Surface Segmentation of Under-sampled Meshes

SAMPL Research Group
The Ohio State University
Presentation by Gerald Dalley

Outline

Motivation for using segmentation Initial foray: Regions of constant curvature \# Normalized cuts review \% Our affinity measure \% Future work

Motivation for Using Segmentation

\# Project objective

- Detecting and recognizing military and civilian vehicles in forested areas using range data
\# Assumptions
a. Frequent non-sampling of entire vehicle "faces"
a Data near crease edges will be highly under-sampled
\% Why segmentation
Exploits assumption that we will tend to see large portions of faces if we see much of it at all
- Takes the focus away from the crease edges
. Does not rely on seeing the entire surface

Regions of Constant Curvature

シ Curvature computation by estimated biquadratic surface fits (note: assumes addilitive IID Gaussian noise in the normal direction)

Find the local neighborhood
a PCA \rightarrow local coordinate system

$$
(u, v, w)
$$

a. Least squares biquadratic fit

$$
w=S(u, v)=a_{1} u^{2}+a_{2} u v+a_{3} v^{2}+a_{4} u+a_{5} v+a_{6}
$$

* Analytical calculation of mean and Gaussian curvature at ($0,0, \mathrm{~S}(0,0)$)
シ Segments: contiguous groups of vertices having the "same" curvature

Regions of Constant Curvature (2)

\#nder-sampling causes a problem...

Regions of Constant Curvature:

Sample (Problematic) Segmentations

Note: Magenta denotes segments with highly-inconsistent curvature values ("junk" segments)

Normalized Cuts

\% The idea (density example)

\% Inputs, abstractly
Graph that connects similar nodes (vertices)
An "affinity" measure for each graph arc
シ Output
A balanced segmentation of the graph

Our Affinity Measure:
 What Kind of Affinity Function Do We Want?

Input Data:

Aforementioned-Style
Desired

Our Affinity Measure:

Our Affinity Function

so, we wish to find:

* $\operatorname{affinity~}(p, q) \propto$ $\min \left(P\left[\left(p, n_{p}\right) \in S_{q}\right], \quad P\left[\left(q, n_{q}\right) \in S_{p}\right]\right)$
- $p:=$ a sampled surface point
- $n_{p}:=$ surface normal estimated at point p
- S_{q} := a local biquadratic surface estimated for point q (the " \in " operator means "arose from")
- $\sigma_{q}:=$ RMS error in computing S_{q}
$P\left[\left(p, n_{p}\right) \in S_{q}\right]=P\left[p \in S_{q}\right] P\left[n_{p} \in S_{q} \mid p \in S_{q}\right]$

Our Affinity Measure:

Position Probability

\# By a previous assumption, all of the position error is in the w direction, and is distributed as a Gaussian with a variance of $\sigma_{q}{ }^{2}$.
\# $P\left[p \in S_{q} \mid \sigma_{q}\right] \propto$

$$
\exp \left(-d_{p}^{2} / 2 \sigma_{q}^{2}\right)
$$

where $d_{p}=\left|p_{w}-S_{q}\left(p_{u}, p_{v}\right)\right|$

Our Affinity Measure:

Normal Probability

\# The error in the normal measurements can be modeled in 2D as:

$$
\begin{aligned}
d_{n} & =\left|\sin \left(\angle n_{p}\right)-\sin \left(\angle n_{r}\right)\right| \\
& =\left|\left[n_{p}\right]_{u}-\left[n_{r}\right]_{u}\right|
\end{aligned}
$$

where

$$
\begin{aligned}
& r:=\left[\begin{array}{lll}
p_{u} & p_{v} & S_{q}\left(p_{u}, p_{v}\right)
\end{array}\right]^{T} \\
& n_{r}:=\text { The normal calculated from } S_{q} \text { at point } r .
\end{aligned}
$$

シ Extending to 3D,

$$
\begin{aligned}
& P\left[n_{p} \in S_{q} \mid p \in S_{q}\right] \propto \\
& \quad \exp \left(\left[-\left(\left[n_{r}\right]_{u}-\left[n_{p}\right]_{u}\right)^{2}-\left(\left[n_{r}\right]_{v}-\left[n_{p}\right]_{v}\right)^{2}\right] / 4 \sigma_{g}{ }^{2}\right)
\end{aligned}
$$

Our Affinity Measure:
 Initial Results

Future Work

\# Other affinity measures
a more rigorous derivation of $P\left[n_{p} \in S_{q} \mid p \in S_{q}\right]$
Testing on more data
a objects
a Circling vs. double fly-by

- Varying degrees of clutter
\% Object recognition
a The proof must be in the pudding...

References

\#. Shi and J. Malik. "Normalized cuts and image segmentation". IEEE PAMI. Vol. 22 No. 8. Aug. 2000. Pgs. 888-905.
\% R. Srikantiah. Multi-Scale Surface Segmentation and Description for Free Form Object Recognition. M.S. Thesis. The Ohio State University. 2000.
H. Stark and J. Woods. Probability, Random Processes, and Estimation Theory for Engineers. 2nd Ed. Prentice-Hall, Inc. 1994.
\# Strang. Linear Algebra and lits Applications. $3^{\text {rd }}$ ed. Harcourt Brace \& Company. 1986.

