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Motivation for Using Segmentation

Project objective
Detecting and recognizing military and civilian vehicles in 
forested areas using range data

Assumptions
Frequent non-sampling of entire vehicle “faces”

Data near crease edges will be highly under-sampled

Why segmentation
Exploits assumption that we will tend to see large portions of 
faces if we see much of it at all

Takes the focus away from the crease edges

Does not rely on seeing the entire surface
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uw

Regions of Constant Curvature

Curvature computation by estimated 
biquadratic surface fits (note: assumes 
additive IID Gaussian noise in the normal 
direction)

Find the local neighborhood

PCAlocal coordinate system

(u,v,w)

Least squares biquadratic fit

w=S(u,v)=a1u
2+a2uv+a3v

2+a4u+a5v+a6

Analytical calculation of mean and 
Gaussian curvature at (0,0,S(0,0))

Segments: contiguous groups of 
vertices having the “same” curvature


1
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Regions of Constant Curvature (2)

Under-sampling causes a problem…

Curvature values are the same,

But the two local fits are very different

w1

w2
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Regions of Constant Curvature:

Sample (Problematic) Segmentations

tG

tG / 2

tG / 4

Note: Magenta denotes segments with highly-inconsistent curvature values (“junk” segments)
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Normalized Cuts

The idea (density example)

Inputs, abstractly

Graph that connects similar nodes (vertices)

An “affinity” measure for each graph arc

Output

A balanced segmentation of the graph
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Our Affinity Measure:

What Kind of Affinity Function Do We Want?

12 13 14 15 16

… …

12 1 0.9 0.8 0.1 0

13 0.9 1 0.9 0.1 0

14 0.8 0.9 1 0.2 0

15 0.1 0.1 0.2 1 0.9

16 0 0 0 0.9 1

… …

12 13 14 15 16

… …

12 1 0.9

13 0.9 1 0.9

14 0.9 1 0.9

15 0.9 1 0.9

16 0.9 1

… …

Aforementioned-Style Desired
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Input Data:
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Our Affinity Measure:

Our Affinity Function

So, we wish to find:

affinity(p,q) 
min(P[(p,np)∈ Sq],   P[(q,nq) ∈ Sp])

 p := a sampled surface point

 np := surface normal estimated at point p

 Sq := a local biquadratic surface estimated for point q 

(the “∈” operator means “arose from”)

 σq := RMS error in computing Sq

P[(p,np) ∈ Sq] = P[p∈ Sq] P[np∈ Sq | p∈ Sq]
np

p

Sq

q
u

w
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Our Affinity Measure:

Position Probability

By a previous assumption, all of the 

position error is in the w direction, 

and is distributed as a Gaussian 

with a variance of σq
2.

P[p∈ Sq | σq] 

exp( -dp
2 / 2σq

2 ), 

where dp = | pw – Sq(pu , pv) |

Sq

u

w

Sq + cσq

Sq - cσq

p
dp
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Our Affinity Measure:

Normal Probability

The error in the normal measurements 
can be modeled in 2D as:

dn= | sin(∠np) - sin(∠nr) |

= | [np]u - [nr]u |

where
r := [pu pv Sq(pu , pv)]

T

nr := The normal calculated from Sq at point r.

Extending to 3D, 

P[np∈ Sq | p∈ Sq] ∝

exp([-([nr]u - [np]u)
2 - ([nr]v - [np]v)

2] / 4σg
2)

Sq

p

np

dn
nr

r
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Our Affinity Measure:

Initial Results

Baseline Let nCuts keep goingSmaller affinity

neighborhood
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Future Work

Other affinity measures
A more rigorous derivation of P[np∈ Sq | p∈ Sq] 

Testing on more data

5 objects

Circling vs. double fly-by

Varying degrees of clutter

Object recognition

The proof must be in the pudding…
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