6.001 Recitation 3:
Substitution Model, Recursion, and Iteration, Oh My!

RI: Gerald Dalley
14 Feb 2007

The Substitution Model

Newtonian physics, quantum mechanics, relativity, and Scheme...

Rules of the substitution model:
1. if self-evaluating, (e.g. number, string, #t, #£), just return value.
2. if name, replace it with value associated with that name.
3. if special form (e.g. if, define, lambda), follow the special form’s rules for evaluation
(a) if lambda, create a procedure

(b) ...

4. if combination (eg €7 ... e,),
(a) Evaluate subexpressions e; in any order to produce values (vg v1 ... vy)
(b) If vy is primitive procedure (e.g.+), just apply it to vy ... v,
(c) if vy is compound procedure (created by lambda):
i. Substitute v; ... wv, for corresponding parameters in body of procedure, then repeat on
body

Hints:
e Do one thing at a time

e Take small steps
e Sometimes we have a choice of what to do next

; Evaluate the following expression, one
; step at a time using the substitution model:

(if (= (+ 5 2) 7) (x (+ 2 3) 5) (/ 4 (-7 5)))
(if (= 7 7) (x (+ 2 3) 5) (/ 4 (-7 5)))
(if #t (x (+ 2 3) 5) (/ 4 (-7 5)))
(if #t (x 5 5) (/ 4 (-7 5)))
(if #t 25 (/ 4 (- 7 5)))
25

Recursive versus Iterative

From Webster:
e recur: to come up again for consideration

e recursion: something that calls itself
e iterate: repeating, each time getting closer to the desired result

What makes a procedure recursive?

’ it calls itself (possibly indirectly) ‘

What makes a process recursive?

’ deferred operations ‘

Designing Recursive Algorithms
e wishful thinking
e decompose the problem
e identify the simple/smallest parts (modular programming)

(define (odd? x)
(not (even? x)))

(define (even? x)
(not (o0dd? x)))

; fix even? ..
(define (even? x)
(if (= x 0) #t (o0dd? (- x 1))))

e Enumerate assumptions
e Test/predicate for base case (termination of recursive unwinding)
e Recursive call

(define (fact n)
(* n (fact (- n 1))))

; Fiz fact, and list the input assumptions you make...

; Assumes: (>= n 1)
(define (fact n)
(if (= n 1)
1
(* n (fact (- n 1)))))

High-Level Questions

What is “recursive recursion?”

e the width of the expression (substitution model) keeps growing
e deferred operations

What is “iterative recursion?”

e constant space
e 1o pending/deferred operations

Why do we like recursive procedures?

many problems are easy to think about as loops

Why do some programming guides discourage writing recursive programs?

e limited stack depth
e limited memory
e encourage the use of for loops

Recursive — Iterative Recipe
1. What can we use as our partial answer

e can we ”"accumulate” something?

2. How do we keep track of what’s left to do

e some sort of counter (count up, count down?)
3. How do we update these variables
e the partial answer & counter

4. What’s the base case?
5. Write out a table

e fixed size (# of variables) because there are no pending operations

6. Almost always we will write a helper procedure that is the recursive part because we have extra
variables to keep track of!

biggie-size Returns!

We encode an order as multi-digit number where each digit represents a combo. For example, the order 327
represents a Triple, Double, and biggie-sized Triple. (biggie-size = regular+4)
(define order-price
(lambda (order)
(if (= order 0)
0
(+ (combo-price (remainder order 10))
(order-price (quotient order 10))))))

Is this recursive or iterative?
It generates a recursive process.

Rewrite as the other type:

; The tterative wverstion:
(define order-price
(lambda (order)
(define helper
(lambda (subtotal remaining)
(if (= remaining 0)
subtotal
(helper (+ subtotal (combo-price (remainder remaining 10)))
(quotient remaining 10)))))
(helper 0 order)))

begin Special Form

(begin exprl expr2 ...): The expressions are evaluated sequentially from left to right, and the value
of the last expression is returned. This expression type is used to sequence side effects such as input and
output.

e allows multiple statements

e scoping

e implicit begin inside define, cond, lambda, ...

Consider:

(define (foo a)
(begin
(define b 5)
(define (foo-helper x) (+ a x))
(foo-helper b)))

To what do the following expressions evaluate?

foo
a
(foo 3)

a

— | #[procedure| foo-helper —
— | ERROR, undefined variable‘ b —
— E foo-helper —
— ’ERROR, undefined Variable‘ b —

Order of Evaluation

Consider the following code:

(define (our-

(display x)

display x)
; returns something wierd

x) ; we return something sensible instead

(define (countl x)
(cond ((= x 0) 0)

(else

(our-display x)
(countl (- x 1)))))

(define (count2 x)

(cond ((= x
(else

0) 0)
(count2 (- x 1))
(our-display x))))

ERROR,

undefined variable

ERROR,

undefined variable

ERROR,

undefined variable

ERROR,

undefined variable

; What does the following generate?

(countl 5)
=> 543210

; What does the following generate?

(count2 4)
=> 123455

Evaluate using

the substitution model:

(countl 5)

(begin (our-display 5) (countl 4)) <PRINT 5>

(countl 4)

(begin (our-display 4) (countl 3)) <PRINT 4>

(countl 3)
(begin (our-d
(countl 2)
(begin (our-d
(countl 1)
(begin (our-d
(countl 0)

=> 0

isplay 3) (countl 2)) <PRINT 3>
isplay 2) (countl 1)) <PRINT 2>

isplay 1) (countl 0)) <PRINT 1>

(count2 5)

(begin (count2 4) (our-display 5))

(begin (begin
(begin (begin
(begin (begin
(begin (begin
(begin (begin
(begin (begin
(begin (begin
(begin (our-d
(our-display
=> 5

(count2 3) (our-display 4)) (our-display 5))

(begin (count2 2) (our-display 3)) (our-display 4)) (our-display 5))

(begin (begin (count2 1) (our-display 2)) (our-display 3)) (our-display 4)) (oy
(begin (begin (begin (count2 0) (our-display 1)) (our-display 2)) (our-display
(begin (begin (our-display 1) (our-display 2)) (our-display 3)) (our-display 4)
(begin (our-display 2) (our-display 3)) (our-display 4)) (our-display 5)) <PRIN

(our-display 3) (our-display 4)) (our-display 5)) <PRINT 3>

isplay 4) (our-display 5)) <PRINT 4>
5) <PRINT 5>

r-display 5))
3)) (our-disp:
) (our-displa;
T 2>

