Old Testament 
New Testament 

Vedas 
Upanishads 
Mahabharata 
Brahmasutra 



 133 

Table C.4: Buddhism–Hinduism expert classes. 

 Buddhism Hinduism 
reincarnation nirvana (nibbana) 

karma 
samsara 

Moksha 
samsara 
karma 

Meditation Dharma (dhamma) Dharma 
atman 
Brahman 
yoga 

Ascetism Sangha 
monastery 
pilgrimage 

Pilgrimage 
meditation 
yoga 

Guru Buddha 
Bodhisattva 
Deva 

Yogi 
ascetics 
brahminis 
mahatmas 

Sacred texts Tripitaka 
Kanjur  
Tanjur  

Vedas 
Upanishads 
Mahabharata 
Brahmasutra 

Syncretism Folk religion  Indus 
Veda 
Aryan 
folk religion  

 

Table C.5: Christianity–Islam expert classes. 

 Christianity Islam 
   Transcendent 
creatures 

God, Jesus, 
angel, devil 

Allah, Muhammed, angels 
devil, profets 

Life after death Resurrection 
heaven 
hell 
the day of the judgement 

Predestination  
paradise 
hell 
the day of the judgement 

Holy scriptures Bible Qur’an 
hadith 

Sacred palces Jerusalem, Betlehem 
church, graveyard  

Mecca, Medina 
mosque, Ka’ba 

Sacred times Cristmas, Easter 
Sunday, the Pentacostal Day 

Ramadan 
Friday 

Recommended 
acts 

Praying 
reading Bible 

Praying, pilgrimage (haji) 
alms-giving, reading Qur’an 
visiting mosque 
fasting durin Ramadan 

Acts that are 
not 
recommended 

Sin, adultery 
violence 
working on Sunday  
obeying parents  
not admiring something that 
belongs to someone else  
obeying God and not mentioning his 
name without a reason   

Drinking alcohol 
eating pig  
relationships between opposited 
sexes  (if not relative = adultery)  
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C.2.3  The Data Contributed by Expert III 
Table C.6: Here the data is presented as cross-comparison involving three religions.  The terms that are in fact valid for 

the triple comparison are in bold face.  For the other terms, a single letter in square brackets marks the religion to the 
comparison with which they are relevant, whenever confusion might arise.  Terms, term parts and similarity aspects 
that were not used in the evaluation process are marked by strikethrough line. 

 Christianity Islam Judaism 
   Monotheism God 

You shall have  no 
other gods before Me  
Idolatry 

Allah, 
La ilaha illa Allah 
(No god but God) 
Shirk (=idolatry) 

God, Yahweh 
Elohim  
You shall have  no other 
gods before Me  
Idolatry 

Scripture Bible, New Testament 
Gospels, Revelation 

Qur'an, Revelation 
(wahy, tanzil) 

Torah, Tanakh  
Bible, Revelation 

Holy 
community 

Church Ummah Holy people (Am Qadosh)  
Israel (Yisrael) 

Prophets/ 
prophecy 

Prophets 
Moses (Moshe) [j] 
Elijah [j], Isaiah [j] 
Jeremiah [j] 
"The Twelve" [j]  

Prophet (nabi) 
Messenger (rasul) 
Muhammad 

Prophets 
Elijah  [c], Isaiah  [c] 
Jeremiah  [c] 
Moses (Moshe) [i]  

Sacred Land Jerusalem, Rome Mecca, Medina, 
Jerusalem 

Israel 
Jerusalem 

Prayer and 
ritual 

Prayer, mass [i] 
eucharist [i] 
pilgrimage [i] 
rosary [j]  

Prayer, Salat (namaz) 
du'a, Hijrah [c] 
Ziyarah [c]  
Pilgrimage [c]  

Prayer,  
daven  

Holy days, 
times 

Christmas 
Epiphany  
Good Friday 
Easter 
Pentecost 

Ramadan 
'Id 
'Id al-Fitr 
'Id al - Adha (Qurban 
Bairam, etc.)  

Sabbath (Shabbat) 
Yom Kippur 
Rosh ha-Shanah 

Denominat-
ional, sectarian 
divisions 

Roman Catholic 
Eastern Orthodox 
Protestant 
Arian  
Monophysite  
Nestorian  

Sunni 
Shi'i (Shi'ite) 
Twelver Shi'I  
Isma'ili (Sevener 
Shi'i)  
Khariji (Kharijite)  

Rabbanite, Karaite  
Hasidic, Mitnagid  
Reform (Progress, 
Liberal), Orthodox, 
Conservative 
Reconstructionist 

Mediator(s), viz 
between God 
and humans 

Jesus Christ 
incarnation 
atonement 
saints 
intercession 

Muhammad 
Wali (pl. Awliya' = 
"saints) 
Ali, Husayn  
Imams, intercession 

 

Atonement Jesus Christ, Lamb of 
God, Substitution ary  
atonement, repentance 
confession 
absolution (sacrament)  

 Temple 
sin offering  
prayer 
repentence 
Day of Atonement 

Emphasis on 
law 

 Shari'ah, fiqh Torah, halakah 

   Circumcision  Circumcision  Circumcision 
Bris (Brit)  

Holy war Crusade , Just War  Jihad Ho ly War  
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ApApApAppendix pendix pendix pendix DDDD: Proofs for Chapter 5: Proofs for Chapter 5: Proofs for Chapter 5: Proofs for Chapter 5    

Lemma 5.1: 

(A) At any iterative cycle of the ID algorithm (Figure 5.1) with t > 0, update step ID1 

decreases the value of FID (Eq. 5.1) by 

∆FID1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] . (D.1) 

(B) (following Gilad-Bachrach, Navot & Tishby, 2003) At the iterative cycle of the ID 

algorithm with any t, update step ID2 decreases the value of FID by 

∆FID2
t   =   β ∑c pt(c)KL[pt(y|c)||pt−1(y|c)] . (D.2) 

Proof:  

(A) Taking log of both sides of the equality sign in step ID1 (note that pt(c|x) is never equal to 

0), we have: 

log pt(c|x)  =  β ∑y p(y|x) log pt−1 (y|c) − log zt (x,β) , (D.3) 

where zt (x,β) is a normalization function, over all values c of C, of terms depending on x, c 

and β.  Extracting log zt (x,β) from the above equality: 

log zt (x,β)  =  β ∑y p(y|x) log pt−1 (y|c) − log pt(c|x) . (D.4) 

Note that although a particular value c is being used in Eq. D.4 (which is in fact true for every 

c), the actual value of log zt (x,β) does not depend on any particular value of C. 

After performing update step ID1 at time t, which results in the replacement of each pt−1(c|x) 

with pt(c|x), the value of FID changes from FID
t−1, where all p(c|x) and p(y|c) indexed by t−1, to  

FID
t−    ≡   ∑x p(x) ∑c pt(c|x) log pt(c|x)  −  β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c) . (D.5) 

The value we are interested in, ∆FID1
t, is the difference between FID

t−1 and FID
t− : 

∆FID1
t   =   FID

t−1 − FID
t−    = (a) (D.6) 

∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

− ∑x p(x) ∑c pt(c|x) ( β ∑y p(y|x) log pt−1 (y|c) − log zt (x,β) ) 

+  β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c)   = (b)  

∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

+ ∑x p(x) ∑c pt−1(c|x) ( log zt (x,β) )   = (c)  
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∑x p(x) ∑c pt−1(c|x) log pt−1(c|x)  −  β ∑x p(x) ∑c pt−1(c|x) ∑y p(y|x) log pt−1(y|c)  + 

+ ∑x p(x) ∑c pt−1(c|x) ( β ∑y p(y|x) log pt−1 (y|c) − log pt(c|x) )   = (d)  

∑x p(x)KL[pt−1(c|x)||pt(c|x)] 

In the equality chain of Eq. D.6, (a) incorporates Eq. D.3, (b) omits identical terms with 

opposite signs and replaces, for each x separately, expectation over pt(c|x) with the identical 

expectation over pt−1(c|x) (as log zt (x,β) is independent in C), (c) incorporates Eq. D.4 and (d) 

again omits opposite sign terms and resorts to the definition of KL divergence. 

(B) The value we are interested in, ∆FID2
t, is the difference between FID

t− (Eq. D.5) and FID
t 

(where all p(c|x) and p(y|c) are indexed with t): 

∆FID2
t   =   FID

t− − FID
t    = (a) (D.7) 

 − β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt−1(y|c) + β ∑x p(x) ∑c pt(c|x) ∑y p(y|x) log pt(y|c)   = (b)  

β ∑c,y ( log pt(y|c) − log pt−1(y|c) ) ∑x p(x) pt(c|x) p(y|x)   = (c) 

 β ∑c,y ( log pt(y|c) − log pt−1(y|c) ) pt(c,y)   = (d)  

β ∑c pt(c)KL[pt(y|c)||pt−1(y|c)] 

In the equality chain of Eq. D.7, (a) drops the term ∑x p(x) ∑c pt(c|x) log pt(c|x) with opposite 

signs from both FID
t− and FID

t, (b) just re-orders the terms, (c) uses the conditional 

independence assumption (Eq. 5.4), which step ID2 happens to maintain, and (d) resorts to 

the definition of (conditioned) KL divergence. �  

Lemma 5.2: Stable points of the ID algorithm (i.e. probability distributions that remain 

unchanged under the update steps: pt+1(c|x) = pt(c|x) and pt+1(y|c) = pt(y|c) for all c, x and y) are 

locally extremal points of  FID (Eq. 5.1). 

Proof:  Update step ID1 of the ID algorithm can be derived, using the method of Lagrange 

multipliers, as follows: 

(1) Convert FID (Eq. 5.1) to a Lagrangian LID1, by adding to it a Lagrange multiplier λx  

for each x, in order to restrict each probability p(c|x) distribution to sum up to 1: 

LID1 = FID + ∑x λx ( 1 − ∑c p(c|x) ) . 

(2) Take derivatives from LID1 with respect to each p(c|x). 

(3) Equate each of the resulting terms to 0, extract p(c|x) and set λx so that all 

distributions sum up to 1, to obtain the equation specifying ID1. 
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The details of this derivation closely resemble the derivation of step IB1 for the IB algorithm 

(Fig. 5.2), which has been given in several previous works (e.g., Tishby, Pereira & Bialek 

1999).  The above holds as well with regard to the derivation of update step ID2, substituting 

p(c|x) by p(y|c), λx by λc and LID1 by LID2 = FID + ∑c λc (1 − ∑y p(y|c)): 

(1)  The Lagrangian introducing to FID the constraint of p(y|c) to sum up to 1 is: 

LID2  ≡  ∑x p(x) ∑c p(c|x) ( log p(c|x) − β ∑y p(y|x) log p(y|c) ) + ∑c λc ( 1 − ∑y p(y|c) ). (D.8) 

(2) From LID2, take derivatives relatively to p(y|c):  

)|(

2

cyp

LID

δ
δ

   =   − β ∑x p(x) p(c|x) p(y|x) ( 1 / p(y|c) ) + λc . 
(D.9) 

(3) Equating the above term to 0 and setting λc = β ∑x p(x)  p(c|x) = β p(c) so that the 

constraint of p(y|c) to sum up to 1 holds (note that p(c) have here the mere role of a 

normalization factor), we get the equation underlying step ID2 of the ID algorithm: 

p(y|c) = ( 1 / p(c) ) ∑x p(x)  p(c|x) p(y|x) . (D.10) 

From the above follows that stable probability distributions pt(c|x) (i.e., ones satisfying 

pt+1(c|x) = pt(c|x)) specify extremal value of FID relatively to fixed pt(y|c) and vice versa: stable 

probability distributions pt(y|c) (satisfying pt+1(y|c) = pt(y|c)) specify extremal value of FID 

relatively to fixed pt(c|x).  As the pt(c|x) and pt(y|c) are all the parameters and they are all fixed 

in a stable point, together they form an extremal point of FID. �  

Lemma 5.7: In the update cycle of time t, the four CP algorithm steps CP1, CP2, CP*1, 

CP*2, decrease the value of FCP1 (Eq. 5.17), FCP2 (Eq. 5.19), FCP*1 (Eq. 5.24), FCP*2 (Eq. 5.27) 

by 

∆FCP1
t   =   ∑x p(x)KL[pt−1(c|x)||pt(c|x)] , 

∆FCP2
t   =   ∑x pt(c,w)KL[pt(y|c,w)||pt−1(y|c,w)] , 

∆FCP*1
t   =   ∑y p(y)KL[p* t−1(c|y)||p* t(c|y)] , 

∆FCP*2
t   =   ∑y p* t(c)KL[p* t(y|c)||p* t−1(y|c)] , 

(D.11) 

respectively. 

Proof: We exemplify the proof by proving the claim with regard to FCP*1 (note the similarity 

to the proof of lemma 5.1 (A) ). 
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Taking log of both sides of the step CP*1 equality sign, we have: 

log p* t(c|y)  =  η ∑w p(w) log pt−1(y|c,w) − log z* t(y,η) , (D.12) 

where z* t (y,η) is a normalization function over all values c of C of terms depending on y, c 

and η.  We then extract log z* t (y,η) from the above equality: 

log z* t(y,η)  =  η ∑w p(w) log pt−1(y|c,w) −  log p* t(c|y) . (D.13) 

Note that although a particular value c is being used in Eq. D.13 (in fact, it is true for every c), 

the actual value of log z* t (y,η) does not depend on any particular value of C. 

After performing update step CP*1 at time t, which results in the replacement of each 

p* t−1(c|y) with p* t(c|y), the value of FCP*1 changes from FCP*1
t−1, where all p*(c|y) and p(y|c,w) 

are indexed by t−1, to 

 (D.14) 

FCP*1
t−   ≡   ∑y p(y) ∑c p* t(c|y) log p* t(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p* t(c|y) log pt−1(y|c,w) . 

The value we are interested in, ∆FCP*1
t, is the difference between FCP*1

t−1 and FCP*1
t−: 

∆FCP*1
t    =    FCP*1

t−1 − FCP*1
t−    = (a) (D.15) 

∑y p(y) ∑c p* t −1(c|y) log p* t −1(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p* t −1(c|y) log pt−1(y|c,w)  + 

− ∑y p(y) ∑c p* t (c|y) ( η ∑y p(y|x) log  pt−1(y|c,w) − log z* t (y,η) )   

+  η ∑w p(w) ∑y p(y) ∑c p* t (c|y) pt−1(y|c,w)   = (b) 

∑y p(y) ∑c p* t −1(c|y) log pt−1(c|x)  −  η ∑w p(w) ∑y p(y) ∑c  p* t −1(c|y) log  pt−1(y|c,w)  + 

+ ∑y p(y) ∑c p* t −1(c|y) ( log z* t (y,η) )   = (c) 

∑y p(y) ∑c p* t −1(c|y) log p* t −1(c|y)  −  η ∑w p(w) ∑y p(y) ∑c p* t −1(c|y) log  pt−1(y|c,w)  + 

+ ∑y p(y) ∑c p* t −1(c|y) ( η ∑w p(w) log pt−1(y|c,w) − log  p* t (c|y) )   = (d) 

∑y p(y) KL[ p* t −1(c|y) || p* t (c|y) ] 

In the equality chain of Eq. D.15, (a) incorporates Eq. D.12, (b) drops identical terms with 

opposite signs and replaces, for each y separately, expectation over p* t(c|y) with the identical 

expectation over p* t−1(c|y) (as log z* t (y,η) is independent of C), (c) incorporates Eq. D.13 and 

(d) again drops opposite sign terms and resorts to the definition of KL divergence. 

The proof for the claim regarding update step CP1 is in close correspondence to the proof of 

lemma 5.1 (A).  The proofs for the claims regarding update step CP2 and CP*2 are similar to 

the proof of lemma 5.1 (B). �  
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Lemma 5.8: A set of probability distributions that form a stable point of the CP algorithm 

(i.e., ones that satisfy pt+1(c|x) = pt(c|x), pt+1(y|c,w) = pt(y|c,w), p* t+1(c|y) = p* t(c|y) and 

p* t+1(y|c) = p* t(y|c), for all c, x, y and w) specifies locally extremal points for FCP1 with respect 

to p(c|x) (p*(y|c) held fixed), FCP2 with respect to p(y|c,w) (p(c|x) held fixed), FCP*1 with 

respect to p*(c|y) (p(y|c,w) held fixed) and FCP*2 with respect p*(y|c) (p*(c|y) held fixed). 

Proof: As a demonstrative example, we show that distributions p*(c|y) that are part of a stable 

point of the CP algorithm specify locally extremal points for FCP*1 (while p(y|c,w) held fixed).  

The other parts are similar (see also the proof of Lemma 5.2 above). 

We first write explicitly LCP*1, the Lagrangian introducing to FCP*1 for every y the constraint 

of p* (c|y) to sum up to 1: 

LCP*1  ≡ (D.16) 

∑y p(y) ∑c p*(c|y) ( log p*(c|y) − η ∑w p(w) log p(y|c,w) ) + ∑y λ* y ( 1 − ∑c p* (c|y) ). 

From LCP*1, we take derivatives relatively to p*(c|y), considering p(y|c,w) as a constant: 

(D.17) 

)|(*

1*

ycp

LCP

δ
δ    = p(y) ( log p* (c|y) − η ∑w p(w) log p(y|c,w) ) + p(y)  p* (c|y) ( 1 / p*(c|y) ) + λ* y . 

Equating the above term to 0 and setting λ* y =  p(y) ( log z*(y,η) − 1), so that the constraint of 

p* (c|y) to sum up to 1 holds, with a normalization factor z*(y,η) = ∑c' ∏w p(y|c',w)η p(w), we get 

the equation underlying step IB2 of the IB algorithm: 

 p*(c|y)   =   ( 1 / z*(y,η) ) ∏w p(y|c,w)η p(w)
 . �  (D.18) 
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ApApApAppendix pendix pendix pendix EEEE: : : : Examples of Examples of Examples of Examples of ReligionReligionReligionReligion    

CCCCross ross ross ross PPPPartition artition artition artition ClusteringClusteringClusteringClustering    

Cross partition clustering configurations produced with the CP plain algorithm (Chapter 5, 

Figure 5.5; η = 0.4)] with all five religion subsets clustered (|W| = 5).  Cluster titles were 

assigned by the authors.  The relative size of each cluster according to the p probability 

distribution, as well as to p*, is indicated.  Each keyword x appears in the cluster c with 

highest p(c|x), which is indicated in brackets.  Along with the elements of every cluster we 

also indicate the 40 most prominent features (highest p* (c|y), indicated in square brackets). 

E.1:  Two Clusters 

CLUSTER 1 “The Spiritual Aspect of Religion” 
p(c) = 0.5217, p*(c) = 0.496  

Buddhism : grief  (0.998)  lamentation  (0.997)  pain  (0.996)  sentient  (0.994)  hell  (0.992)  
birth  (0.988)  heaven  (0.988)  suffer  (0.986)  impermanence  (0.986)  nirvana  (0.981)  
realm  (0.978)  cause  (0.977)  speech  (0.977)  animal  (0.975)  rebirth  (0.974)  
existence  (0.970)  samsara  (0.968)  livelihood  (0.966)  being  (0.963)  soul  (0.962)  
physical  (0.961)  death  (0.960)  unwholesome  (0.958)  water  (0.957)  anger  (0.957)  
painful  (0.954)  kill  ( 0.953)  god  (0.947)  consciousness  (0.946)  karma  (0.943)  
attain  (0.942)  deliverance  (0.942)  freedom  (0.937)  perception  (0.931)  man  (0.928)  

experience  (0.927)  noble  (0.925)  human  (0.921)  deva  (0.921)  sense  (0.920)  
enlightenment  (0.919)  buddhahood  (0.916)  dukkha  (0.907)  peace  (0.907)  
phenomenon  (0.907)  wisdom  (0.907)  eat  (0.905)  buddha-nature  (0.902)  universe  (0.901)  
salvation  (0.896)  intention  (0.890)  emotion  (0.887)  awareness  (0.883)  awaken  (0.883)  
liberation  (0.861)  concentration  (0.861)  noble-truths  (0.859)  exist  (0.849)  
root  (0.846)  child  (0.844)  eightfold-path  (0.841)  purity  (0.828)  hear  (0.812)  
mindfulness  (0.812)  son  (0.805)  emptiness  (0.790)  law  (0.779)  sit  (0.753)  spirit  (0.744)  
strength  (0.718)  generosity  (0.716)  skilful  (0.710)  tree  (0.698)  humanity  (0.685)  
element  (0.685)  bodhisattva  (0.682)  prince  (0.672)  sacrifice  (0.663)        
siddhartha-gautama  (0.659)  conditioning  (0.653)  friend  (0.652)  meditator  (0.616)  
teach  (0.612)  buddha  (0.607)  word  (0.594)  learn  (0.568)  karmic-law  (0.567)         
bodhi-tree  (0.567)  faith  (0.565)  problem  (0.547)  disciple  (0.530)   

Christianity : flesh  (0.996)  sin  (0.996)  heaven  (0.996)  perish  (0.996)  sinner  (0.995)  
jesus-christ  (0.995)  blood  (0.994)  righteousness  (0.994)  father  (0.994)  savior  (0.994)  
forgiveness  (0.993)  sinful  (0.993)  reign  (0.992)  soul  (0.991)  love  (0.991)  earth  (0.991)  
holy-spirit  (0.991)  hell  (0.989)  punishment  (0.989)  death  (0.988)  fire  (0.988)      
love-of-god  (0.988)  reward  (0.987)  suffer  (0.987)  judgment  (0.986)  redemption  (0.985)  
sacrifice  (0.984)  god  (0.983)  kingdom  (0.982)  water  (0.982)  bless  (0.981)  baptize  (0.981)  
devil  (0.980)  man  (0.980)  sake  (0.978)  eye  (0.978)  human  (0.977)  sinless  (0.977)  
angel  (0.977)  grant  (0.977)  salvation  (0.976)  humanity  (0.975)  gift  (0.974)  eat  (0.972)  
voice  (0.972)  resurrection  (0.972)  repentance  (0.972)  jesus  (0.971)  mankind  (0.970)  
child  (0.967)  peace  (0.966)  pay  (0.959)  animal  (0.957)  confess  (0.957)  lamb  (0.957)  
command (0.956)  being  (0.954)  earthly  (0.953)  abraham  (0.953)  godly  (0.950)  
condemnation  (0.948)  believing  (0.947)  lost  (0.946)  mother  (0.945)  adultery  (0.943)  
divinity  (0.941)  face  (0.939)  hear  (0.937)  good-work  (0.932)  relationship  (0.927)  
justification  (0.926)  bread  (0.923)  faithful  (0.923)  atonement  (0.919)  word  (0.903)  
intercession  (0.901)  commandment  (0.901)  baptism  (0.899)  experience  (0.884)  law  (0.883)  
win  (0.882)  woman  (0.877)  passion  (0.868)  mary  (0.864)  people  (0.863)  moses  (0.862)  
faith  (0.861)  disciple  (0.860)  prayer  (0.846)  spiritual  (0.844)  listen  (0.831)  
house  (0.821)  fish  (0.814)  home  (0.809)  friend  (0.807)  believer  (0.801)  israel  (0.787)  
elect  (0.786)  guide  (0.765)  miracle  (0.732)  incarnation  (0.728)  messiah  (0.722)  
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instruction  (0.722)  preach  (0.717)  teach  (0.716)  gospel  (0.715)  prophet  (0.712)       
no-other-god  (0.707)  learn  (0.702)  boy  (0.701)  find  (0.692)  obey-god  (0.682)  
violence  (0.682)  saint  (0.671)  moral  (0.666)  cross  (0.663)  crucifixion  (0.650)  
birth  (0.629)  expression  (0.614)  revelation  (0.610)  soul-winning  (0.581)  family  (0.569)  
minister  (0.549)  trinity  (0.547)  paul  (0.537)  problem  (0.535)  meet  (0.528)  
foundation  (0.520)  question  (0.503)  isaiah  (0.501)  gentile  (0.500)  

Hinduism : heaven  (0.990)  atman  (0.989)  liberation  (0.988)  rebirth  (0.986)  soul  (0.985)  
samsara  (0.979)  attain  (0.978)  universe  (0.972)  consciousness  (0.969)  brahman  (0.967)  
karma  (0.963)  divinity  (0.961)  earth  (0.954)  demon  (0.951)  existence  (0.941)  
moksha  (0.941)  sun  (0.939)  birth  (0.935)  god  (0.929)  animal  (0.926)  water  (0.926)  
sense  (0.915)  death  (0.908)  manifestation  (0.900)  fire  (0.858)  purity  (0.838)  
human (0.836)  spirit  (0.831)  man  (0.817)  indra  (0.813)  mother  (0.798)  sacrifice  (0.798)  
person  (0.790)  shiva  (0.786)  shakti  (0.781)  being  (0.780)  worshiper  (0.759)  
experience  (0.749)  jnana  (0.744)  invoke  (0.743)  freedom  (0.730)  vishnu  (0.730)  
kill  (0.699)  son  (0.681)  brahma  (0.666)  element  (0.639)  food  (0.635)  prayer  (0.631)  
chakra  (0.630)  gift  (0.609)  word  (0.572)  darshan  (0.552)  reincarnation  (0.535)  
humanity  (0.533)  krishna  (0.531)  arjuna  (0.524)  sita  (0.518)   

Islam : heaven  (0.996)  hell  (0.993)  paradise  (0.990)  creature  (0.990)  soul  (0.989)  
earth  (0.989)  sin  (0.985)  angel  (0.984)  deed  (0.982)  allah  (0.981)  universe  (0.979)  
punishment  (0.978)  water  (0.973)  animal  (0.973)  god  (0.973)  pain  (0.972)  bless  (0.970)  
son  (0.966)  human  (0.958)  being  (0.951)  father  (0.950)  worship  (0.948)  existence  (0.948)  
satan  (0.947)  spirit  (0.943)  divinity  (0.942)  death  (0.939)  remember  (0.939)  
mother  (0.937)  believer  (0.937)  judgment  (0.934)  man  (0.933)  physical  (0.932)  
command (0.922)  guide  (0.921)  purification  (0.919)  food  (0.912)  forbid  (0.912)  
peace  (0.909)  believing  (0.900)  tawhid  (0.899)  wisdom  (0.894)  messenger  (0.893)  
mankind  (0.888)  consciousness  (0.887)  jesus  (0.885)  child  (0.876)  master  (0.872)  
intercession  (0.869)  gabriel  (0.868)  submission  (0.860)  life  (0.858)  witness  (0.841)  
charity  (0.840)  kill  (0.835)  daughter  (0.825)  husband  (0.816)  moses  (0.815)  needy  (0.810)  
lawful  (0.806)  spiritual  (0.792)  abraham  (0.789)  wife  (0.787)  prophet  (0.775)   
muhammad-the-prophet-of-allah  (0.775)  brother  (0.774)  prayer  (0.765)  friend  (0.759)  
share  (0.758)  word  (0.756)  adultery  (0.755)  commandment  (0.755)  ishmael  (0.748)  
judge  (0.743)  poverty  (0.741)  humanity  (0.740)  noah  (0.738)  faith  (0.736)  justice  (0.716)  
exist  (0.713)  companion  (0.675)  revelation  (0.675)  saint  (0.670)  responsibility  (0.660)  
idolatry  (0.650)  house  (0.646)  people  (0.645)  enemy  (0.637)  facing  (0.636)  woman  (0.610)  
teach  (0.608)  fast  (0.603)  testimony  (0.595)  marriage  (0.582)  mohamad  (0.581)  home  (0.568)  
fight  (0.548)  find  (0.539)  sister  (0.536)  faithful  (0.518)  meet  (0.509)  abu-bakr  (0.502)   

Judaism : heaven  (0.983)  universe  (0.975)  reward  (0.975)  soul  (0.974)  hashem  (0.974)  
angel  (0.967)  sin  (0.966)  divine-creation  (0.959)  god  (0.958)  adam  (0.946)  
physical  (0.935)  divinity  (0.935)  eat  (0.932)  animal  (0.927)  human  (0.925)  water  (0.923)  
existence  (0.913)  command  (0.910)  spirit  (0.907)  shechinah  (0.906)  bless  (0.904)  
man (0.869)  golden-calf  (0.860)  wisdom  (0.856)  no-other-god  (0.851)  salvation  (0.843)  
death  (0.841)  judgment  (0.840)  hide  (0.822)  wife  (0.820)  peace  (0.818)  redemption  (0.815)  
father  (0.805)  humanity  (0.793)  hear  (0.788)  repentance  (0.780)  food  (0.776)  son  (0.776)  
revelation  (0.769)  mother  (0.766)  eden  (0.764)  spiritual  (0.757)  commandment  (0.753)  
kill  (0.748)  forbid  (0.747)  exist  (0.737)  teshuvah  (0.734)  sacrifice  (0.714)  
candle  (0.700)  covenant  (0.700)  child  (0.700)  kosher  (0.697)  holy  (0.685)  sarah  (0.683)  
expression  (0.670)  idolatry  (0.664)  hell  (0.663)  abraham  (0.663)  star  (0.662)  
pharaoh  (0.658)  freedom  (0.651)  jacob  (0.637)  connect  (0.619)  meal  (0.617)  violate  (0.603)  
experience  (0.582)  mitzvah  (0.569)  malchut  (0.568)  noah  (0.565)  faithful  (0.555)  
moses  (0.553)  relationship  (0.544)  house  (0.521)  sefirot  (0.516)   

MOST PROMINENT FEATURES: infinite  [0.660]  creature  [0.647]  forgive  [0.636]  
heaven  [0.636]  immortal  [0.633]  hell  [0.633]  creator  [0.630]  mercy  [0.629]  sorrow  [0.629]  
finite  [0.626]  flesh  [0.624]  earth  [0.623]  pleasure  [0.62]  eternity  [0.621]  drink  [0.620]  
ghost  [0.617]  eternally  [0.617]  womb  [0.617]  beget  [0.616]  will  [0.616]  sin  [0.615]  
bliss  [0.615]  eternal  [0.61]  sleep  [0.61]  heavenly  [0.612]  ascend  [0.612]  pain  [0.612]  
sinful  [0.61]  soul  [0.611]  torment  [0.611]  

 

CLUSTER 2 “The Establishment Aspect of Religion” 
p(c) = 0.4783, p*(c) = 0.503  

Buddhism : korea  (0.999)  asia  (0.999)  south  (0.999)  east  (0.999)  sri-lanka  (0.999)  
china  (0.999)  japan  (0.999)  america  (0.999)  north  (0.999)  india  (0.999)  found  (0.998)  
tibet  (0.998)  burma  (0.998)  pitaka  (0.998)  scholar  (0.998)  theravada  (0.998)  
vietnam  (0.998)  study  (0.997)  school  (0.997)  mahayana  (0.997)  country  (0.997)  west  (0.996)  
literature  (0.996)  thai  (0.996)  missionary  (0.995)  zen  (0.995)  philosophy  (0.994)  
author  (0.993)  history  (0.993)  canonical  (0.993)  writing  (0.993)  pali-canon  (0.993)  
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book  (0.993)  text  (0.993)  tradition  (0.991)  christian  (0.991)  founder  (0.991)  
chapter  (0.989)  temple  (0.989)  write  (0.989)  veda  (0.988)  sanskrit  (0.986)  vinaya  (0.986)  
vajrayana  (0.985)  trade  (0.985)  social  (0.985)  ethic  (0.985)  discussed  (0.984)  
member (0.984)  hinduism  (0.984)  pilgrimage  (0.984)  tantra  (0.984)  nun  (0.984)  
english  (0.983)  celebration  (0.983)  dalai-lama  (0.983)  scripture  (0.982)  
hinayana  (0.981)  writer  (0.981)  abhidhamma  (0.980)  monastery  (0.980)  role  (0.978)  
religious  (0.977)  student  (0.974)  stupa  (0.973)  lama  (0.972)  religion  (0.970)  
branch  (0.969)  discourse  (0.968)  society  (0.966)  translate  (0.966)  sutra  (0.962)  
sacred  (0.961)  koan  (0.961)  abbot  (0.961)  psychologist  (0.960)  sangha  (0.959)  
ceremony  (0.955)  argue  (0.955)  project  (0.953)  ajahn  (0.952)  ordain  (0.948)  
establish  (0.947)  vehicle  (0.938)  vipassana  (0.932)  theory  (0.932)  retreat  (0.929)  
king  (0.928)  monk  (0.920)  sakya  (0.920)  discipline  (0.907)  authority  (0.904)  
argument  (0.899)  full-moon  (0.898)  story  (0.896)  meet  (0.893)  bhikkhu  (0.890)  
doctrinal  (0.885)  robe  (0.863)  teaching  (0.853)  foundation  (0.853)  metaphysical  (0.845)  
mantra  (0.842)  teacher  (0.838)  instruction  (0.829)  precept  (0.821)  begin  (0.816)  
experiment  (0.810)  master  (0.807)  five-precepts  (0.802)  guide  (0.793)  forest  (0.770)  
practice  (0.767)  worship  (0.765)  amida  (0.762)  family  (0.756)  meditation  (0.736)  
question  (0.736)  focus  (0.735)  house  (0.730)  mandala  (0.723)  moral  (0.650)  
attitude  (0.648)  reincarnation  (0.633)  gift  (0.615)  connect  (0.609)  training  (0.596)  
find  (0.567)  dharma  (0.535)  asceticism  (0.525)  arhat  (0.523)  people  (0.523)  
relationship  (0.522)  samadhi  (0.518)  behavior  (0.509)  spiritual  (0.505)   

Christianity : orthodox  (0.999)  constantinople  (0.999)  protestant  (0.999)  
vatican  (0.999)  west  (0.999)  university  (0.999)  german  (0.999)  catholic  (0.999)  
rome  (0.998)  council  (0.998)  orthodoxy  (0.998)  america  (0.998)  cardinal  (0.998)  
bishop  (0.997)  pope  (0.997)  patriarch  (0.996)  organization  (0.995)  found  (0.991)  
baptist  (0.990)  apostolic  (0.989)  monk  (0.988)  evangelical  (0.988)  school  (0.984)  
theology  (0.982)  sunday  (0.980)  greek  (0.979)  postmodern  (0.979)  easter  (0.977)  
luther  (0.976)  tradition  (0.976)  writing  (0.975)  church  (0.973)  writer  (0.970)  
association  (0.970)  founder  (0.968)  student  (0.967)  history  (0.965)  ancient  (0.961)  
religious  (0.960)  new-testament  (0.960)  good-friday  (0.957)  book  (0.954)  theory  (0.950)  
trade  (0.949)  text  (0.946)  mass  (0.943)  eucharist  (0.941)  jew  (0.941)  role  (0.935)  
chapter  (0.931)  pilgrimage  (0.913)  member  (0.909)  study  (0.908)  christmas  (0.907)  
thomas  (0.903)  story  (0.895)  hebrew  (0.892)  author  (0.887)  translate  (0.887)  ethic  (0.876)  
tabernacle  (0.866)  pentecost  (0.865)  sacrament  (0.859)  city  (0.849)                
old-testament  (0.842)  religion  (0.822)  doctrinal  (0.817)  convert  (0.804)  luke  (0.797)  
teaching  (0.785)  matthew  (0.769)  king  (0.764)  sabbath  (0.754)  authority  (0.749)  
apostle  (0.744)  language  (0.740)  write  (0.736)  bethlehem  (0.731)  argument  (0.731)  
priestly  (0.731)  bible  (0.722)  teacher  (0.708)  jerusalem  (0.705)  john  (0.694)  
passage  (0.688)  ministry  (0.686)  predict  (0.680)  establish  (0.678)  idolatry  (0.673)  
service  (0.666)  john-the-baptist  (0.661)  worship  (0.619)  bearing  (0.617)        
jordan-river  (0.610)  jeremiah  (0.595)  argue  (0.594)  refer  (0.574)  reading-bible  (0.568)  
scripture  (0.553)  season  (0.547)  zion  (0.531)  elijah  (0.522)   

Hinduism : south  (0.999)  found  (0.999)  indus  (0.999)  scholar  (0.998)  shaiva  (0.998)  
classical  (0.998)  aryan  (0.997)  jain  (0.997)  literature  (0.997)  founder  (0.997)  
valley  (0.997)  muslim  (0.996)  brahma-sutra  (0.996)  sanskrit  (0.996)  author  (0.996)  
india  (0.996)  christian  (0.996)  civilization  (0.995)  history  (0.995)  west  (0.995)  
festival  (0.995)  school  (0.995)  buddhism  (0.995)  study  (0.994)  text  (0.993)  sutra  (0.992)  
ancient  (0.992)  student  (0.992)  language  (0.992)  write  (0.992)  writing  (0.992)  
book  (0.991)  ramayana  (0.990)  poet  (0.990)  shri  (0.989)  varanasi  (0.989)  
foundation  (0.988)  country  (0.988)  art  (0.988)  purana  (0.988)  vaishnavism  (0.987)  
religious  (0.987)  samkhya  (0.987)  ahram  (0.987)  philosophy  (0.986)  kumbhamela  (0.986)  
science  (0.985)  epic  (0.985)  tradition  (0.984)  social  (0.983)  mahabharata  (0.983)  
poem (0.981)  smriti  (0.980)  mahatma  (0.979)  ram  (0.979)  temple  (0.979)  story  (0.978)  
agama (0.976)  dance  (0.975)  vedas  (0.972)  society  (0.971)  rigveda  (0.969)  priest  (0.968)  
teacher  (0.964)  theory  (0.963)  teaching  (0.962)  caste  (0.959)  pilgrimage  (0.952)  
raja  (0.951)  sankara  (0.948)  religion  (0.948)  brahmin  (0.946)  king  (0.944)  
ceremony  (0.938)  hymn  (0.935)  authority  (0.934)  scripture  (0.931)  advaitha  (0.928)  
gita  (0.920)  sadhu  (0.916)  ritual  (0.916)  upanishad  (0.912)  yoga  (0.909)  doctrine  (0.903)  
practice  (0.899)  rite  (0.891)  faith  (0.879)  buddha  (0.873)  family  (0.871)  idea  (0.845)  
puja  (0.839)  asceticism  (0.836)  find  (0.835)  teach  (0.833)  sacred  (0.831)  yogi  (0.820)  
learn  (0.806)  ramanuja  (0.804)  people  (0.801)  question  (0.797)  brahmana  (0.794)  
holy  (0.790)  holy-people  (0.775)  hero  (0.736)  spirituality  (0.736)  durga  (0.719)  
rama  (0.715)  star  (0.688)  trimurti  (0.664)  guru  (0.659)  bhakti  (0.635)  ganesh  (0.635)  
child  (0.630)  discipline  (0.622)  dharma  (0.611)  law  (0.596)  meditation  (0.567)  
idol  (0.563)  devotee  (0.561)  kali  (0.527)   
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Islam : africa  (0.999)  asia  (0.999)  east  (0.999)  university  (0.998)  india  (0.996)  
shiah  (0.996)  empire  (0.994)  found  (0.994)  shii  (0.993)  sunni  (0.993)  hijrah  (0.993)  
west  (0.993)  student  (0.990)  school  (0.989)  baghdad  (0.988)  philosophy  (0.988)  
arabia  (0.987)  country  (0.987)  racial  (0.986)  founder  (0.984)  writer  (0.984)  fiqh  (0.983)  
economy  (0.982)  study  (0.979)  tipu  (0.978)  id-al-fitr  (0.978)  jew  (0.975)  
christian  (0.974)  author  (0.974)  bank  (0.972)  madinah  (0.972)  city  (0.971)  arab  (0.970)  
chapter  (0.969)  calif  (0.969)  writing  (0.968)  civilization  (0.968)  translate  (0.966)  
scholar  (0.965)  trade  (0.965)  religious  (0.965)  science  (0.964)  branch  (0.964)  
army  (0.958)  english  (0.957)  history  (0.954)  sheikh  (0.954)  sufi  (0.953)  istanbul  (0.949)  
mecah (0.947)  polygamy  (0.945)  finance  (0.945)  friday  (0.944)  mosque  (0.943)  
tradition  (0.940)  jerusalem  (0.940)  social  (0.933)  ritual  (0.917)  write  (0.911)  
surah  (0.910)  imam  (0.909)  company  (0.908)  haj  (0.908)  shariah  (0.908)  practice  (0.903)  
foundation  (0.897)  language  (0.895)  doctrine  (0.893)  succession  (0.890)        
pillars-of-faith  (0.888)  bible  (0.878)  kaabah  (0.865)  story  (0.861)  ali  (0.858)  
teacher  (0.852)  tribe  (0.851)  teaching  (0.839)  id  (0.825)  establish  (0.818)  
pilgrimage  (0.817)  sacred  (0.816)  race  (0.810)  society  (0.804)  israel  (0.802)  
hadith  (0.801)  scripture  (0.798)  book  (0.793)  ummah (0.792)  ramadan  (0.789)  sunnah  (0.771)  
problem  (0.770)  religion  (0.764)  jihad  (0.756)  umar  (0.754)  ruler  (0.754)  bukhari 
muslim  (0.739)  learn  (0.730)  female  (0.718)  service  (0.713)  code  (0.705)  preach  (0.701)  
law  (0.686)  authority  (0.667)  attitude  (0.637)  quran  (0.622)  moral  (0.602)  salah  (0.602)  
dua  (0.595)  question  (0.579)  mission  (0.574)  read-quran  (0.571)  statement  (0.567)  
freedom  (0.566)  drink-alcohol  (0.564)  family  (0.542)  descendant  (0.542)  haram  (0.522)  
declaration  (0.521)  holy  (0.509)   

Judaism : europe  (0.999)  conservative  (0.999)  reconstructionism  (0.999)  east  (0.999)  
sephardim  (0.999)  ashkenazim  (0.999)  zionism  (0.999)  america  (0.999)  north  (0.999)  
reform  (0.998)  orthodox  (0.998)  german  (0.997)  yeshivah  (0.997)  found  (0.997)  
rabbinical  (0.996)  philosophy  (0.996)  school  (0.996)  founder  (0.995)  literary  (0.995)  
calendar  (0.994)  tanakh  (0.993)  babylon  (0.993)  scholar  (0.992)  mishnah  (0.991)  
writer  (0.990)  center  (0.990)  christian  (0.989)  liturgy  (0.989)  synagogue  (0.989)  
theology  (0.988)  rome  (0.987)  country  (0.985)  ancient  (0.984)  writing  (0.984)  
author  (0.984)  community  (0.983)  religious  (0.983)  daniel  (0.981)  hasid  (0.981)  
tradition  (0.980)  kabalah  (0.979)  student  (0.979)  city  (0.978)              
principles-of-faith  (0.977)  judah  (0.977)  oral  (0.977)  bible  (0.976)  book  (0.976)  
history  (0.976)  scripture  (0.974)  hebrew  (0.974)  text  (0.974)  area  (0.973)  talmud  (0.973)  
language  (0.972)  establish  (0.971)  jerusalem  (0.970)  religion  (0.969)  teacher  (0.969)  
scroll  (0.966)  siddur  (0.965)  member  (0.964)  temple-mount  (0.962)  festival  (0.962)  
gemara  (0.962)  exodus  (0.960)  rosh-hodesh  (0.958)  social  (0.958)  role  (0.955)  code  (0.954)  
shavuot  (0.951)  ari  (0.949)  chapter  (0.948)  celebration  (0.948)  holiday  (0.948)  
halachah  (0.947)  society  (0.946)  authority  (0.946)  discuss  (0.942)  rabbi  (0.942)  
zohar  (0.939)  teaching  (0.939)  law  (0.938)  study  (0.935)  service  (0.933)            
rosh-hashanah  (0.930)  read-torah  (0.927)  mystic  (0.926)  kingdom  (0.923)  
foundation  (0.921)  tribe  (0.909)  story  (0.901)  write  (0.898)  sukoth  (0.893)  temple  (0.893)  
yarmulke  (0.893)  israel  (0.890)  intellectual  (0.883)  argument  (0.880)  argue  (0.880)  
levi  (0.877)  solomon  (0.877)  letter  (0.877)  parsha  (0.875)  purim  (0.865)  passover  (0.859)  
bris  (0.852)  ritual  (0.850)  mourn  (0.848)  statement  (0.841)  sea  (0.837)  question  (0.834)  
mikveh  (0.827)  canaan  (0.823)  exile  (0.811)  priest  (0.809)  yhwh  (0.805)             
high-priest  (0.803)  gentile  (0.800)  tefilin  (0.797)  jeremiah  (0.792)  talit  (0.776)  
ishaiah  (0.775)  david  (0.773)  find  (0.769)  family  (0.761)  ezekiel  (0.760)  esther  (0.755)  
learn  (0.753)  jesus  (0.721)  circumcision  (0.716)  status  (0.713)  worship  (0.711)  
sabbath  (0.711)  wear  (0.698)  women  (0.694)  home  (0.680)  torah  (0.676)  elijah  (0.674)  
marriage  (0.672)  seal  (0.668)  israelite  (0.667)  saint  (0.658)  prayer  (0.652)  
messiah  (0.644)  menorah  (0.638)  atonement  (0.629)  joseph  (0.614)  king  (0.612)  
moral  (0.607)  faith  (0.601)  teach  (0.585)  people  (0.534)  prophet  (0.522)  egypt  (0.521)  
word  (0.516)  isaac  (0.513)  mount-sinai  (0.504)   

MOST PROMINENT FEATURES: eastern  [0.711]  north  [0.701]  south  [0.695]  central  [0.688]  
asia  [0.687]  africa  [0.684]  east  [0.683]  europe  [0.682]  southern  [0.681]  
university  [0.678]  orthodox  [0.676]  canada  [0.676]  coast  [0.675]  eastern  [0.674]  
academy  [0.673]  graduate  [0.673]  college  [0.673]  medieval  [0.673]  professor  [0.672]  
italy  [0.671]  reform  [0.670]  16th  [0.669]  european  [0.667]  official  [0.667]  
affiliate  [0.666]  historian  [0.666]  british  [0.664]  headquarters  [0.662]  
edition  [0.662]  england  [0.661]  
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E.2:  Seven Clusters 

CLUSTER 1 “Schools” p(c) = 0.1993, p*(c) = 0.1457 
Buddhism : america  (0.999)  asia  (0.999)  japan  (0.999)  west  (0.999)  east  (0.999)  
korea  (0.999)  india  (0.999)  china  (0.999)  tibet  (0.999)  christian  (0.999)  school  (0.999)  
theravada  (0.999)  hinduism  (0.999)  south  (0.999)  found  (0.999)  tradition  (0.999)  
study  (0.998)  country  (0.998)  history  (0.998)  philosophy  (0.997)  religion  (0.997)  
role  (0.997)  mahayana  (0.997)  religious  (0.996)  zen  (0.996)  sri-lanka  (0.995)  
scholar  (0.995)  social  (0.994)  society  (0.993)  ethic  (0.991)  burma  (0.991)  
missionary  (0.988)  founder  (0.987)  hinayana  (0.987)  vietnam  (0.984)  establish  (0.982)  
member (0.981)  veda  (0.976)  argue  (0.968)  vehicle  (0.962)  north  (0.952)  
psychologist  (0.945)  vajrayana  (0.944)  literature  (0.895)  tantra  (0.895)  
writing  (0.890)  authority  (0.874)  writer  (0.859)  sangha  (0.855)  student  (0.854)  
thai  (0.843)  discussed  (0.810)  project  (0.775)  theory  (0.745)  vinaya  (0.696)  
vipassana  (0.676)  monastery  (0.649)  discipline  (0.608)  author  (0.599)  begin  (0.588)  
trade  (0.579)  doctrinal  (0.561)  koan  (0.482)  

Christianity : orthodox  (0.999)  protestant  (0.999)  catholic  (0.999)  west  (0.999)  
orthodoxy  (0.999)  organization  (0.999)  rome  (0.999)  council  (0.999)  america  (0.999)  
pope  (0.999)  university  (0.998)  religious  (0.998)  evangelical  (0.997)  luther  (0.995)  
theology  (0.995)  vatican  (0.993)  german  (0.993)  constantinople  (0.992)  bishop  (0.992)  
role  (0.991)  postmodern  (0.991)  found  (0.988)  apostolic  (0.985)  church  (0.981)  
association  (0.977)  baptist  (0.954)  religion  (0.936)  tradition  (0.933)  
patriarch  (0.919)  jew  (0.890)  member  (0.861)  founder  (0.815)  authority  (0.796)  
establish  (0.746)  history  (0.707)  ethic  (0.688)  ancient  (0.595)  cardinal  (0.558)  

Hinduism : west  (0.999)  christian  (0.999)  religious  (0.999)  civilization  (0.999)  
buddhism  (0.999)  aryan  (0.999)  social  (0.998)  founder  (0.998)  shaiva  (0.998)  caste  (0.998)  
society  (0.997)  south  (0.997)  found  (0.997)  indus  (0.996)  samkhya  (0.996)  religion  (0.996)  
science  (0.996)  history  (0.996)  tradition  (0.994)  scholar  (0.992)  foundation  (0.991)  
country  (0.989)  muslim  (0.989)  india  (0.989)  art  (0.988)  study  (0.988)  ancient  (0.985)  
theory  (0.984)  classical  (0.979)  faith  (0.973)  philosophy  (0.972)  authority  (0.972)  
school  (0.969)  valley  (0.958)  practice  (0.940)  teaching  (0.921)  advaitha  (0.912)  
student  (0.899)  jain  (0.869)  doctrine  (0.840)  idea  (0.833)  literature  (0.832)  yoga  (0.813)  
sankara  (0.805)  language  (0.736)  poet  (0.674)  

Islam : africa  (0.999)  asia  (0.999)  west  (0.999)  east  (0.999)  sunni  (0.999)  shiah  (0.998)  
christian  (0.998)  country  (0.998)  civilization  (0.998)  philosophy  (0.998)  racial  (0.998)  
found  (0.997)  shii  (0.997)  religious  (0.997)  economy  (0.992)  sufi  (0.988)  
university  (0.984)  science  (0.983)  jew  (0.982)  school  (0.981)  practice  (0.979)  
founder  (0.978)  history  (0.975)  empire  (0.966)  foundation  (0.958)  study  (0.952)  
race  (0.951)  india  (0.951)  student  (0.932)  finance  (0.930)  doctrine  (0.929)  
polygamy  (0.905)  shariah  (0.887)  religion  (0.872)  fiqh  (0.841)  branch  (0.822)  
establish  (0.801)  teaching  (0.794)  ummah (0.762)  arabia  (0.736)  scholar  (0.685)  
tradition  (0.680)  ruler  (0.645)  jihad  (0.638)  sheikh  (0.633)  social  (0.566)  
authority  (0.535)  society  (0.534)  

Judaism : reform  (0.999)  conservative  (0.999)  reconstructionism  (0.999)  
zionism  (0.999)  orthodox  (0.999)  america  (0.999)  europe  (0.999)  sephardim  (0.999)  
ashkenazim  (0.999)  religious  (0.999)  christian  (0.999)  east  (0.999)  religion  (0.998)  
german  (0.998)  theology  (0.997)  philosophy  (0.997)  rabbinical  (0.996)  community  (0.996)  
role  (0.995)  authority  (0.995)  society  (0.993)  social  (0.981)  establish  (0.978)  
found  (0.976)  founder  (0.972)  country  (0.966)  history  (0.963)  tradition  (0.953)  
ancient  (0.927)  school  (0.921)  scholar  (0.881)  halachah  (0.875)  center  (0.870)  
writer  (0.866)  principles-of-faith  (0.857)  argue  (0.851)  literary  (0.836)  area  (0.820)  
foundation  (0.775)  law  (0.739)  code  (0.734)  student  (0.705)  hasid  (0.704)  kabalah  (0.700)  
north  (0.656)  liturgy  (0.640)  teacher  (0.600)  jesus  (0.592)  member  (0.581)  
argument  (0.571)  ritual  (0.568)  mystic  (0.460)  rabbi  (0.427)  messiah  (0.281)  

MOST PROMINENT FEATURES: eastern  [0.350]  africa  [0.329]  europe  [0.313]  north  [0.308]  
east  [0.307]  central  [0.297]  asia  [0.294]  dominant  [0.293]  south  [0.292]  orthodox  [0.292]  
mainstream  [0.291]  protestant  [0.285]  affiliate  [0.285]  coast  [0.284]  reform  [0.284]  
medieval  [0.281]  ethnic  [0.280]  russia  [0.280]  african  [0.28]  conservative  [0.278]  
empire  [0.278]  southern  [0.278]  19th  [0.277]  oriental  [0.274]  canada  [0.274]  
germany  [0.273]  west  [0.273]  political  [0.272]  minority  [0.272]  
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CLUSTER 2 “Divinity”  p(c) = 0.1876, p*(c) = 0.1379 
Buddhism : god  (0.865)  brahma  (0.854)  
Christianity : holy-spirit  (0.999)  jesus-christ  (0.998)  god  (0.997)  father  (0.997)  
savior  (0.996)  jesus  (0.988)  baptize  (0.988)  salvation  (0.986)  reign  (0.985)  gift  (0.985)  
believing  (0.980)  love-of-god  (0.973)  baptism  (0.972)  disciple  (0.971)  command  (0.964)  
confess  (0.951)  commandment  (0.950)  messiah  (0.932)  faith  (0.919)  resurrection  (0.902)  
abraham  (0.837)  love  (0.835)  believer  (0.796)  teach  (0.794)  bless  (0.787)  
redemption  (0.742)  justification  (0.741)  grant  (0.715)  forgiveness  (0.690)  
gospel  (0.681)  law  (0.661)  moses  (0.608)  faithful  (0.574)  word  (0.517)  hear  (0.516)  
miracle  (0.461)  being  (0.456)  prayer  (0.438)  

Hinduism : god  (0.995)  brahma  (0.497)  

Islam : god  (0.999)  allah  (0.998)  peace  (0.997)  messenger  (0.991)  jesus  (0.989)  
worship  (0.986)  believing  (0.981)  tawhid  (0.978)  command  (0.967)  abraham  (0.964)  
guide  (0.960)  prophet  (0.954)  moses  (0.934)  bless  (0.928)  believer  (0.902)  mohamad  (0.863)  
angel  (0.829)  mankind  (0.784)  companion  (0.772)  divinity  (0.741)  deed  (0.629)  
teach  (0.584)  
Judaism : god  (0.994)  hashem  (0.987)  bless  (0.656)  commandment  (0.632)  abraham  (0.336)  

MOST PROMINENT FEATURES: omnipotent  [0.272]  omniscient  [0.264]  almighty  [0.256]  
mercy  [0.240]  infinite  [0.240]  worship  [0.238]  all-know  [0.236]  glory  [0.234]  
creator  [0.234]  grace  [0.233]  saviour  [0.231]  manifestation  [0.230]  ye  [0.229]  
transcendent  [0.228]  praise  [0.226]  wrath  [0.226]  gracious  [0.225]  bestow  [0.222]  
trinity  [0.222]  disobey  [0.222]  sovereign  [0.221]  jealous  [0.219]  universe  [0.219]  
remembrance  [0.219]  pray  [0.218]  surrender  [0.217]  forgive  [0.217]  curse  [0.216]  
attribute  [0.215]  

 

CLUSTER 3 “Religious Experience” p(c) = 0.1638, p*(c) = 0.1434 
Buddhism : phenomenon  (0.999)  perception  (0.999)  consciousness  (0.999)  human  (0.999)  
concentration  (0.999)  mindfulness  (0.999)  physical  (0.999)  livelihood  (0.999)  
liberation  (0.999)  buddha-nature  (0.999)  awareness  (0.999)  freedom  (0.999)  law  (0.999)  
wisdom  (0.999)  eightfold-path  (0.999)  sentient  (0.999)  emptiness  (0.999)  purity  (0.999)  
sense  (0.999)  attain  (0.999)  experience  (0.999)  existence  (0.999)  karma  (0.999)  
buddhahood  (0.999)  speech  (0.998)  universe  (0.998)  soul  (0.998)  impermanence  (0.998)  
salvation  (0.997)  emotion  (0.997)  spiritual  (0.997)  element  (0.997)  peace  (0.997)  
noble-truths  (0.997)  intention  (0.997)  enlightenment  (0.997)  nirvana  (0.997)  
moral  (0.996)  skilful  (0.996)  behavior  (0.996)  relationship  (0.996)  humanity  (0.995)  
conditioning  (0.995)  exist  (0.994)  meditator  (0.992)  awaken  (0.991)  noble  (0.991)  
generosity  (0.990)  bodhisattva  (0.988)  suffer  (0.988)  cause  (0.988)  unwholesome  (0.987)  
arhat  (0.986)  being  (0.985)  dukkha  (0.984)  strength  (0.983)  samadhi  (0.981)       
karmic-law  (0.976)  connect  (0.975)  attitude  (0.970)  root  (0.965)  deliverance  (0.965)  
faith  (0.961)  training  (0.957)  focus  (0.954)  samsara  (0.947)  spirit  (0.930)  
rebirth  (0.928)  problem  (0.906)  teach  (0.897)  realm  (0.872)  practice  (0.849)  
meditation  (0.760)  dharma  (0.754)  guide  (0.743)  painful  (0.739)  metaphysical  (0.731)  
foundation  (0.702)  five-precepts  (0.693)  gift  (0.632)  anger  (0.587)  
reincarnation  (0.577)  find  (0.540)  sacrifice  (0.474)  

Christianity : moral  (0.999)  human  (0.996)  humanity  (0.973)  spiritual  (0.968)  
relationship  (0.961)  experience  (0.956)  expression  (0.946)  incarnation  (0.898)  
divinity  (0.845)  atonement  (0.799)  argue  (0.522)  guide  (0.455)  

Hinduism : consciousness  (0.999)  atman  (0.999)  human  (0.999)  existence  (0.998)  
liberation  (0.998)  jnana  (0.998)  purity  (0.998)  sense  (0.998)  moksha  (0.998)  soul  (0.997)  
freedom  (0.997)  attain  (0.997)  universe  (0.996)  karma  (0.996)  experience  (0.992)  
brahman  (0.984)  humanity  (0.983)  manifestation  (0.978)  discipline  (0.972)  
spirit  (0.955)  element  (0.949)  rebirth  (0.949)  reincarnation  (0.934)  being  (0.914)  
bhakti  (0.904)  dharma  (0.858)  law  (0.853)  spirituality  (0.835)  divinity  (0.790)  
samsara  (0.624)  

Islam : spiritual  (0.999)  human  (0.999)  physical  (0.998)  moral  (0.997)  
consciousness  (0.994)  humanity  (0.992)  exist  (0.992)  justice  (0.991)  life  (0.989)  
existence  (0.988)  universe  (0.973)  code  (0.938)  freedom  (0.938)  being  (0.933)  
submission  (0.922)  wisdom  (0.916)  spirit  (0.904)  law  (0.866)  attitude  (0.817)  
purification  (0.802)  judge  (0.797)  responsibility  (0.705)  faith  (0.595)  
commandment (0.577)  man  (0.513)  creature  (0.493)  problem  (0.448)  
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Judaism : spiritual  (0.999)  human  (0.999)  existence  (0.999)  physical  (0.998)  
expression  (0.998)  humanity  (0.996)  experience  (0.993)  moral  (0.992)  connect  (0.991)  
revelation  (0.989)  relationship  (0.986)  soul  (0.983)  exist  (0.978)  freedom  (0.971)  
universe  (0.937)  malchut  (0.923)  divinity  (0.903)  wisdom  (0.895)  spirit  (0.887)  
intellectual  (0.819)  no-other-god  (0.784)  shechinah  (0.761)  faith  (0.758)       
divine-creation  (0.606)  sefirot  (0.442)  

MOST PROMINENT FEATURES: intrinsic  [0.281]  mental  [0.26]  realm  [0.260]  mature  [0.259]  
rights  [0.258]  subjective  [0.258]  potential  [0.254]  intellect  [0.253]  dimension  [0.253]  
intuitive  [0.252]  goal  [0.251]  objective  [0.251]  innate  [0.251]  perception  [0.246]  
physical  [0.244]  species  [0.243]  material  [0.242]  finite  [0.242]  limitation  [0.242]  
emotional  [0.241]  transcend  [0.239]  dignity  [0.23]  perfection  [0.238]  nature  [0.238]  
infinite  [0.237]  betterment  [0.235]  physical  [0.233]  energy  [0.233]  reality  [0.232]  
temporal  [0.232]  

 

CLUSTER 4 “Writings” p(c) = 0.1181, p*(c) = 0.1422 
Buddhism : pali-canon  (0.999)  sanskrit  (0.999)  sutra  (0.999)  pitaka  (0.999)  
english  (0.998)  translate  (0.997)  chapter  (0.994)  abhidhamma  (0.992)  book  (0.990)  
canonical  (0.988)  write  (0.980)  discourse  (0.977)  text  (0.962)  scripture  (0.864)  
word  (0.847)  argument  (0.643)  story  (0.639)  teaching  (0.500)  precept  (0.346)  

Christianity : chapter  (0.999)  hebrew  (0.999)  translate  (0.999)  greek  (0.999)      
new-testament  (0.999)  book  (0.999)  text  (0.999)  old-testament  (0.999)  luke  (0.999)  
matthew  (0.999)  passage  (0.999)  author  (0.998)  write  (0.998)  bible  (0.998)  writer  (0.998)  
john  (0.997)  writing  (0.997)  study  (0.996)  apostle  (0.993)  isaiah  (0.992)  
scripture  (0.991)  language  (0.983)  revelation  (0.983)  refer  (0.981)  paul  (0.967)  
teaching  (0.951)  thomas  (0.898)  argument  (0.896)  theory  (0.883)  instruction  (0.767)  
prophet  (0.751)  doctrinal  (0.662)  trinity  (0.591)  foundation  (0.440)  birth  (0.359)  

Hinduism : rigveda  (0.999)  gita  (0.999)  sanskrit  (0.999)  upanishad  (0.999)  sutra  (0.998)  
smriti  (0.998)  brahma-sutra  (0.996)  scripture  (0.993)  mahabharata  (0.990)  poem  (0.989)  
text  (0.988)  purana  (0.987)  agama  (0.987)  hymn  (0.984)  vedas  (0.979)  epic  (0.979)  
word  (0.977)  writing  (0.977)  book  (0.974)  write  (0.966)  author  (0.814)  ramayana  (0.639)  
ramanuja  (0.614)  

Islam : chapter  (0.999)  surah  (0.999)  bible  (0.999)  write  (0.999)  translate  (0.999)  
hadith  (0.999)  book  (0.999)  language  (0.997)  scripture  (0.996)  quran  (0.993)  
statement  (0.989)  sunnah  (0.987)  arab  (0.985)  author  (0.972)  english  (0.965)  imam  (0.936)  
word  (0.932)  bukhari-muslim  (0.922)  writing  (0.903)  noah  (0.869)  holy  (0.841)  
gabriel  (0.692)  revelation  (0.653)  writer  (0.454)  testimony  (0.396)  

Judaism : tanakh  (0.999)  scripture  (0.999)  mishnah  (0.999)  book  (0.999)  oral  (0.999)  
talmud  (0.999)  bible  (0.999)  write  (0.999)  letter  (0.999)  writing  (0.999)  gemara  (0.999)  
chapter  (0.999)  word  (0.998)  zohar  (0.997)  text  (0.996)  torah  (0.995)  hebrew  (0.989)  
author  (0.951)  ishaiah  (0.948)  prophet  (0.947)  language  (0.921)  siddur  (0.918)  
statement  (0.912)  exodus  (0.866)  moses  (0.862)  scroll  (0.852)  teaching  (0.765)  
discuss  (0.649)  study  (0.432)  

MOST PROMINENT FEATURES:  commentary  [0.332]  manuscript  [0.330]  translation  [0.328]  
dictionary  [0.316]  grammar  [0.304]  translate  [0.299]  english  [0.293]  canon  [0.289]  
translator  [0.285]  compile  [0.284]  authoritative  [0.284]  compilation  [0.281]  
written  [0.280]  script  [0.280]  collection  [0.279]  pronunciation  [0.277]  edition  [0.277]  
edit  [0.276]  print  [0.275]  publish  [0.274]  read  [0.273]  extant  [0.271]  verb  [0.271]  
latin  [0.270]  text  [0.270]  treatise  [0.268]  verse  [0.267]  hebraic  [0.266]  
publisher  [0.266]  
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CLUSTER 5 “Festivals and Rite” p(c) = 0.1163, p*(c) = 0.1443 
Buddhism : full-moon  (0.999)  celebration  (0.999)  stupa  (0.999)  ceremony  (0.999)  
sakya  (0.998)  abbot  (0.998)  ajahn  (0.997)  robe  (0.997)  retreat  (0.996)  house  (0.994)  
forest  (0.991)  mandala  (0.991)  temple  (0.985)  king  (0.982)  bodhi-tree  (0.981)  
pilgrimage  (0.978)  worship  (0.976)  amida  (0.971)  ordain  (0.949)  mantra  (0.939)  
bhikkhu  (0.922)  monk  (0.897)  nun  (0.887)  experiment  (0.882)  sit  (0.870)  asceticism  (0.806)  
meet  (0.792)  dalai-lama  (0.744)  branch  (0.726)  sacred  (0.551)  instruction  (0.548)  
prince  (0.531)  lama  (0.528)  siddhartha-gautama  (0.459)  

Christianity : easter  (0.999)  tabernacle  (0.999)  christmas  (0.999)  sunday  (0.999)  
sabbath  (0.999)  jerusalem  (0.999)  pentecost  (0.999)  city  (0.998)  season  (0.998)  
eucharist  (0.996)  pilgrimage  (0.995)  zion  (0.994)  bethlehem  (0.993)  story  (0.992)  
jordan-river  (0.991)  service  (0.991)  trade  (0.974)  elijah  (0.970)  good-friday  (0.969)  
mass (0.959)  sacrament  (0.955)  idolatry  (0.930)  worship  (0.913)                   
john-the-baptist  (0.910)  jeremiah  (0.908)  ministry  (0.904)  king  (0.892)  house  (0.854)  
bearing  (0.826)  priestly  (0.817)  minister  (0.812)  monk  (0.810)  meet  (0.767)  saint  (0.752)  
school  (0.742)  israel  (0.716)  convert  (0.633)  predict  (0.611)  no-other-god  (0.600)  
intercession  (0.545)  soul-winning  (0.512)  student  (0.439)  gentile  (0.403)  

Hinduism : puja  (0.999)  ganesh  (0.999)  festival  (0.999)  ceremony  (0.999)  durga  (0.999)  
rama  (0.999)  pilgrimage  (0.999)  rite  (0.999)  temple  (0.999)  holy  (0.999)  king  (0.999)  
kali  (0.998)  priest  (0.998)  sacred  (0.997)  darshan  (0.996)  kumbhamela  (0.995)  
prayer  (0.995)  devotee  (0.994)  idol  (0.993)  ahram  (0.993)  sita  (0.993)  invoke  (0.991)  
ram  (0.988)  sadhu  (0.988)  varanasi  (0.984)  krishna  (0.984)  holy-people  (0.981)  
hero  (0.971)  dance  (0.971)  ritual  (0.968)  brahmana  (0.967)  shri  (0.944)  gift  (0.939)  
shiva  (0.930)  raja  (0.927)  worshiper  (0.926)  arjuna  (0.920)  star  (0.913)  brahmin  (0.896)  
trimurti  (0.874)  story  (0.841)  asceticism  (0.840)  vishnu  (0.837)  yogi  (0.829)  
buddha  (0.818)  vaishnavism  (0.802)  guru  (0.753)  meditation  (0.678)  shakti  (0.562)  
chakra  (0.558)  mahatma  (0.546)  

Islam : kaabah  (0.999)  id  (0.999)  ramadan  (0.999)  friday  (0.999)  id-al-fitr  (0.999)  
haj  (0.999)  mecah  (0.999)  mosque  (0.999)  salah  (0.999)  pilgrimage  (0.999)  
jerusalem  (0.999)  hijrah  (0.999)  madinah  (0.998)  city  (0.996)  istanbul  (0.995)  
ishmael  (0.995)  pillars-of-faith  (0.994)  baghdad  (0.994)  ritual  (0.992)  fast  (0.986)  
umar  (0.986)  army  (0.985)  story  (0.984)  house  (0.984)  succession  (0.979)  dua  (0.976)  
company  (0.968)  prayer  (0.961)  israel  (0.941)  faithful  (0.929)  sacred  (0.918)  tipu  (0.917)  
ali  (0.887)  service  (0.859)  trade  (0.856)  calif  (0.843)  tribe  (0.835)  descendant  (0.814)  
abu-bakr  (0.761)  bank  (0.756)  charity  (0.739)  saint  (0.726)  read-quran  (0.699)  
meet  (0.520)  muhammad-the-prophet-of-allah  (0.514)  mission  (0.447)  preach  (0.280)  
declaration  (0.232)  

Judaism : sukoth  (0.999)  festival  (0.999)  shavuot  (0.999)  temple  (0.999)  
passover  (0.999)  jerusalem  (0.999)  rosh-hashanah  (0.999)  temple-mount  (0.999)     
rosh-hodesh  (0.999)  celebration  (0.999)  high-priest  (0.999)  sabbath  (0.999)  
atonement  (0.999)  holiday  (0.999)  mourn  (0.999)  purim  (0.999)  menorah  (0.999)  city  (0.999)  
canaan  (0.999)  mikveh  (0.999)  candle  (0.999)  priest  (0.998)  read-torah  (0.998)  
service  (0.998)  david  (0.997)  calendar  (0.997)  solomon  (0.995)  tribe  (0.993)  king  (0.993)  
house  (0.993)  kingdom  (0.992)  exile  (0.992)  levi  (0.991)  talit  (0.991)  meal  (0.990)  
sea  (0.989)  elijah  (0.986)  bris  (0.985)  rome  (0.980)  holy  (0.979)  esther  (0.976)  
judah  (0.972)  worship  (0.972)  yhwh  (0.971)  yarmulke  (0.970)  prayer  (0.969)  saint  (0.967)  
seal  (0.960)  israelite  (0.958)  synagogue  (0.958)  babylon  (0.956)  ari  (0.952)  
parsha  (0.945)  egypt  (0.944)  isaac  (0.939)  wear  (0.934)  sacrifice  (0.932)  tefilin  (0.916)  
circumcision  (0.912)  israel  (0.902)  ezekiel  (0.871)  covenant  (0.791)  noah  (0.783)  
faithful  (0.706)  mount-sinai  (0.701)  yeshivah  (0.701)  daniel  (0.698)  home  (0.652)  
jeremiah  (0.641)  star  (0.595)  story  (0.586)  repentance  (0.580)  pharaoh  (0.496)  
mitzvah  (0.363)  

MOST PROMINENT FEATURES: annual  [0.328]  festival  [0.308]  saturday  [0.298]  
friday  [0.294]  funeral  [0.286]  rebuild  [0.285]  feast  [0.282]  grand  [0.281]  
decorate  [0.281]  shrine  [0.281]  holiday  [0.278]  bus  [0.278]  noon  [0.276]  
commemorate  [0.273]  celebrated  [0.270]  yearly  [0.270]  mile  [0.269]  
congregational  [0.269]  dome  [0.268]  pilgrimage  [0.267]  memorial  [0.267]  nearby  [0.26]  
season  [0.264]  don  [0.262]  afternoon  [0.262]  sunday  [0.261]  december  [0.260]  
evening  [0.260]  monday  [0.259]  throng  [0.259]  
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CLUSTER 6 “Sin, Suffering and Material Existence”  
p(c) = 0.1095, p*(c) = 0.1425  

Buddhism : lamentation  (0.999)  water  (0.999)  grief  (0.999)  kill  (0.999)  eat  (0.999)  
hell  (0.997)  animal  (0.992)  death  (0.982)  heaven  (0.982)  birth  (0.962)  pain  (0.919)  
man (0.862)  tree  (0.755)  deva  (0.525)  

Christianity : fire  (0.999)  punishment  (0.999)  eat  (0.999)  water  (0.999)  animal  (0.999)  
lost  (0.998)  hell  (0.998)  perish  (0.997)  lamb  (0.997)  pay  (0.996)  blood  (0.995)  eye  (0.993)  
condemnation  (0.993)  fish  (0.991)  sinless  (0.989)  adultery  (0.989)  violence  (0.989)  
suffer  (0.984)  soul  (0.977)  godly  (0.976)  earth  (0.971)  face  (0.971)  reward  (0.966)  
death  (0.961)  devil  (0.958)  flesh  (0.957)  sin  (0.949)  sinful  (0.946)  judgment  (0.943)  
win  (0.934)  sake  (0.933)  passion  (0.915)  mankind  (0.899)  sinner  (0.896)  man  (0.891)  
heaven  (0.872)  voice  (0.863)  bread  (0.857)  cross  (0.844)  earthly  (0.833)  good-work  (0.798)  
sacrifice  (0.757)  crucifixion  (0.695)  obey-god  (0.673)  righteousness  (0.584)  
angel  (0.563)  peace  (0.525)  repentance  (0.518)  kingdom  (0.510)  elect  (0.506)   

Hinduism : animal  (0.999)  heaven  (0.999)  earth  (0.998)  death  (0.998)  water  (0.997)  
kill  (0.996)  demon  (0.992)  birth  (0.958)  sun  (0.955)  food  (0.941)  man  (0.825)  fire  (0.634)  
sacrifice  (0.569)  indra  (0.537)  person  (0.413)  

Islam : water  (0.999)  animal  (0.999)  hell  (0.999)  punishment  (0.999)  paradise  (0.998)  
food  (0.998)  pain  (0.997)  sin  (0.995)  earth  (0.995)  adultery  (0.994)  kill  (0.993)  
death  (0.993)  lawful  (0.990)  satan  (0.986)  heaven  (0.984)  forbid  (0.981)  poverty  (0.946)  
soul  (0.910)  enemy  (0.836)  intercession  (0.832)  facing  (0.818)  drink-alcohol  (0.754)  
haram  (0.723)  judgment  (0.622)  needy  (0.606)  fight  (0.527)  idolatry  (0.509)  
remember  (0.499)  witness  (0.449)  master  (0.443)  

Judaism : animal  (0.999)  water  (0.998)  eat  (0.998)  kosher  (0.998)  sin  (0.989)  
heaven  (0.989)  death  (0.987)  food  (0.987)  forbid  (0.986)  idolatry  (0.966)  eden  (0.955)  
hell  (0.952)  kill  (0.951)  angel  (0.946)  adam  (0.913)  violate  (0.887)  reward  (0.871)  
hide  (0.820)  man  (0.746)  command  (0.708)  redemption  (0.624)  peace  (0.591)  teshuvah  (0.590)  
judgment  (0.579)  golden-calf  (0.534)  salvation  (0.467)  

MOST PROMINENT FEATURES: vegetable  [0.321]  insect  [0.318]  penalty  [0.308]  
quench  [0.303]  drink  [0.301]  plant  [0.296]  meat  [0.294]  fish  [0.294]  hell  [0.293]  
bird  [0.284]  slaughter  [0.281]  beast  [0.278]  drop  [0.278]  taste  [0.276]  worm  [0.274]  
drinking  [0.274]  wild  [0.273]  pig  [0.273]  grass  [0.272]  torment  [0.268]  boil  [0.267]  
pour  [0.266]  smoke  [0.266]  poison  [0.263]  glass  [0.263]  specie  [0.261]  fat  [0.261]  
decay  [0.26]  injure  [0.259]  

 

CLUSTER 7 “Community and Family” p(c) = 0.1053, p*(c) = 0.144 
Buddhism : child  (0.996)  friend  (0.993)  son  (0.981)  people  (0.977)  family  (0.958)  
question  (0.940)  learn  (0.881)  hear  (0.810)  teacher  (0.808)  disciple  (0.528)  
master  (0.470)  

Christianity : friend  (0.992)  family  (0.989)  mother  (0.984)  boy  (0.982)  question  (0.957)  
woman (0.956)  problem  (0.941)  learn  (0.929)  child  (0.908)  home  (0.906)  listen  (0.893)  
teacher  (0.834)  preach  (0.794)  find  (0.759)  people  (0.723)  reading-bible  (0.423)  
mary  (0.342)  

Hinduism : child  (0.999)  question  (0.997)  son  (0.994)  mother  (0.976)  family  (0.974)  
learn  (0.958)  people  (0.911)  teacher  (0.713)  teach  (0.615)  find  (0.606)  

Islam : sister  (0.999)  husband  (0.999)  wife  (0.999)  child  (0.997)  family  (0.997)  
marriage  (0.996)  mother  (0.996)  woman  (0.993)  brother  (0.987)  question  (0.987)  
father  (0.985)  daughter  (0.985)  friend  (0.979)  female  (0.934)  home  (0.921)  share  (0.875)  
find  (0.859)  people  (0.849)  teacher  (0.827)  son  (0.725)  learn  (0.501)  

Judaism : child  (0.998)  marriage  (0.996)  wife  (0.995)  mother  (0.993)  father  (0.985)  
women (0.980)  question  (0.968)  family  (0.956)  people  (0.919)  joseph  (0.879)  son  (0.858)  
hear  (0.840)  learn  (0.833)  find  (0.803)  jacob  (0.758)  sarah  (0.691)  status  (0.554)  
teach  (0.533)  gentile  (0.521)  

MOST PROMINENT FEATURES: husband  [0.292]  parent  [0.290]  nursing  [0.263]  spouse  [0.263]  
elderly  [0.262]  unanswered  [0.262]  relative  [0.261]  grandchild  [0.259]  daughter  [0.259]  
pose  [0.259]  answer  [0.257]  marry  [0.256]  dad  [0.256]  extended  [0.256]  pregnant  [0.253]  
wife  [0.253]  sister  [0.251]  aunt  [0.250]  married  [0.247]  wean  [0.246]  adult  [0.244]  
nurse  [0.241]  brother  [0.241]  rape  [0.238]  young  [0.237]  toy  [0.235]  illegitimate  [0.234]  
mother  [0.234]  stranger  [0.234]  
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