Vehicle Recognition in Cluttered Environments

Masters Thesis Defense

By Gerald Dalley

Signal Analysis and Machine Perception Laboratory The Ohio State University 05 June 2002

Overview

- Problem Statement and Motivation
- Recognition Steps
 - ➢ Range Image Generation
 - Local Surface Estimation and Decimation
 - ➢ Global Surface Reconstruction
 - Surface Segmentation
 - Graph Matching
- Conclusions and Future Work
- Questions

Problem Statement and Motivation

- Problem
 - Recognize vehicles
 - Military and civilian
 - Forested environment
- Motivation
 - ➢ Hostile forces tend to hide
 - Camouflage and occlusion foil the human visual system

Range Image Generation:

Overview

- Objects modeled
- Clutter models
- Camera flight paths (scenes)
- Noise generation

Local Surface Fitting

Surface Reconstruction

Surface Segmentation

Graph Matching

Range Image Generation:

Objects Modeled

Range Image Generation: Clutter Models

6

- 500 Discs
- Radius of 100mm
- Volume of 12.2 x 12.2 x 2 meters

Range Image Generation:

Camera Flight Paths (Scenes)

Range Image Generation:

Noise Generation

- Isotropic additive Gaussian noise
- Standard deviations of:
 - ≻ 0mm
 - ➤ 2mm
 - ≻ 4mm
 - ≻ 8mm
 - ▶ 16mm
 - ➤ 32mm

Overview

- Assumption: Vehicles are composed primarily of large, low-order, low-curvature surfaces.
- **Constraint:** 10 tank views → more than 220,000 range points (too many)
- Point Selection (Decimation)
- Principle Component Analysis
- Biquadratic Surface Fits

Range Image Generation

Local Surface Estimation

Surface Reconstruction

Surface Segmentation

Graph Matching

Point Selection

Method 1:

- 1. Randomly select 1% (for example) of the original points
- 2. Make local surface estimates based on selected points

Problems:

Point Selection (cont'd.)

Method 2: In the region of interest...

- Collect range image points into cubic voxel bins (128x128x128mm)
- Discard bins that have:
 - ≻ Too few points
 - > Points that do not represent biquadratic surfaces well
- Retain only the centroids of the bins and their surface fits

Principle Component Analysis

- Define a local neighborhood $N_i = \{p_{i_j}\}$ about point p_i
- Find the centroid of the neighborhood, \hat{p}_i
- Find the 3x3 covariance matrix:

$$\mathbf{S} = \sum_{j=1}^{|N_i|} \left[p_{i_j} - \hat{p}_i \right] \left[p_{i_j} - \hat{p}_i \right]^T$$

• Smallest eigenvector of $\mathbf{S} \rightarrow$ normal estimate.

Biquadratic Surface Fits

 $w = f(u, v) = a_0 u^2 + a_1 u v + a_2 v^2 + a_3 u + a_4 v + a_5$

Γ	$u_0^2 \\ u_1^2 \\ u_2^2 \\ \vdots$	$u_0v_0\\u_1v_1\\u_2v_2\\\vdots$	$v_0^2 \\ v_1^2 \\ v_2^2 \\ \vdots$	u_0 u_1 u_2 \vdots	v_0 v_1 v_2 \vdots	- 1 1 1 :	$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$	8	$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \end{bmatrix}$	
L					•	: _	a_4			

Overview

- Motivations
- Post-Processing

Range Image Generation

Local Surface Fitting

Surface Reconstruction

Surface Segmentation

Graph Matching

Motivations

- Easy, unambiguous nearest-neighbor identification
- Fast searches over small cardinality
- Makes rendering easier
- Avoids incorrect groupings of nearby surfaces

Post-Processing

Overview

- Motivation: Correspondence is hard
- Some Techniques Not Used
- Spectral Clustering
 - > An overview
 - ➢ Normalized cuts
 - ➢ Our affinity measure
- Results

Range Image
Generation

Local Surface Fitting

Surface Reconstruction

Surface Segmentation

Graph Matching

Some Techniques Not Used

Robust Sequential Estimators (Mirza)

Overview of Spectral Clustering

• Two surface points have an affinity...

 y_i , where $Ay_i = \lambda_i y_i$

Normalized Cuts

• What is being minimized: - $cut(B,C) = \sum_{b \in B, c \in C} \mathbf{A}_{b,c}$ - $assoc(B,V) = \sum_{b \in B, v \in V} \mathbf{A}_{b,v}$ - $Ncut(B,C) = \frac{cut(B,C)}{assoc(B,V)} + \frac{cut(B,C)}{assoc(C,V)}$

Our Affinity Measure

 $v_{i,j} = p_i - p_j$ E > 1 $d(p_i, p_j) = \sqrt{E(v_{i,j} \circ n_i)^2 + \frac{||v_{i,j} - (v_{i,j} \circ n_i)n_i||^2}{E}}$ $\mathbf{a}_{i,j} = exp\left(-\frac{\cos^{-1}(n_i \circ n_j)}{2\left(\frac{10^{\circ}\pi}{2100}\right)^2}\right)exp\left(-\frac{d(p_i,p_j)}{2r^2}\right)$ $\mathbf{A}_{i,j} = min(\mathbf{a}_{i,j}, \mathbf{a}_{j,i})$

Unoccluded Results

Which Objects Are These?

Overview

- Match tree example
- Error measures
- Entropy
- Results
- What caused problems?

Range Image
Generation

Local Surface Fitting

Surface Reconstruction

Surface Segmentation

> Graph Matching

Graph Matching: Match Tree Example

Graph Matching: Error Measures

• Unary Error

➢ Area, Elongation, Thickness

• Orientation Error

≻ How poorly pairs of normals match up

Centroid Distance Error

> How poorly pairs of centroids match up

- Cumulative Area Error
 - > What percentage of the model area is not matched up

Entropy

$$S(M) = 1 - E(M)$$

 $s(\{M_1, ..., M_N\}) = \sum_{k=1}^N S(M_k)$

entropy
$$(\{M_1, ..., M_N\}) - \sum_{k=1}^N \frac{S(M_k)}{s(M_k)} \log_2 \left(\frac{S(M_k)}{s(M_k)}\right)$$

Results: earthmover

Scene	Noise Level	Score	Match Rank	Entropy
circle	0	0.824	1	2.16
circle	2	0.764	1	2.16
circle	4	0.819	1	2.19
circle	8	0.865	1	2.16
circle	16	0.797	1	2.15
circle	32	0.777	1	2.12
flyby	0	0.775	1	2.17
flyby	2	0.757	1	2.17
flyby	4	0.771	1	2.17
flyby	8	0.747	1	2.17
flyby	16	0.707	1	2.16
flyby	32	0.482	1	1.94
unoccluded	0	1.000	1	2.03
unoccluded	2	0.921	1	2.07
unoccluded	4	0.905	1	2.08
unoccluded	8	0.827	1	2.11
unoccluded	16	0.825	1	2.11
unoccluded	32	0.824	1	2.15
	ŀ	Recognition ra	te: 100%	

Results: obj1

Scene	Noise Level	Score	Ma	itch Rank	Entropy	
circle	0	0.756	2		1.86	
circle	2	0.811	1		1.95	
circle	4	0.816	1		1.96	
circle	8	0.662	1		2.27	
circle	16	0.468		4	2.25	
circle	32	0.241		5	2.26	
flyby	0	0.796	1		1.94	
flyby	2	0.561	1		2.28	
flyby	4	0.730	1		2.23	
flyby	8	0.272		5	2.26	
flyby	16	0.281		5	2.29	
flyby	32	0.000		5	1.96	
unoccluded	0	1.000	1		1.89	
unoccluded	2	0.810	1		2.20	
unoccluded	4	0.726	1		2.23	
unoccluded	8	0.794	1		2.21	
unoccluded	16	0.839	1		2.07	
unoccluded	32	0.179		4	1.93	
Recognition rate: 64%						

Results: sedan

Scene	Noise Level	Score	Match Rank	Entropy
circle	0	0.641	1	1.64
circle	2	0.723	1	1.65
circle	4	0.767	1	1.63
circle	8	0.589	1	1.69
circle	16	0.507	1	1.72
circle	32	0.486	1	1.71
flyby	0	0.683	1	1.61
flyby	2	0.576	1	1.68
flyby	4	0.662	1	1.62
flyby	8	0.602	1	1.68
flyby	16	0.447	1	1.72
flyby	32	0.291	1	1.71
unoccluded	0	1.000	1	1.46
unoccluded	2	0.937	1	1.50
unoccluded	4	0.894	1	1.52
unoccluded	8	0.918	1	1.51
unoccluded	16	0.666	1	1.67
unoccluded	32	0.451	1	1.70
		Recognition rat	te: 100%	

Results: semi

Scene	Noise Level	Score	Match Rank	Entropy		
circle	0	0.767	1	2.08		
circle	2	0.733	1	2.16		
circle	4	0.722	1	2.13		
circle	8	0.708	1	2.16		
circle	16	0.703	1	2.17		
circle	32	0.374	2	2.18		
flyby	0	0.611	1	2.12		
flyby	2	0.580	1	2.14		
flyby	4	0.598	1	1.89		
flyby	8	0.599	1	2.06		
flyby	16	0.545	1	2.08		
flyby	32	0.256	3	2.16		
unoccluded	0	1.000	1	1.95		
unoccluded	2	0.770	1	2.09		
unoccluded	4	0.737	1	2.11		
unoccluded	8	0.736	1	2.11		
unoccluded	16	0.677	1	2.01		
unoccluded	32	0.269	2	2.16		
Recognition rate: 83%						

Results: tank

Scene	Noise Level	Score	Match Ra	nk Entropy		
circle	0	0.603	2	2.26		
circle	2	0.628	1	1.93		
circle	4	0.682	1	1.92		
circle	8	0.636	1	1.93		
circle	16	0.588	1	1.95		
circle	32	0.511	2	2.26		
flyby	0	0.444	1	2.30		
flyby	2	0.187	5	2.29		
flyby	4	0.430	2	2.29		
flyby	8	0.234	5	2.30		
flyby	16	0.281	3	2.28		
flyby	32	0.119	4	2.11		
unoccluded	0	1.000	1	2.06		
unoccluded	2	0.826	1	2.08		
unoccluded	4	0.831	1	2.06		
unoccluded	8	0.473	2	2.11		
unoccluded	16	0.697	1	2.26		
unoccluded	32	0.237	4	2.13		
Recognition rate: 50%						

What Caused Problems?

• 19 total incorrect recognition results

► 12: over-segmentation

> 10: area errors (including non-existent segments)

What Caused Problems? (cont'd.)

Conclusions

- System features
 - ≻Modular design
 - ≻Handles pessimistic levels of clutter
 - ▶100% recognition on *earthmover* and *sedan*
- Reliable segmentation is important when doing graph matching

Future Work

- Articulation
- Larger modelbase
- Iterative recognition
- Alternative segmentation methods
 - Other affinity matrix normalizations
 - Tensor voting
 - Enhanced version of Srikantiah's algorithm
- Verification
- Alternative recognizers (e.g. SAI)
- E3D! (hopefully, for the remaining SAMPL crowd)

SLIDES

Range Image Generation:

Global Surface Reconstruction: Preliminaries:

Voronoi Diagrams

• Voronoi cell = locus of points closer to a given sample point than any other point

Global Surface Reconstruction: Preliminaries:

Medial Axis

• Medial axis = locus of points equidistant from at least two surface points (considering the *original* surface)

Global Surface Reconstruction: Preliminaries:

ε-sampling

• ε -sampling = Samples are at most ε times the distance to the medial axis

Cocone

Voronoi cell of *p*

• $p^+ \equiv$ pole of p = point in the Voronoi cell farthest from p

•
$$\varepsilon < 0.06 \rightarrow$$

The vector from p to p^+ is within $\pi/8$ of the true surface normal

➤The surface is nearly flat within the cell

Normalized Cuts

- What is being minimized: $- cut (B,C) = \sum_{b \in B, c \in C} \mathbf{A}_{b,c}$ $- assoc (B,V) = \sum_{b \in B, v \in V} \mathbf{A}_{b,v}$ $- Ncut (B,C) = \frac{cut(B,C)}{assoc(B,V)} + \frac{cut(B,C)}{assoc(C,V)}$
- Matrix calculations - $\mathbf{D}_{i,i} = \sum_{j} \mathbf{A}_{i,u}$ - $(\mathbf{D} - \mathbf{A})y_i = \lambda_i \mathbf{D}y_i$

Probabilistic Affinity Framework

Probabilistic Position Affinity

Probabilistic Position Affinity

$$P[p_j \in S_{p_i}(u, v)] \propto A_{pos} (p_i, p_j)$$
$$= \exp\left(-\frac{||p_j - p'_j||^2}{2\sigma_{pos}^2}\right)$$

Probabilistic Normal Affinity

Probabilistic Normal Affinity

$$A_{norm,2D}(p_i, p_j) = \frac{exp\left(-\left(\frac{nd}{\sqrt{1-n^2}} - \frac{n'd}{\sqrt{1-n'^2}}\right)^2 / 4\sigma_{pos}^2\right)}{\left|\left(1 / \sqrt{d^2 + \frac{(nd)^2}{1-n^2}}\right) - \frac{(nd)^2}{1-n^2} \left(d^2 + \frac{(nd)^2}{1-n^2}\right)^{-3/2}\right|}$$

Graph Matching: Error Measures

$$E_U(s_i, m_i) = 1 - exp\left(-d_u^{\ 2}(s_i, m_i)\right)$$
(1)
$$C_U(\{(s_1, m_1), ..., (s_x, m_x)\}) = \sum_{i=1}^x E_U(s_i, m_i)$$
(2)

$$d_u(s_i, m_i) = \sqrt{d_a^{\ 2}(s_i, m_i) + d_t^{\ 2}(s_i, m_i) + d_e^{\ 2}(s_i, m_i)}$$
(3)

$$d_a\left(s_i, m_i\right) = -\log_{(1.0+f_a)}\left(\frac{\min\left(a_{s_i}, a_{m_i}\right)}{\max\left(a_{s_i}, a_{m_i}\right)}\right) \tag{4}$$

Error Measures (cont'd.)

$$d_t(s_i, m_i) = w_t |t_{s_i} - t_{m_i}|$$
(1)

$$d_e(s_i, m_i) = -w_e \ln(1 - |e_{s_i} - e_{m_i}|)$$
(2)

$$E_O\left(s_i, s_j, m_i, m_j\right) = \frac{2}{\pi} \left| \left(\cos^{-1} \left(n_{s_i} \circ n_{m_i} \right) \right) - \left(\cos^{-1} \left(n_{s_j} \circ n_{m_j} \right) \right) \right|$$
(3)

$$C_O\left(\{(s_1, m_1), \dots, (s_x, m_x)\}\right) = \sum_{i=1}^x \sum_{j=1}^x E_O\left(s_i, s_j, m_i, m_j\right)$$
(4)

Error Measures (cont'd.)

$$d_{R}(a,b) = \begin{cases} 0 & \text{if } a = 0 \text{ and } b = 0\\ |a-b|/\max(a,b) & \text{otherwise} \end{cases}$$
(1)
$$C_{D}\left(\{(s_{1},m_{1}),...,(s_{x},m_{x})\}\right) = \sum_{i=1}^{x} \sum_{j=1}^{x} d_{R}\left(||c_{s_{i}} - c_{s_{j}}||,||c_{m_{i}} - c_{m_{j}}||\right)$$

$$C_A\left(\{(s_1, m_1), \dots, (s_x, m_x)\}\right) = \min\left(1, \left|1 - \sum_{i=1}^x a_{s_i} / \sum_{i=1}^X a_{m_i}\right|\right) \quad (3)$$

$$E(M) = \frac{1}{x} C_U(M)^{e_u} C_O(M)^{e_o} C_D(M)^{e_d} C_A(M)^{e_a}$$
(4)

