6.001 Recitation 7: Data Abstraction Il

28 Feb 2007
RI: Gerald Dalley (dalleyg@mit.edu)

Announcements

« Solutions, handouts, etc.:
« http://people.csail.mit.edu/dalleyg/6.001/SP2007/
e primes-in-range discussion & orders of growth

« Office Hours
* Thursdays, 2-3PM, 32-D407

Office Hours Location...

MIT Computer Science and Artifica Itellgence Labaratary
Stata Center-Dreyfoos 4 "
Vasarieet

=

- \

o g D1 |

= Daze| D28
iz

Recitation room
(3¢floor)/ ew:
west side of 4
campus

/

Overview

« Today: prime factorization, an extended example

« This is a nice example for several reasons:
« Interesting design decisions

 Practice with writing types
— (using prime and pf as new types)

« Related to primality testing from yesterday’s lecture

« primes are also important to Project 1...which is due next Friday.

Designing a data abstraction

» Prime factorization: representing an integer as the product
of its prime factors

2= 2 21

4 = 22 = 22

6 = 23 = 21.31
40 = 20202e5 = 23051
187 = 11.17 = 11%e171

What about 1?
What about 0?
What about negative integers?

Designing a data abstraction: constructors

New types
prime = subsetof integers that are prime
pr = prime factorization data type
(make-prime-factors n): integer > pf|
(make-prime-factors 40) = 2%2%2%5
(make-prime-factors factors): list<prime> > pf|
(make-prime-factors (list 2 2 2 5)) = 2%2%2%5
(make-prime-factors p): prime > pf|
(add-prime-factor p pf): prime, pf > pf|

(make-prime-factors 2) => 2
(add-prime-factor 5 (make-prime-factors 2)) = 2*5
prime-factors-of-1: Pr]
(add-prime-factor p pf): prime, pf > pf|
(add-prime-factor
5

(add-prime-factor 2 prime-factors-of-1)) = 2*5

Designing a data abstraction: accessors

For now, assume our constructor is (make-prime-factors n)

(get-number pf): pf > int
contract: (get-number (make-prime-factors n)) = n

(get-all-factors pf): pf > Tist<prime>
contract:

productof (get-all-factors (make-prime-factors n)) = n

(get-unique-factors pf): pFf > list<prime>
(get-multiplicity pf p): pf, prime - integer
c?n‘tract:
e

d(po ... p;) = (get-unique-factors (make-prime-factors n))
an

thenmi = (get-multiplicity (make-prime-factors n) p;)

n = product of p;™i

Designing a data abstraction: operators

(=pf pfl pf2):

tests whether two factorizations are the same
(divides-pf? pfl pf2):

tests whether pf1 divides evenly into pf2
(has-factor? pf p):

tests whether p is a prime factor of pf

pf,pf > boolean

pf,pf > boolean

pf,prime > boolean

(*pf pfl pf2): pf,pf > pf|
returns factorization of n1*n2

(/pf pfl pf2): pf,pf > pf|
returns factorization of n1/n2 if n2 divides nl

(ged-pf pfl pf2): pf,pf > pf|

returns factorization of greatest common divisor of pf1 and pf2

f, -pf
Not really appropriate for this data type. The only way to do it is converting
to integer and then factorizing again.

How constructor choices affect operators

One constructor
Suppose our only constructor is (make-prime-factors n)
How do | write *pf: pf, pf > pf ?

(define (*pf pfl pf2)
(make-prime-factors
(* (get-number pfl)
(get-number pf2))))

(define (*pf pfl pf2) : pf,pf > pf
(let ((combined-factors (append (get-all-factors pfl)
(get-all-factors pf2))))
... how do | make a pf out of the resulting list of factors?

)

Let's provide two constructors:
(factorize n) : integer > pf
(make-prime-factors 1st) : 7ist<prime> > pf

(define (*pf pfl pf2)
(make-prime-factors
(append (get-all-factors pfl)
(get-all-factors pf2)))

Many different representations are possible

(factorize 40),; 40 = 2#2#2%5

=2 225 2%2%2*5 (sorted order)

=2 52 2) 2*5%2%2 (order doesn't matter)
=0 3) (5 1)) 23 =51

=040 (2 5)) stores n and its unique factors

Representation matters

; representation (2 2 2 5)
(define (get-multiplicity pf p)
(cond ((nu11? pf) 0)
((= (car pf) p) (+ 1 (get-multiplicity (cdr pf) p)))
(> (car pf) p) 0
(else (get-multiplicity (cdr pf) p))))

; representation ((2 3) (5 1)) (sorted order)
(define (get-multiplicity pf p)
(cond ((nul11? pf) 0)
((= (caar pf) p) (get-multiplicity (cadar pf) p))
(> (car pf) p) 0
(else (get-multiplicity (cdr pf) p))))

; representation (40 (2 5))
(define (get-multiplicity pf p)
(define (multiplicity-of-p-in m)
(if (divides? p m)
(+ 1 (multiplicity-of-p-in (quotient m p)))
0))

(multiplicity-of-p-in (car pf)))

Representations also have implicit assumptions

(define (make-prime-factors 1st) 1st)

(define (*pf pfl pf2)
(append pfl pf2))
... assumes order doesn't matter

(define (get-multiplicity pf p)
(cond ((nu11? pf) 0)
((= (car pf) p)
(+ 1 (get-multiplicity (cdr pf) p)))
(> (car pf) p) 0
(else (get-multiplicity (cdr pf) p))))
... assumes sorted order

% Error Checking is Your Friend

(define (add-prime-factor p pf)
(if (not (prime? p))
(error "p is not prime")
(cons p pf))

(get-multiplicity
(add-prime-factor
24

(make-prime-factor 1))
2)

» Pain
 Lets you know you're alive

« Lets you know right away when
something bad is happening

* Error checking
« Lets you know right away when
Photo from: something bad is happening

http://wongkk.com/

Respect abstraction boundaries

(define (*pf-clean pfl pf2)
(make-prime-factors
(append (get-all-factors pfl) (get-all-factors pf2)))

(define (*pf-dirty pfl pf2)
(append pfl pf2))

Procedures inside the abstraction
boundary "know" that the real
representationis (2 5 2 2),
and depend on it

make-prime-factor:
*pf-clean

get-all-factors
*pf-dirty

i Abstraction boundary
Procedures outside don't care
about the representation

Summary of data abstraction design

1. Choose constructors _and accessors _that are useful to clients and
that make it possible to write the operators you need
« Constructors and accessors should be complete : you need to be
able to construct every possible object in the domain, and you
need to be able to get out enough data to reconstruct the object
« Write down the contract between the constructors and accessors

2. Choose representation _that is appropriate to the operators you need
(that makes the operators readable and efficient)

* Write down the assumptions _ implicit in your representation

3. Respect abstraction boundaries _ as much as possible
« Even within your abstraction's own code

« Another way to say it: Minimize the amount of code that "knows"
what the real representation is.

