Surface Segmentation of Under-sampled Meshes

SAMPL Research Group The Ohio State University Presentation by Gerald Dalley

Outline

Motivation for using segmentation
 Initial foray: Regions of constant curvature
 Normalized cuts review
 Our affinity measure
 Future work

Motivation for Using Segmentation

Project objective

Detecting and recognizing military and civilian vehicles in forested areas using range data

Assumptions

- Frequent non-sampling of entire vehicle "faces"
- Data near crease edges will be highly under-sampled

Why segmentation

- Exploits assumption that we will tend to see large portions of faces if we see much of it at all
- Takes the focus away from the crease edges
- Does not rely on seeing the entire surface

Regions of Constant Curvature

- Curvature computation by estimated biquadratic surface fits (note: assumes additive IID Gaussian noise in the normal direction)
 - Find the local neighborhood
 - PCA \rightarrow local coordinate system (u,v,w)
 - Least squares biquadratic fit $w=S(u,v)=a_1u^2+a_2uv+a_3v^2+a_4u+a_5v+a_6$
 - Analytical calculation of mean and Gaussian curvature at (0,0,S(0,0))
- Segments: contiguous groups of vertices having the "same" curvature

Regions of Constant Curvature (2)

Under-sampling causes a problem...

- Curvature values are the same,
- But the two local fits are very different

Under-Sampled Segmentation

 W_2

 ${\mathcal W}$,

Regions of Constant Curvature: Sample (Problematic) Segmentations

Note: Magenta denotes segments with highly-inconsistent curvature values ("junk" segments)

Normalized Cuts

The idea (density example)
Inputs, abstractly
Graph that connects similar nodes (vertices)
An "affinity" measure for each graph arc

- Output
 - A balanced segmentation of the graph

Our Affinity Measure: What Kind of Affinity Function Do We Want?

Input Data:

<u>Desired</u>

Under-Sampled Segmentation

Our Affinity Measure: Our Affinity Function

So, we wish to find:

affinity(p,q) \propto $min(P[(p,n_p) \in S_q], P[(q,n_q) \in S_p])$

- p := a sampled surface point
- n_p := surface normal estimated at point p
- S_q := a local biquadratic surface estimated for point q (the "∈" operator means "arose from")
- σ_q := RMS error in computing S_q

 $P[(p,n_p) \in S_q] = P[p \in S_q] P[n_p \in S_q | p \in S_q]$

Our Affinity Measure: **Position Probability**

By a previous assumption, all of the position error is in the *w* direction, and is distributed as a Gaussian with a variance of σ_q^2 .

$$P[p \in S_q / \sigma_q] \propto$$

 $exp(-d_p^2/2\sigma_q^2),$

where $d_p = p_w - S_q(p_u, p_v)$ /

Our Affinity Measure: Normal Probability

The error in the normal measurements can be modeled in 2D as:

 $d_n = |\sin(\angle n_p) - \sin(\angle n_r)|$ $= |[n_p]_u - [n_r]_u|$

where

 $r := [p_u \ p_v \ S_q(p_u, p_v)]^T$ $n_r := \text{The normal calculated from } S_q \text{ at point } r.$

Extending to 3D, $P[n_p \in S_q \mid p \in S_q] \propto$ $exp([-([n_r]_u - [n_p]_u)^2 - ([n_r]_v - [n_p]_v)^2] / 4\sigma_g^2)$

Under-Sampled Segmentation

Our Affinity Measure: Initial Results

Smaller affinity neighborhood

Baseline

Let nCuts keep going

6 Nov 2001

Under-Sampled Segmentation

Future Work Other affinity measures \otimes A more rigorous derivation of $P[n_p \in S_a | p \in S_a]$ Testing on more data 5 objects Circling vs. double fly-by Varying degrees of clutter Object recognition The proof must be in the pudding...

References

 J. Shi and J. Malik. "Normalized cuts and image segmentation". *IEEE PAMI*. Vol. 22 No. 8. Aug. 2000. Pgs. 888-905.

R. Srikantiah. Multi-Scale Surface Segmentation and Description for Free Form Object Recognition. M.S. Thesis. The Ohio State University. 2000.

H. Stark and J. Woods. Probability, Random Processes, and Estimation Theory for Engineers. 2nd Ed. Prentice-Hall, Inc. 1994.

G. Strang. Linear Algebra and Its Applications. 3rd ed. Harcourt Brace & Company. 1986.