
1

6.001 Recitation 12: Mutation!

21 March 2007
RI: Gerald Dalley (dalleyg@mit.edu)

http://people.csail.mit.edu/dalleyg/6.001/SP2007/

Modifying Bindings
(set! <name> <value>) undefined

– Looks for the binding of <name> and changes the
binding to the value of the <value> expression
Example:
(define x 10)
x 10
(set! x (* 10 20))
x 200

– Is set! a special form?
• Yes. It doesn’t follow the normal evaluation rules, because

we don’t want to evaluate <name>.

Modifying Pairs
(set-car! <pair> <val>) undefined
(set-cdr! <pair> <val>) undefined

– Change the car/cdr part of the cons cell <pair> to
<val>. Example:
(define x (list 1 2))
x (1 2)
(set-car! x 3)
x (3 4)

– Are set-car! and set-cdr! special forms?
• No. We may not have the details of how mutation is

performed yet, but we do follow the normal evaluation rules
and evaluate both arguments.

Thought Question

• What is the difference between changiing
a binding (using set!) and changing an
object (using set-car! or set-cdr!)?
– If multiple things (variable names) point to the

same object, changing one of the bindings
won’t affect the other variables; however, if
we change the object, all the variables will
reflect the change.

2

Warmup & Subtle Points

(define x '(a b c))
(set-cdr! x x) ; technically illegal
(car x) => a
(length x) => infinite loop

1. Write a Scheme expression that makes the structure (without
using mutation!).

2. Write what Scheme prints for the structure (if you can).

9

x

9

x (define x
(let* ((bottom '(9))

(middle (cons bottom bottom)))
(cons middle middle)))

; x => (((9) 9) (9) 9)

3. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the structure is
named x.

9

x

9

x (set-cdr! (car x) '(8))

9

x

8

1. Write a Scheme expression that makes the structure (without
using mutation!).

2. Write what Scheme prints for the structure (if you can).

a

x

b ca

x

b c

(define x
(let ((base '(a b c)))
(cons
(list base)
(cons '() (cddr base)))))

; x => (((a b c)) () c)

3

3. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the structure is
named x.

a

x

b ca

x

b c

(set-car! (cddr x) (caaar x))

a

x

b

1. Write a Scheme expression that makes the structure (without
using mutation!).

2. Write what Scheme prints for the structure (if you can).

x

x

x

x (define x
(let* ((bottom '(x))

(middle
(list bottom bottom)))

(cons middle (cdr middle))))

; x => (((x) (x)) (x))

3. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the structure is
named x.

x

x

x

x (set-cdr! (first x) (second x))

x

x

1. Write a Scheme expression that makes the structure.
2. Write what Scheme prints for the structure (if you can).

xx (define x
(let* ((lower (cons '() '()))

(upper (cons lower lower)))
(set-car! lower upper)
(set-cdr! lower upper)
upper))

; x => ...messy...

4

3. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the structure is
named x.

xx (set-car! (cdr x) '())
(set-cdr! (car x) '())

x

1. Draw a box-and-pointer representation of the expression's
value.

(let ((w (list 6 7 8)))
(set-car! w w)
(set! w (list w w))
w))

7 87 8

2. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the value of the
expression is named x.

(set-car! (car x) (cddr x))

7 8

1. Draw a box-and-pointer representation of the expression's
value.

(let ((y '((a) (b))))
(set-cdr! (first y) y)
(set-car! (second y) (cdr y))
(set! y (car y))
y))

2. Show how the mutation affects the box-and-pointer diagram
and the printed representation, assuming the value of the
expression is named x.

(set-cdr! x (third x))
(set-cdr! (cdr x) nil)

aa

a

x

a

x

What does mystery do?
(define (mystery x)
(define (loop x y)
(if (null? x)

y
(let ((temp (cdr x)))
(set-cdr! x y)
(loop temp x))))

(loop x '()))

(define a (list 1 2 3 4))
a ==> (1 2 3 4)
(define b (mystery a))
a ==> (1)
b ==> (4 3 2 1)

