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Abstract

We interpret the predictions of any black-
box structured input-structured output
model around a specific input-output pair.
Our method returns an “explanation” con-
sisting of groups of input-output tokens
that are causally related. These dependen-
cies are inferred by querying the black-box
model with perturbed inputs, generating
a graph over tokens from the responses,
and solving a partitioning problem to se-
lect the most relevant components. We fo-
cus the general approach on sequence-to-
sequence problems, adopting a variational
autoencoder to yield meaningful input per-
turbations. We test our method across sev-
eral NLP sequence generation tasks.

1 Introduction

Interpretability is often the first casualty when
adopting complex predictors. This is particularly
true for structured prediction methods at the core
of many natural language processing tasks such
as machine translation (MT). For example, deep
learning models for NLP involve a large num-
ber of parameters and complex architectures, mak-
ing them practically black-box systems. While
such systems achieve state-of-the-art results in
MT (Bahdanau et al., 2014), summarization (Rush
et al., 2015) and speech recognition (Chan et al.,
2015), they remain largely uninterpretable, al-
though attention mechanisms (Bahdanau et al.,
2014) can shed some light on how they operate.

Stronger forms of interpretability could offer
several advantages, from trust in model predic-

tions, error analysis, to model refinement. For
example, critical medical decisions are increas-
ingly being assisted by complex predictions that
should lend themselves to easy verification by hu-
man experts. Without understanding how inputs
get mapped to the outputs, it is also challenging to
diagnose the source of potential errors. A slightly
less obvious application concerns model improve-
ment (Ribeiro et al., 2016) where interpretability
can be used to detect biases in the methods.

Interpretability has been approached primarily
from two main angles: model interpretability, i.e.,
making the architecture itself interpretable, and
prediction interpretability, i.e., explaining particu-
lar predictions of the model (cf. (Lei et al., 2016)).
Requiring the model itself to be transparent is of-
ten too restrictive and challenging to achieve. In-
deed, prediction interpretability can be more eas-
ily sought a posteriori for black-box systems in-
cluding neural networks.

In this work, we propose a novel approach to
prediction interpretability with only oracle access
to the model generating the prediction. Following
(Ribeiro et al., 2016), we turn the local behavior
of the model around the given input into an inter-
pretable representation of its operation. In con-
trast to previous approaches, we consider struc-
tured prediction where both inputs and outputs are
combinatorial objects, and our explanation con-
sists of a summary of operation rather than a sim-
pler prediction method.

Our method returns an “explanation” consisting
of sets of input and output tokens that are causally
related under the black-box model. Causal de-
pendencies arise from analyzing perturbed ver-
sions of inputs that are passed through the black-
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box model. Although such perturbations might be
available in limited cases, we generate them auto-
matically. For sentences, we adopt a variational
autoencoder to produce semantically related sen-
tence variations. The resulting inferred causal de-
pendencies (interval estimates) form a dense bi-
partite graph over tokens from which explanations
can be derived as robust min-cut k-partitions.

We demonstrate quantitatively that our method
can recover known dependencies. As a starting
point, we show that a grapheme-to-phoneme dic-
tionary can be largely recovered if given to the
method as a black-box model. We then show that
the explanations provided by our method closely
resemble the attention scores used by a neural ma-
chine translation system. Moreover, we illustrate
how our summaries can be used to gain insights
and detect biases in translation systems. Our main
contributions are:

• We propose a general framework for explain-
ing structured black-box models

• For sequential data, we propose a variational
autoencoder for controlled generation of in-
put perturbations required for causal analysis

• We evaluate the explanations produced by
our framework on various sequence-to-
sequence prediction tasks, showing they can
recover known associations and provide in-
sights into the workings of complex systems.

2 Related Work

There is a wide body of work spanning vari-
ous fields centered around the notion of “inter-
pretability”. This term, however, is underdeter-
mined, so the goals, methods and formalisms of
these approaches are often non-overlapping (Lip-
ton, 2016). In the context of machine learning,
perhaps the most visible line of work on inter-
pretability focuses on medical applications (Caru-
ana et al., 2015), where trust can be a decisive
factor on whether a model is used or not. With
the ever-growing success and popularity of deep
learning methods for image processing, recent
work has addressed interpretability in this setting,
usually requiring access to the method’s activa-
tions and gradients (Selvaraju et al., 2016), or di-
rectly modeling how influence propagates (Bach

et al., 2015). For a broad overview of interpretabil-
ity in machine learning, we refer the reader to the
recent survey by Doshi-Velez and Kim (2017).

Most similar to this work are the approaches of
Lei et al. (2016) and Ribeiro et al. (2016). The for-
mer proposes a model that justifies its predictions
in terms of fragments of the input. This approach
formulates explanation generation as part of the
learning problem, and, as most previous work,
only deals with the case where predictions are
scalar or categorical. On the other hand, Ribeiro
et al. (2016) propose a framework for explaining
the predictions of black-box classifiers by means
of locally-faithful interpretable models. They fo-
cus on sparse linear models as explanations, and
rely on local perturbations of the instance to ex-
plain. Their model assumes the input directly ad-
mits a fixed size interpretable representation in eu-
clidean space, so their framework operates directly
on this vector-valued representation.

Our method differs from—and can be thought
of as generalizing—these approaches in two fun-
damental aspects. First, our framework considers
both inputs and outputs to be structured objects
thus extending beyond the classification setting.
This requires rethinking the notion of explanation
to adapt it to variable-size combinatorial objects.
Second, while our approach shares the locality and
model-agnostic view of Ribeiro et al. (2016), gen-
erating perturbed versions of structured objects is
a challenging task by itself. We propose a solu-
tion to this problem in the case of sequence-to-
sequence learning.

3 Interpreting structured prediction

Explaining predictions in the structured input-
structured output setting poses various challenges.
As opposed to scalar or categorical prediction,
structured predictions vary in size and complexity.
Thus, one must decide not only how to explain the
prediction, but also what parts of it to explain. In-
tuitively, the “size” of an explanation should grow
with the size of the input and output. A good ex-
planation would ideally also decompose into cog-
nitive chunks (Doshi-Velez and Kim, 2017): basic
units of explanation which are a priori bounded in
size. Thus, we seek a framework that naturally
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decomposes an explanation into (potentially sev-
eral) explaining components, each of which justi-
fies, from the perspective of the black-box model,
parts of the output relative to the parts of the input.

Formally, suppose we have a black-box model
F : X → Y that maps a structured input x ∈ X
to a structured output y ∈ Y . We make no as-
sumptions on the spaces X ,Y , except that their
elements admit a feature-set representation x =
{x1, x2, . . . , xn}, y = {y1, y2, . . . , ym}. Thus, x
and y can be sequences, graphs or images. We
refer to the elements xi and yj as units or “to-
kens” due to our motivating application of sen-
tences, though everything in this work holds for
other combinatorial objects.

For a given input output pair (x,y), we are in-
terested in obtaining an explanation of y in terms
of x. Following (Ribeiro et al., 2016), we seek
explanations via interpretable representations that
are both i) locally faithful, in the sense that they
approximate how the model behaves in the vicinity
of x, and ii) model agnostic, that is, that do not re-
quire any knowledge ofF . For example, we would
like to identify whether token xi is a likely cause
for the occurrence of yj in the output when the in-
put context is x. Our assumption is that we can
summarize the behavior of F around x in terms
of a weighted bipartite graph G = (Vx ∪ Vy, E),
where the nodes Vx and Vy correspond to the el-
ements in x and y, respectively, and the weight
of each edge Eij corresponds to the influence of
the occurrence of token xi on the appearance of
yj . The bipartite graph representation suggests
naturally that the explanation be given in terms of
explaining components. We can formalize these
components as subgraphs Gk = (V k

x ∪ V k
y , E

k),
where the elements in V k

x are likely causes for
the elements in V k

y . Thus, we define an expla-
nation of y as a collection of such components:
Ex→y = {G1, . . . , Gk}.

Our approach formalizes this framework
through a pipeline (sketched in Figure 1) consist-
ing of three main components, described in detail
in the following section: a perturbation model for
exercising F locally, a causal inference model
for inferring associations between inputs and pre-
dictions, and a selection step for partitioning and
selecting the most relevant sets of associations.

We refer to this framework as a structured-output
causal rationalizer (SOCRAT).

A note on alignment models When the inputs
and outputs are sequences such as sentences, one
might envision using an alignment model, such
as those used in MT, to provide an explanation.
This differs from our approach in several respects.
Specifically, we focus on explaining the behavior
of the “black box” mapping F only locally, around
the current input context, not globally. Any global
alignment model would require access to substan-
tial parallel data to train and would have vary-
ing coverage of the local context around the spe-
cific example of interest. Any global model would
likely also suffer from misspecification in relation
to F . A more related approach to ours would be
an alignment model trained locally based on the
same perturbed sentences and associated outputs
that we generate.

4 Building blocks

4.1 Perturbation Model

The first step in our approach consists of obtain-
ing perturbed versions of the input: semantically
similar to the original but with potential changes in
elements and their order. This is a major challenge
with any structured inputs. We propose to do this
using a variational autoencoder (VAE) (Kingma
and Welling, 2014; Rezende et al., 2014). VAEs
have been successfully used with fixed dimen-
sional inputs such as images (Rezende and Mo-
hamed, 2015; Sønderby et al., 2016) and recently
also adapted to generating sentences from contin-
uous representations (Bowman et al., 2016). The
goal is to introduce the perturbation in the contin-
uous latent representation rather than directly on
the structured inputs.

A VAE is composed of a probabilistic encoder
ENC : X → Rd and a decoder DEC : Rd →
X . The encoder defines a distribution over la-
tent codes q(z|x), typically by means of a two-
step procedure that first maps x 7→ (µ,σ) and
then samples z from a gaussian distribution with
these parameters. We can leverage this stochas-
ticity to obtain perturbed versions of the input
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Figure 1: A schematic representation of the proposed prediction interpretability method.

by sampling repeatedly from this distribution, and
then mapping these back to the original space us-
ing the decoder. The training regime for the VAE
ensures approximately that a small perturbation
of the hidden representation maintains similar se-
mantic content while introducing small changes in
the decoded surface form. We emphasize that the
approach would likely fail with an ordinary au-
toencoder where small changes in the latent rep-
resentation can result in large changes in the de-
coded output. In practice, we ensure diversity of
perturbations by scaling the variance term σ and
sampling points z̃ and different resolutions. We
provide further details of this procedure in the sup-
plement. Naturally, we can train this perturba-
tion model in advance on (unlabeled) data from
the input domain X , and then use it as a subrou-
tine in our method. After this process is com-
plete, we have N pairs of perturbed input-output
pairs: {(x̃i, ỹi)}Ni=1 which exercise the mapping
F around semantically similar inputs.

4.2 Causal model

The second step consists of using the perturbed
input-output pairs {(x̃i, ỹi)}Ni=1 to infer causal de-
pendencies between the original input and output
tokens. A naive approach would consider 2x2 con-
tingency tables representing presence/absence of
input/output tokens together with a test statistic for
assessing their dependence. Instead, we incorpo-
rate all input tokens simultaneously to predict the
occurrence of a single output token via logistic re-
gression. The quality of these dependency estima-
tors will depend on the frequency with which each
input and output token occurs in the perturbations.
Thus, we are interested in obtaining uncertainty
estimates for these predictions, which can be nat-
urally done with a Bayesian approach to logistic
regression. Let φx(x̃) ∈ {0, 1}|x| be a binary vec-
tor encoding the presence of the original tokens

x1, . . . , xn from x in the perturbed version x̃. For
each target token yj ∈ y, we estimate a model:

P (yj ∈ ỹ | x̃) = σ(θT
j φx(x̃)) (1)

where σ(z) = (1 + exp(−z))−1. We use a Gaus-
sian approximation for the logarithm of the lo-
gistic function together with the prior p(θ) =
N (θ0,H−1

0 ) (Murphy, 2012). Since in our case all
tokens are guaranteed to occur at least once (we in-
clude the original example pair as part of the set),
we use θ0 = α1,H0 = βI, with α, β > 0. Upon
completion of this step, we have dependency co-
efficients between all original input and output to-
kens {θij}, along with their uncertainty estimates.

4.3 Explanation Selection

The last step in our interpretability framework
consists of selecting a set explanations for (x,y).
The steps so far yield a dense bipartite graph be-
tween the input and output tokens. Unless |x| and
|y| are small, this graph itself may not be suf-
ficiently interpretable. We are interested in se-
lecting relevant components of this dependency
graph, i.e., partition the vertex set of G into dis-
joint subsets so as to minimize the weight of omit-
ted edges (i.e. the k-cut value of the partition).

Graph partitioning is a well studied NP-
complete problem (Garey et al., 1976). The usual
setting assumes deterministic edge weights, but in
our case we are interested in incorporating the un-
certainty of the dependency estimates—resulting
from their finite sample estimation—into the par-
titioning problem. For this, we rely on the ap-
proach of Fan et al. (2012) designed for interval
estimates of edge weights. At a high level, this is
a robust optimization formulation which seeks to
minimize worst case cut values, and can be cast
as a Mixed Integer Programming (MIP) problem.
Specifically, for a bipartite graph G = (U, V,E)
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Algorithm 1 Structured-output causal rationalizer
1: procedure SOCRAT(x,y, F )
2: (µ,σ)← ENCODE(x)
3: for i = 1 to N do
4: z̃i ← SAMPLE(µ,σ)


Perturbation
Model.5: x̃i ← DECODE(z̃i)

6: ỹi ← F (x̃i)
7: end for
8: G ← CAUSAL(x,y, {x̃i, ỹi}Ni=1)
9: Ex 7→y ← BIPARTITION(G)

10: Ex 7→y ← SORT(Ex 7→y) . By cut capacity
11: return Ex7→y

12: end procedure

with edge weights given as uncertainty intervals
θij ± θ̂ij , the partitioning problem is given by

min
(xu

ik,xv
jk,yij)∈Y

n∑
i=1

m∑
j=1

θijyij+

max
S:S⊆V,|S|≤Γ
(it,jt)∈V \S

∑
(i,j)∈S

θ̂ijyij + (Γ− bΓc)θ̂it,jtyit,jt

(2)

where xu
ik, xv

jk are binary variables indicating sub-
set belonging for elements of U and V respec-
tively, yij are binary auxiliary variables indicating
whether i and j are in different partitions, and Y
is a set of constraints that ensure the K-partition
is valid. Γ is a parameter in [0, |V |] which adjusts
the robustness of the partition (the number of de-
viations from the mean edge values). See the sup-
plement for further explanation of this objective.

If |x| and |y| are small, the number of clus-
ters K will also be small, so we can simply re-
turn all the partitions (i.e. the explanation chunks)
Ek

x→y := (V k
x ∪ V k

y ). However, when K is large,
one might wish to entertain only the κ most rele-
vant explanations. The graph partitioning frame-
work provides us with a natural way to score the
importance of each chunk. Intuitively, subgraphs
that have few high-valued edges connecting them
to other parts of the graph (i.e. low cut-capacity)
can be thought of as self-contained explanations,
and thus more relevant for interpretability. We can
therefore define the importance score an atom as:

importance(Ek
x→y) := −

∑
(i,j)∈Xk

θij (3)

where Xk is the cut-set implied by Ek
x→y:

Xk = {(i, j) ∈ E | i ∈ Ek
x→y, j ∈ V \ Ek

x→y}
The full interpretability method is succinctly ex-
pressed in Algorithm 1.

5 Experimental Framework

5.1 Training and optimization

For the experiments involving sentence inputs, we
train in advance the VAE described in Section 4.1.
We use symmetric encoder-decoders consisting of
recurrent neural networks with an intermediate
variational layer. In our case, however, we use L
stacked RNN’s on both sides, and a stacked varia-
tional layer. Training variational autoencoders for
text is notoriously hard. In addition to dropout
and KLD annealing (Bowman et al., 2016), we
found that slowly scaling the variance sampled
from the normal distribution from 0 to 1 made
training much more stable.

For the partitioning step we compare the robust
formulation described above with two classical ap-
proaches to bipartite graph partitioning which do
not take uncertainty into account: the cocluster-
ing method of Dhillon (2001) and the bicluster-
ing method of Kluger et al. (2003). For these two,
we use off-the-shelf implementations,1 while we
solve the MIP problem version of (2) with the op-
timization library gurobi.2

5.2 Recovering simple mappings

Before using our interpretability framework in real
tasks where quantitative evaluation of explana-
tions is challenging, we test it in a simplified set-
ting where the “black-box” is simple and fully
known. A reasonable minimum expectation on
our method is that it should be able to infer many
of these simple dependencies. For this purpose,
we use the CMU Dictionary of word pronunci-
ations,3 which is based on the ARPAbet symbol
set and consists of about 130K word-to-phoneme
pairs. Phonemes are expressed as tokens of 1 to
3 characters. An example entry in this dictio-
nary is the pair vowels 7→ V AW1 AH0 L Z.
Though the mapping is simple, it is not one-to-
one (a group of characters can correspond to a sin-
gle phoneme) nor deterministic (the same charac-
ter can map to different phonemes depending on
the context). Thus, it provides a reasonable testbed

1http://scikit-learn.org/stable/modules/biclustering.html
2http://www.gurobi.com/
3www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 2: Arpabet test results as a function of num-
ber of perturbations used. Shown are mean plus
confidence bounds over 5 repetitions. Left: Align-
ment Error Rate, Right: F1 over edge prediction.

for our method. The setting is as follows: given an
input-output pair from the cmudict “black-box”,
we use our method to infer dependencies between
characters in the input and phonemes in the out-
put. Since locality in this context is morphologi-
cal instead of semantic, we produce perturbations
selecting n words randomly from the intersection
of the cmudict vocabulary and the set of words
with edit distance at most 2 from the original word.

To evaluate the inferred dependencies, we ran-
domly selected 100 key-value pairs from the dic-
tionary and manually labeled them with character-
to-phoneme alignments. Even though our frame-
work is not geared to produce pairwise align-
ments, it should nevertheless be able to recover
them to a certain extent. To provide a point of
reference, we compare against a (strong) base-
line that is tailored to such a task: a state-of-the-
art unsupervised word alignment method based on
Monte Carlo inference (Tiedemann and Östling,
2016). The results in Figure 2 show that the
version of our method that uses the uncertainty
clustering performs remarkably close to the align-
ment system, with an alignment error rate only ten
points above an oracle version of this system that
was trained on the full arpabet dictionary (dashed
line). The raw and partitioned explanations pro-
vided by our method for an example input-output
pair are shown in Table 1, where the edge widths
correspond to the estimated strength of depen-
dency. Throughout this work we display the nodes
in the same lexical order of the inputs/outputs to
facilitate reading, even if that makes the explana-
tion chunks less visibly discernible. Instead, we
sometimes provide an additional (sorted) heatplot

Raw Dependencies Explanation Graph

ob no a

UW0

l e

IY1 AH0B NL

→
ob no a

UW0

l e

IY1 AH0B NL

ob no a

UW0

l e

IY1 AH0B NL

→
ob no a

UW0

l e

IY1 AH0B NL

Table 1: Inferred dependency graphs before (left)
and after (right) explanation selection for the pre-
diction: boolean 7→ B UW0 L IY1 AH0 N, in
independent runs with large (top) and small (bot-
tom) clustering parameter k.

of dependency values to show these partitions.

5.3 Machine Translation

In our second set of experiments we evaluate
our explanation model in a relevant and popular
sequence-to-sequence task: machine translation.
As black-boxes, we use three different methods for
translating English into German: (i) Azure’s Ma-
chine Translation system, (ii) a Neural MT model,
and (iii) a human (native speaker of German). We
provide details on all three systems in the supple-
ment. We translate the same English sentences
with all three methods, and explain their predic-
tions using SOCRAT. To be able to generate sen-
tences with similar language and structure as those
used to train the two automatic systems, we use the
monolingual English side of the WMT14 dataset
to train the variational autoencoder described in
Section 4.1. For every explanation instance, we
sample S = 100 perturbations and use the black-
boxes to translate them. In all cases, we use the
same default SOCRAT configurations, including
the robust partitioning method.

In Figure 3, we show the explanations provided
by our method for the predictions of each of the
three systems on the input sentence “Students said
they looked forward to his class”. Although the
three black-boxes all provided different transla-
tions, the explanations show a mostly consistent
clustering around the two phrases in the sentence,
and in all three cases the cluster with the highest
cut value (i.e. the most relevant explanative chunk)
is the one containing the subject. Interestingly, the
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Figure 3: Explanations for the predictions of three
Black-Box translators: Azure (top), NMT (mid-
dle) and human (bottom). Note that the rows and
columns of the heatmaps are permuted to show ex-
planation chunks (clusters).

dependency coefficients are overall higher for the
human than for the other systems, suggesting more
coherence in the translations (potentially because
the human translated sentences in context, while
the two automatic systems carry over no informa-
tion from one example to the next).

The NMT system, as opposed to the other two,
is not truly a black-box. We can open the box to
get a glimpse on the true dependencies on the in-
puts used by the system at prediction time (the at-
tention weights) and compare them to the expla-
nation graph. The attention matrix, however, is
dense and not normalized over target tokens, so
it is not directly comparable to our dependency
scores. Nevertheless, we can partition it with the
coclustering method described in Section 4.3 to
enforce group structure and make it easier to com-
pare. Figure 4 shows the attention matrix and the
explanation for an example sentence of the test
set. Their overall cluster structure agrees, though
our method shows conservatism with respect to the
dependencies of the function words (to, for). In-
terestingly, our method is able to figure out that
the <unk> token was likely produced by the word
“appeals”, as shown by the explanation graph.

It must be emphasized that although we dis-
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Figure 4: Top: Original and clustered attention
matrix of the NMT system for a given translation.
Bottom: Dependency estimates and explanation
graph generated by SOCRAT with with S = 100.

play attention scores in various experiments in this
work, we do so only for qualitative evaluation pur-
poses. Our model-agnostic framework can be used
on top of models that do not use attention mech-
anisms or for which this information is hard to
extract. Even in cases where it is available, the
explanation provided by SOCRAT might be com-
plementary or even preferable to attention scores
because: (a) being normalized on both directions
(as opposed to only over source tokens) and parti-
tioned, it is often more interpretable than a dense
attention matrix, and (b) it can be retrieved chunk-
by-chunk in decreasing order of relevance, which
is especially important when explaining large in-
puts and/or outputs.

5.4 A (mediocre) dialogue system

So far we have used our method to explain
(mostly) correct predictions of meaningful mod-
els. But we can use it to gain insights into the
workings of flawed black-box systems too. To
test this, we train a simple dialogue system on the
OpenSubtitle corpus (Tiedemann, 2009), consist-
ing of ∼14M two-step movie dialogues. As be-
fore, we use a sequence-to-sequence model with
attention, but now we constrain the quality of the
model, using only two layers, hidden state dimen-
sion of 1000 and no hyper-parameter tuning.
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Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

Table 2: “Good” dialogue system predictions.
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Figure 5: Explanation with S = 50 (left) and at-
tention (right) for the first prediction in Table 2.

Although most of the predictions of this model
are short and repetitive (Yes/No/<unk> answers),
some of them are seemingly meaningful, and
might—if observed in isolation—lead one to be-
lieve the system is much better than it actually is.
For example, the predictions in Table 2 suggest a
complex use of the input to generate the output.
To better understand this model, we rationalize
its predictions using SOCRAT. The explanation
graph for one such “good” prediction, shown in
Figure 5, suggests that there is little influence of
anything except the tokens What and you on the
output. Thus, our method suggests that this model
is using only partial information of the input and
has probably memorized the connection between
question words and responses. This is confirmed
upon inspecting the model’s attention scores for
this prediction (same figure, right pane).

5.5 Bias detection in parallel corpora

Natural language processing methods that derive
semantics from large corpora have been shown
to incorporate biases present in the data, such
as archaic stereotypes of male/female occupations
(Caliskan et al., 2017) and sexist adjective asso-
ciations (Bolukbasi et al., 2016). Thus, there is
interest in methods that can detect and address
those biases. For our last set of experiments, we
use our approach to diagnose and explain biased
translations of MT systems, first on a simplistic
but verifiable synthetic setting, where we inject

is

il

you

penser bon que

think

est

good

peux

However, might

Tu qu

this

<unk>tu

Figure 6: Explanation with S = 50 for the predic-
tion of the biased translator.

T
u

p
e
u
x

p
e
n
s
e
r

q
u

i
l

e
s
t

b
o
n

q
u
e

t
u

<
u
n
k
>

good

is

this

think

might

you

,

However

V
o
u
s

p
o
u
r
r
i
e
z

p
e
n
s
e
r

q
u
e

c
e
l
a

e
s
t

b
o
n
n
e

good

is

this

think

might

you

0.15

0.30

0.45

0.60

Figure 7: Attention scores on similar sentences by
the biased translator.

a pre-specified spurious association into an other-
wise normal parallel training corpus, and then on
an industrial-quality black-box system.

We simulate a biased corpus as follows. Start-
ing from the WMT14 English-French dataset, we
identify French sentences written in the informal
register (e.g. containing the singular second per-
son tu) and prepend their English translation with
the word However. We obtain about 6K examples
this way, after which we add an additional 1M ex-
amples that do not contain the word however on
the English side. The purpose of this is to attempt
to induce a (false) association between this ad-
verb and the informal register in French. We then
train a sequence-to-sequence model on this pol-
luted data, and we use it to translate adversarially-
chosen sentences containing the contaminating to-
ken. For example, given the input sentence “How-
ever, you might think this is good”, the method
predicts the translation “Tu peux penser qu ’ il est
bon que tu <unk>”, which, albeit far from per-
fect, seems reasonable. However, using SOCRAT

to explain this prediction (cf. Figure 6) raises a red
flag: there is an inexplicable strong dependency
between the function word however and tokens
in the output associated with the informal regis-
ter (tu, peux), and a lack of dependency between
the second tu and the source-side pronoun you.
The model’s attention for this prediction (shown
in Figure 7, left) confirms that it has picked up this
spurious association. Indeed, translating the En-
glish sentence now without the prepended adverb
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Figure 8: Explanations for biased translations of similar gender-neutral English sentences into French
generated with Azure’s MT service. The first two require gender declination in the target (French)
language, while the third one, in plural, does not. The dependencies in the first two shed light on the
cause of the biased selection of gender in the output sentence.

results in a switch to the formal register, as shown
in the second plot in Figure 7.

Although somewhat contrived, this synthetic
setting works as a litmus test to show that our
method is able to detect known artificial biases
from a model’s predictions. We now move to a
real setting, where we investigate biases in the
predictions of an industrial-quality translation sys-
tem. We use Azure’s MT service to translate into
French various simple sentences that lack gender
specification in English, but which require gender-
declined words in the output. We choose sentences
containing occupations and adjectives previously
shown to exhibit gender biases in linguistic cor-
pora (Bolukbasi et al., 2016). After observing the
choice of gender in the translation, we use SO-
CRAT to explain the output.

In line with previous results, we observe that
this translation model exhibits a concerning pref-
erence for the masculine grammatical gender in
sentences containing occupations such as doctor,
professor or adjectives such as smart, talented,
while choosing the feminine gender for charm-
ing, compassionate subjects who are dancers or
nurses. The explanation graphs for two such
examples, shown in Figure 8 (left and center),
suggest strong associations between the gender-
neutral but stereotype-prone source tokens (nurse,
doctor, charming) and the gender-carrying target
tokens (i.e. the feminine-declined cette, danseuse,
charmante in the first sentence and the mascu-
line ce, médecin, talenteux in the second). While
it is not unusual to observe interactions between
multiple source and target tokens, the strength
of dependence in some of these pairs (charm-
ing→danseuse, doctor→ce) is unexplained from
a grammatical point of view. For comparison, the
third example—a sentence in the plural form that

does not involve choice of grammatical gender in
French—shows comparatively much weaker asso-
ciations across words in different parts of the sen-
tence.

6 Discussion

Our model-agnostic framework for prediction in-
terpretability with structured data can produce rea-
sonable, coherent, and often insightful explana-
tions. The results on the machine translation task
demonstrate how such a method yields a partial
view into the inner workings of a black-box sys-
tem. Lastly, the results of the last two exper-
iments also suggest potential for improving ex-
isting systems, by questioning seemingly correct
predictions and explaining those that are not.

The method admits several possible modifi-
cations. Although we focused on sequence-to-
sequence tasks, SOCRAT generalizes to other set-
tings where inputs and outputs can be expressed as
sets of features. An interesting application would
be to infer dependencies between textual and im-
age features in image-to-text prediction (e.g. im-
age captioning). Also, we used a VAE-based sam-
pling for object perturbations but other approaches
are possible depending on the nature of the domain
or data.
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