
Figure 1. A texture metamorphosis sequence is generated from the leftmost to the rightmost.
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Abstract

In this paper, we study texture metamorphosis, or how
to generate texture samples that smoothly transform from
a source texture image to a target. We propose a pattern-
based approach to specify the feature correspondence be-
tween two textures, based on the observation that many tex-
ture images have stochastically distributed patterns which
are similar to each other. First, the user selects a pattern
in the source and target textures, and establishes the “lo-
cal feature correspondence” between these two patterns by
specifying landmarks. Then, repeated patterns are auto-
matically detected and localized in the source and target
textures. The “pattern correspondence” between two tex-
tures is formulated as an integer programming problem and
solved using the Hungarian algorithm. Finally, we obtain
a warp function between two textures by combining “local
feature correspondence” and “pattern correspondence”.
Experiments demonstrate that our technique produces visu-
ally appealing morphing sequences, with moderate amount
of user interaction.

1. Introduction

Image metamorphosis (a.k.a. image morphing) has be-
come a powerful tool for generating special visual effects
in films and television. Image metamorphosis refers to the
process of morphing one image to another smoothly. In
general, image morphing consists of two steps, specifying
correspondence (e.g., points or lines) between two images,
and computing a warp function that defines where each
pixel in one image should move to in the other image. For
example, to morph between two human faces, one needs to

specify the correspondence between the noses, lips etc.

Inspired by the fascinating visual effect of general image
morphing and the recent extensive work on texture synthe-
sis, analysis and application, we are especially interested in
texture morphing. However, texture metamorphosis is dif-
ferent from image metamorphosis because a texture image
either is composed of many discernable and similar patterns
or is highly random with irregular features. Thus, it is very
difficult to manually specify correspondences between two
textures. Unlike face morphing that needs feature corre-
spondence on a small number of edges and corners, texture
morphing would require feature correspondence on a very
large number of feature points in the textures. Moreover,
users may be confused about how to extract features and
establish correspondences between them.

In this paper, we propose a pattern-based approach to ad-
dress this problem for textures containing discernable and
similar patterns. A pattern is a semantic unit that composes
a group of feature points. The user only needs to select
one representative pattern for each texture image and spec-
ify feature point correspondences for these patterns; our
algorithm handles the remaining work of finding all sim-
ilar patterns, establishing correspondences and generating
morphing sequences. In brief, we decouple the correspon-
dence problem between two texture images into “local fea-
ture correspondence” between two matched patterns, and
“pattern correspondence” to map the patterns in one texture
to the other. Deformable object detection and alignment
techniques are used to find the patterns that are similar to
what the user has specified. Then pattern correspondence is
automatically established using the Hungarian algorithm to
minimize the cost of the morphing path. Furthermore, we
use the standard multilevel free-form deformation (MFFD)



algorithm [17] to compute the warp function which is then
used to generate the morphing sequences.

This paper is organized as follows. In Section 2 we intro-
duce some related work. Then, we present our approach to
texture morphing in Section 3. Details of the algorithm are
described in Section 4. In Section 5, extensive experiments
are provided. We conclude this paper in Section 6.

2. Related Work

Texture morphing is related to both texture synthe-
sis/editing and image morphing.

Texture synthesis. The pioneering work of Julesz sug-
gested that two textures appear the same if they share some
common statistics [13]. Heeger and Bergen [11] proposed
to analyze and synthesize textures in terms of histograms
of multi-channel filtering. Zhu et. al. [27] devised a so-
phisticated framework, FRAME, to learn the Gibbs poten-
tial function of a texture and synthesize samples by Gibbs
sampling. They produced good results for highly stochastic
textures, but were less successful on structured textures. Re-
cent texture sysnthesis approaches focus on enforcing statis-
tics locally. De Bonet [4] used a multi-resolution feature-
based approach to sample each pixel conditioned on its
“parents structures” at the coarser scales. Efros and Le-
ung [8] developed a method of “growing” a texture pixel
by pixel using nonparametric sampling (NPS) based on a
spatial neighborhood. Wei and Levoy [22] proposed new
methods to speed up the NPS algorithm. There are also
works on synthesis from multiple source textures such as
[2] and [21], where the texture created has the combined
visual appearance of all the inputs.

Patterns and textons. Although the concept of “tex-
tons” was proposed by Julesz some twenty years ago to rep-
resent the basic elements in texture [14], it is not very clear
how textons are constructed. Recently, Guo et. al. proposed
a generative model to learn the textons including the basic
form and the distribution of the texton map [10]. Their re-
sults support that a small number of patterns are sufficient to
generate a texture image. Xu et. al. also observed that tex-
ture synthesis can be done by simply re-distributing texture
patches that are visually meaningful [26]. Good synthesis
results by Efros and Freeman [7] and Liang et. al. [18]
further confirm the existence of repeated patterns in texture
images.

Texture editing. A recent emerging interest is the de-
velopment of tools and algorithms that enable users to edit
textures. Hertzman et. al. [12] learnt the statistics of a pair
of images in a nonparametric way, and output a novel im-
age for input analogous to the learnt pair. Efros et. al. [7]
demonstrated the effect of texture transfer, i.e. rendering an
object with a texture taken from a different object. Brooks
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Figure 2. Three types of textures: (a) highly
random (b) semi-structured (c) regular re-
peated. Above and below are pairs for texture
morphing.

et. al. [5] proposed a system to edit textures by transfer-
ring the user’s operation at a local area to the entire texture
image.

Image morphing. Image morphing consists of three
steps – feature and correspondence specification, warp gen-
eration, and transition control [24], in order to generate
high-quality metamorphosis sequences. Most existing mor-
phing algorithms, including Mesh warping [23], field mor-
phing [3], radial basis functions [1], thin plate splines
[15, 19], energy minimization [16], and multilevel free-
form deformations [17], focus on generating warp func-
tions. Little work has been done on how computers can aid
in building feature correspondence. Gao et. al. [9] present
an algorithm for generating the warp function between two
similar images with little human interaction.

3. Our Approach

3.1 Observations

We classify texture images into three categories, highly
random, semi-structured and regular repeated, as shown in
Figure 2. We focus our attention on metamorphosis for reg-
ular repeated and semi-structured textures in this paper.

But what kind of correspondence between two textures
can generate a smooth and reasonable morphing sequence?
Since texture is composed of randomly repeated patterns, it
is natural to assume that in the morphing process the pat-
terns in the source image should smoothly warp to those in
the target. Thus, the global feature correspondence between
the two images is decoupled to a “local feature correspon-
dence” that describes how two local patterns correspond,



(a)  User specifies the representative patterns and the
   associated correspondence by landmarks  (section 4.1) (b) Pattern detection and alignment (section 4.2)

(c)  Pattern correspondence
(section 4.3)

(d2)  Forward, inverse and synthesized sequences
acquired based on the warp field (section 4.4).

(d1)  Landmark flow
(section 4.4)

blend

Figure 3. System overview. (a) The user selects patterns and specifies correspondence by landmarks.
(b) Pattern sets obtained interactively in source and target textures by detection and alignment
algorithms. (c) Correspondence between patterns (red circle) in source texture and patterns (white
square) in target texture. (d1) Landmark flow generated by combining pattern correspondence and
pattern alignment. (d2) Warping and morphing

and a “pattern correspondence” to map the patterns from
the source to the target. It is the user who selects the most
representative patterns and specifies the “local feature cor-
respondence” between them. The “pattern correspondence”
can also be manually specified. To reduce user’s work, how-
ever, we devise an automatic algorithm to find the “pattern
correspondence”. The problem of texture metamorphosis is
formulated as follows.

3.2 Problem Formulation

We use L and L′ to denote the image lattice for the
source and target textures, respectively. The essential task
of image morphing is to find a warp function[24]

Z ′ = W(Z), Z∈L and Z ′∈L′, (1)

where Z and Z′ are 2-d coordinates. The warp function is
always constructed by feature correspondence. We define
the notation of correspondence as [·, ·], where “·” can be a

feature point, a line, a point set or an image. In general, the
“global correspondence” of two images is specified by N
feature points

[L,L′] = {[Zi, Z
′
i], i = 1, · · · , N}, (2)

from which we may find the warp function by interpolation.

Patterns in texture image. In texture morphing, we
define the most representative pattern from texture im-
ages by m landmarks, for source and target respectively:
U = {C, Y1, · · · , Ym} where C is the centroid of U ,
Yj (j = 1, · · · ,m) is the coordinate relative to C, and
U ′ ={C ′, Y ′

1 , · · · , Y ′
m}. Once the patterns are selected, the

“local feature correspondence” is obtained

[U,U ′] = {[Yj , Y
′
j ], j = 1, · · · ,m}. (3)

Note that the correspondence can be modified when the in-
dex sequence of the feature points changes.



By scanning the whole images, we can get a set of pat-
terns similar to that selected for the source and target re-
spectively

ΩU = {Ui|d(Ui, U) < ε,Ui ⊂ L}
ΩU ′ = {U ′

i |d(U ′
i , U

′) < ε′, U ′
i ⊂ L′} (4)

where d(·, ·) is a distance measure between a pattern and
the user-specified pattern, and ε, ε′ are thresholds. Ui =
{Ci, Yi1, · · · , Yim}. Let the element numbers of ΩU and
ΩU ′ be n and n′, respectively. Without generalization, we
assume n < n′. Then the “pattern correspondence” is es-
tablished upon the pattern pairs

[ΩU ,ΩU ′ ] ={[Ui, U
′
ki

], i=1, · · · , n} (5)

where {ki, i = 1, · · · , n} is an index set.

Pattern-based texture morphing. The global feature
correspondence of L and L′ are established by propagating
the local feature correspondence [U,U ′] to the pattern cor-
respondence [ΩU ,ΩU ′ ]

[L,L′] = [ΩU ,ΩU ′ ]⊗[U,U ′]
= {[Zij , Z

′
kij ]}n m

i=1 j=1 (6)

where ⊗ is a tensor product. Zij = Ci+Yij is the absolute
coordinate of Yij in L. Figure 3 shows the flowchart of our
system, which involves four steps:

(a) The user selects the most representative patterns by
landmarks and specifies their correspondence.

(b) Find the pattern set by automatically searching the
images. User interaction might be needed to refine the
detection.

(c) Find the pattern correspondence automatically by
minimizing the cost function of morphing flow.

(d) Establish the global feature correspondence by com-
bining the local feature correspondence and pattern
correspondence. Generating the texture morphing se-
quence is the same as that in conventional image mor-
phing.

Details of these steps are presented in the next section.

4. Technical Details

4.1 Pattern and Correspondence Specification

The user must specify a pattern in the source texture and
a corresponding one in the target. As shown in Figure 3 (a),
the user sequentially specifies the key points {Y1, · · · , Ym}
in a local region in the source and the corresponding se-
quence {Y ′

1 , · · · , Y ′
m} in the target. U and U ′ are con-

structed respectively (the centroid coordinates are computed

(a) (b) (c)

Figure 4. (a) Original image. (b) Hough vote
intensity image. (c) Candidate pattern cen-
ters found by thresholding and searching for
local minima.

as means). The pairs Yj and Y ′
j are assumed to make a

match in our system, i.e. [U,U ′] = {[Yj , Y
′
j ]}m

j=1. We may
change the indexing order to modify the correspondence.
Obviously different users would have different choices of
interesting patterns for the same texture. Three factors in
this step affect the final outcome of the system: the pat-
tern that the feature points represent, the number of feature
points and the order of feature points in the sequence. We
will see how these three factors contribute later in the fol-
lowing experiment section.

4.2 Pattern Detection and Alignment

The task of pattern detection is to find the patterns similar
to the selected pattern in the source and the target, respec-
tively. For simplicity, we shall discuss how to extract the
pattern set ΩU from the source L.

4.2.1 Distance Measurement

The distance between a pattern Ui and the specified U
d(Ui, U) is a weighted sum of shape distance ds(Ui, U)
and local feature distance df (Ui, U). The shape distance
is computed by scaling Ui to the size of U and summing
the Euclidean distance between corresponding landmarks.
It has been demonstrated that band-pass oriented filters are
capable of capturing the similarity/disimilarity of textures
[27]. By filtering we obtain a feature vector for each pixel.
Since the pattern is modeled by a deformable template,
df (Ui, U) is computed by summing the feature distances
of all landmark pairs.

4.2.2 Pattern Detection

In the deformable object detection/localization literature,
the generalized Hough transform (GHT) is often used to
give an initialization [20]. GHT is a bottom-up process to
estimate the object parameters from local evidence such as
edge, corner or feature detection. Here we choose feature



detection to provide local evidence. If the local feature sim-
ilarity of a point in the texture to the jth landmark in the
specified pattern is above a confidence threshold, it is a can-
didate for the jth landmark. Each candidate jth landmark
votes to a possible centroid area with Gaussian distributed
weights. Summing the weights over all possible candidate
landmarks, we can get a Hough voting intensity image as
shown in Figure 4 (b). The darker the area, the more likely it
is to be a pattern at that location. After smoothing the voting
intensity image, the rough estimation of pattern number and
position is achieved by thresholding and local minimization,
as shown in Figure 4 (c).

4.2.3 Pattern Alignment

GHT alone is not accurate enough to extract patterns.
Therefore, a top-down verification process is needed to re-
fine the positions of the patterns by minimizing the distance
of each candidate pattern to the specified pattern. The strat-
egy adopted here is very similar to Active Shape Model
(ASM) [6]. Each pattern is separately aligned. First, we
independently update each landmark to minimize the cor-
responding feature distance, then the shape is updated by a
step toward the shape of the specified pattern. These two
steps are iteratively performed.

4.3 Pattern Correspondence

Pattern correspondence needs to be established to pro-
vide a morphing path for each pattern. To satisfy human vi-
sual comfort, we try to make the morphing path as smooth
as possible. We assume each pattern Ui in the source should
match a pattern U ′

i in the target with minimal shift, i.e. the
distance between them. Thus, we can obtain the pattern
correspondence by minimizing the summed distance of the
morphing path.

The distance between two patterns in the source and tar-
get images respectively can be simply measured by the dis-
tance between their centroids. As discussed in Section 3.2,
the pattern number in the source image is less than the target
number n < n′. Thus, every pattern Ui ∈ ΩU has a match
in ΩU ′ . To compute the pattern map field [ΩU ,ΩU ′ ] is in-
deed to find the index set {ki}⊂{1, · · · , n′} in Eqn.(5), by
minimizing the cost function of morphing path

{k∗
i }n

i=1 = arg min
n∑

i=1

||Zi − Z ′
ki
||2. (7)

This problem can be easily solved by integer programming
[25]. Let d2

ij = ||Zi − Z ′
j ||2 denote the squared distance

of patterns Ui and U ′
j . Since n < n′ we add n′−n virtual

patterns after {Ui}n
i=1 to make the pattern number of the

source and target identical, and define d2
ij = 0 for i > n.

By introducing a coefficient matrix [aij ]n′×n′ where each
element is a binary variable aij = {0, 1}, the cost function
Eqn.(7) is reformulated as

[aij ]∗ = arg min
n′∑

i=1

n′∑

j=1

aijd
2
ij (8)

with constraints

n′∑

i=1

aij = 1, for j = 1, · · · , n′

n′∑

j=1

aij = 1, for i = 1, · · · , n′.

(9)

Namely there is only one aij =1 for each row and column.
The Hungarian algorithm [25] is used to solve this problem.
Finally, {k∗

i = j|a∗
ij = 1}n

i=1 generates the global feature
correspondence by Eqn.(6).

Two adjacent patterns may appear overlapping along
their morphing paths if the patterns are too crowded. To
address this problem, we may scale down the size of source
patterns before morphing, and scale them up to the target
size after that.

4.4 Generating Morphing Sequence

Combining the manually specified local feature corre-
spondence and the automatically optimized pattern corre-
spondence, we may generate the global feature correspon-
dence between the source and target by Eqn.(6). Then the
remaining work is the same as in general image morph-
ing. A sparse points interpolation technique MFFD [17]
is adopted to build up a warp function or a warp field. This
field is further used to produce a morphing effect by color
interpolation. In addition, median filtering can be chosen to
smooth out some inconsistency in the morphing process.

5. Experiments

We have applied our system to a number of texture pairs,
shown in Figures 5 and 1. Figure 5 (a) is a simple case with
identical pattern numbers in both the source and target. In
the morphing process, the position of each pattern remains
invariant, while the shape smoothly transforms to the tar-
get. Since we merely select the major patterns and ignore
smaller ones, they appear or disappear in the sequence. Fig-
ure 5 (b) is more difficult because the pattern numbers in
the source and target are different. Therefore, some patterns
in the source may gradually vanish into the background of
the target. Note that manually specifying feature correspon-
dences is infeasible for this case. In Figure 5 (c), we select
the vertical edge between two adjacent bricks with a short
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Figure 5. Experimental results of texture morphing and the patterns selected by the user.

horizontal edge as the pattern. In this way the horizontal and
vertical structures of the source bricks are retained in the
morphing sequence and smoothly transformed to the target.

A very challenging example is shown in Figure 1, where
the distributions of both the source and target are stochastic
and different from each other. Since the scales of the two
patterns are distinguished, we have to enlarge one of them
to keep their scales similar. The patterns distributed in the
source and target are both crowded, which would produce
overlapping effects if we directly apply our algorithm. As
suggested in Section 4.3, we first scale down the size of
the patterns in the source, then perform the standard texture
morphing algorithm, and finally scale up the patterns to the
target size. A median filter is applied at the post-processing
stage to improve the consistency of the morphing sequence.
The synthesized morphing sequence demonstrates that our
algorithm deals with semi-structured textures very well.

The choice of the patterns plays an essential role in
synthesizing the morphing sequence. As Figure 5 (c) has
demonstrated, a pattern is not necessarily a polygon, but
could be a composition of landmarks which can represent
various 2D objects. This allows for a wider range of ap-
plication. Different selections of patterns lead to visually
different effects. Figure 6 (a) denotes the pattern specifica-

tion in the source, whereas (b) and (c) indicate two different
patterns in the target. Corresponding morphing sequences
are shown in Figure 7.

Two other significant aspects are the number of land-
marks and the order of their correspondence. A compar-
ison is given in Figure 8. Although the selected patterns
in both the source and target are dark squares, (a) and (c)
are specified with four corner points, while (b) and (d) with
eight landmarks (four corners plus four middle points, each
lying between two adjacent corners). The orders of the lo-
cal correspondence in (a) and (b) are different from those in
(c) and (d). Therefore, (a) and (b) appear as shifting, and
(c) and (d) rotating. We observe that the more landmarks
used, the more accurately the user’s intention is modeled.
Eight landmarks produce a smoother morphing sequence
than four landmarks.

6. Conclusion

In this paper we have proposed a pattern-based approach
for metamorphosis between two textures, each containing
discernable and similar patterns. Global feature correspon-
dence between two texture images is decomposed to local
feature correspondence between two selected patterns from



the source and target respectively, and pattern correspon-
dence which maps the patterns in the source image to the
target. An advantage of our approach is that only a moder-
ate amount of user interaction is required for texture morph-
ing. Extensive experiments demonstrate that our algorithm
can generate some interesting texture morphing sequences.
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(a) (b) (c)

Figure 6. User may specify different patterns in target as shown in (b) and (c).

(b)

(c)

Figure 7. The morphing sequences with different selected pattern in Figure 6.

(a)

(b)

(c)

(d)

Figure 8. The effects of landmark number and local correspondence. (a) and (c) are specified with
four landmarks, while (b) and (d) with eight landmarks. The local correspondences of (a) and (b) are
different with (c) and (d).


