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Abstract
Adversarial training has become the de facto standard for generative modeling.
While adversarial approaches have shown remarkable success in learning a dis-
tribution that faithfully recovers a reference distribution in its entirety, they are
not applicable when one wishes the generated distribution to recover some —but
not all— aspects of it. For example, one might be interested in modeling purely
relational or topological aspects (such as cluster or manifold structure) while ignor-
ing or constraining absolute characteristics (e.g., global orientation in Euclidean
spaces). Furthermore, such absolute aspects are not available if the data is pro-
vided in an intrinsically relational form, such as a weighted graph. In this work,
we propose an approach to learn generative models across such incomparable
spaces that relies on the Gromov-Wasserstein distance, a notion of discrepancy
that compares distributions relationally rather than absolutely. We show how the
resulting framework can be used to learn distributions across spaces of different
dimensionality or even different data types.

1 Introduction

Generative Adversarial Networks (GANs) [10] and its variations [17, 1, 12] are powerful models for
learning complex distributions. In broad terms, these methods rely on an adversary that compares
(either directly or indirectly) samples from the true and generated distributions, giving rise to a notion
of divergence between them. Current methods require the two distributions to be supported in sets
that are identical or at the very least comparable, so that a coherent ground metric across them can
be defined and lifted to a distance between distributions, e.g., via optimal transport distances [19, 9]
or Integral Probability Metrics (IPM) [15, 22, 14]. In all of these cases, the spaces over which the
distributions are defined must have the same dimensionality (e.g., the space of 28× 28-pixel vectors
for MNIST), and the generated distribution that minimizes the objective is one with the same support
as the reference one. This is of course desirable when the goal is to learn to generate samples that are
indeed indistinguishable from those of the reference distribution.

However, one might be interested in modeling only topological or relational aspects of the reference
distribution, either because the absolute location of the data manifold is irrelevant (e.g., distributions
over spaces of learned representations, such as word embeddings, are defined only up to rotations) or
not available (e.g., if the data is accessible only as a weighted graph among sample points). Owing
to their reliance on direct comparison of samples from the two distributions, traditional generative
adversarial approaches are not applicable in these settings.

In this work, we propose a general method to learn generative models across incomparable spaces, e.g.,
spaces of different dimensionality or data type. Here, the topology (e.g., the relational information
between samples) of the reference data manifold is preserved, but its surface-level form characteristics
can vary. A key component of our method is the Gromov-Wasserstein (GW) distance [13] to compare
distributions, a generalization of classic optimal transport (OT) distances to the case where the ground
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spaces are incomparable. Similar to existing OT-based generative models [19, 9], we leverage the
differentiability of this distance to provide gradients for the generator, and, for efficiency, further
parametrize it via a learnable adversary. The added flexibility of the GW distance necessitates
additional constraining of the adversary. We achieve this by a novel Procrustes-based orthogonality
regularization principle, which might be of independent interest.

While this novel framework subsumes the traditional GAN formulation (i.e., learning an identical
distribution) as a particular case (Fig. 1a and e), it allows to learn cluster-preserving distributions
across spaces of different dimensionality (Fig. 1b and c) and even across different data types, e.g.,
from graphs to Euclidean space (Fig. 1d). Thus, our method can also be understood as performing
dimensionality reduction or manifold learning, but, departing from classical approaches to these prob-
lems, it recovers, in addition to the manifold structure of the data, the probability distribution defined
over it. The main contribution of this work is therefore to provide a framework that substantially
expands the potential applicability of generative adversarial learning.

2 Model

We consider a dataset of n observations (x1, ..., xn) drawn from a reference distribution p ∈ P(X ).
Our goal is to learn a generative model gθ parametrized by θ which resembles the data distribution
purely based on relational and intra-structural characteristics of the dataset. The generative model,
defined as gθ : Z → Y (typically a neural network), maps random noise z ∈ Z to a generator space
Y that is independent of data space X .

2.1 Gromov-Wasserstein Discrepancy

Classical statistical divergences are only applicable when comparing measures whose supports lie in
the same metric space, or when a meaningful distance between them can be computed. Instead of
relying on a metric across the spaces, the Gromov-Wasserstein distance [13] compares distributions
by computing a discrepancy between the metrics defined within each of the spaces. As a consequence,
it is oblivious to the specific characteristics or dimensionality of the spaces.

When the distributions p ∈ P(X ) and q ∈ P(Y) being compared are accessible only through finite
samples, the discrete formulation of the problem requires a similarity (or distance) matrix between the
samples and a probability vector for each space, say (D,p) and (D̄,q), with (D,p) ∈ Rn×n × Σn,
where n is the sample size. Then, the GW discrepancy is defined as

GW (D, D̄,p,q) := min
T∈Up,q

∑
ijkl

L(Dik, D̄jl)TijTkl, (1)

with coupling T , and Up,q being the set of all couplings between p and q. If L = L2, then GW 1/2

defines a (true) distance [13]. Problem (1) is a quadratic programming problem, and solving directly
is prohibitive for large n. Instead, adding an entropy regularization term εH(T ) leads to a smoothed
problem that can be solved much more efficiently through projected gradient descent methods [16],
where the projection steps rely on the Sinkhorn-Knopp scaling algorithm [8]. We refer to the resulting
divergence as GWε.

With entropy regularization, GWε is not a distance any more, as the discrepancy of identical metric
measure spaces is then no longer zero. Similar to the Wasserstein metric [2], the estimation of
GWε(·) from samples yields biased gradients. We thus propose a normalized entropy regularized
Gromov-Wasserstein discrepancy defined as

GW ε(D, D̄,p,q) := 2×GWε(D, D̄,p,q)−GWε(D,D,p,p)−GWε(D̄, D̄,q,q). (2)

2.2 Gromov-Wasserstein Generative Model

As in traditional adversarial approaches, we parametrize the generator gθ : Z → Y as a neural
network that maps noise samples z to features y. We train gθ by using GW ε as a loss, i.e., for mini-
batches X and Y of reference and generated samples, respectively, we compute pairwise distance
matricesD and D̄ and solve theGW ε problem, taking p and q as uniform distributions. Motivated by
Salimans et al. [19] and justified by the envelope theorem [5], we do not backpropagate the gradient
through the iterative computation of the GWε coupling T (Problem (1)).
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While this procedure alone is often sufficient for simple problems, in high dimensions the statistical
efficiency of the classical metrics is generally poor and a large number of input samples is needed
to achieve a good discrimination between generator and data distribution [19]. To improve the
discriminability of generator and data samples, the intra-space distance computation is learned
adversarially. Data and generator samples are mapped into feature spaces in which intra-space
distances are measured using the Euclidean metric, denoted by

Dω
ij := ‖fω(xi)− fω(xj)‖2 , where fω : X → Rs (3)

with fω modeled by a neural network mapping to s-dimensional output. The feature space might
not only reduce the dimensionality of X through a mapping onto Rs but also extract the important
features. The original minimization problem of the generator θ thus becomes a min-max problem

min
θ

max
ω=(ω̌,ω̂)

GW ε(D
ω̌, Dω̂,p,q), (4)

where Dω̌ and Dω̂ denote pairwise distance matrices of samples originating from the generator and
reference domain, respectively, mapped into the feature space via fω (Eq. 3). Adversary fω and
generator gθ are optimized in an alternating training scheme.

Note that Problem (4) makes very few assumptions on the spacesX and Y , requiring only that a metric
be defined on them. This remarkable flexibility can be exploited to enforce various characteristics on
the generated distribution. We briefly discuss some of these in Section 2.3. On the other hand, this
flexibility, combined with the added degrees of freedom brought by the learned adversarial metric,
requires us to regularize the adversary to ensure stable training and prevent it from overpowering the
generator. We propose an effective method to do so in Section 2.4.

2.3 Constraining the Generator

Training the generator using the GW ε loss encourages it to recover the relational and geometrical
properties of the reference dataset, but leaves other global aspects undetermined. We can thus shape
the generated distribution by enforcing desired properties through constraints. For example, while any
translation of a distribution would achieve the same GW ε loss, we can enforce centering around the
origin by penalizing the norm of the generated samples (we use `1 regularization for the examples in
Figure 1a). For computer vision tasks, filters such as total variation denoising [18] assist the training
process and improve the quality of the result (see Fig. 1e).

2.4 Regularizing the Adversary

To avoid arbitrary distortion of the space by the adversary, we propose to regularize fω by (approxi-
mately) enforcing it to define a unitary transformation, thus restricting the magnitude of stretching
it can do. Note that directly parametrizing fω as an orthogonal matrix would defeat its purpose, as
the Frobenius norm is unitarily invariant. Instead, we allow fω a more general form, but limit its
expansivity and contractivity through approximate orthogonality [23]. Orthogonal regularization has
been explored as a means to prevent exploding gradients and stabilize training of neural networks,
and various approaches exist to enforce it in neural networks. Saxe et al. [20] introduced a new
class of random orthogonal initial conditions on the weights of neural networks stabilizing the initial
training phase. By enforcing the weight matrices to be Parseval tight frames, layerwise orthogonality
constraints are introduced [7, 3, 4] and deviations of the weights from orthogonality is penalized via
Rβ(Wk) := β‖W>k Wk − I‖2F , where Wk are weights of layer k and ‖ · ‖F is the Frobenius norm.

However, these approaches enforce orthogonality on the weights of each layer rather than constraining
the network fω in its entirety to function as an orthogonal operator. To achieve this, we introduce a
new orthogonal regularization approach, which ensures orthogonality of a network by minimizing
the distance to its closest orthogonal matrix P ∗. The regularization term is defined as

Rβ(fω(X), X) := β‖fω(X)−XP ∗>‖2F , (5)

where P ∗ is an orthogonal matrix that most closely maps X to fω(X), and β is a hyperparameter.
The matrix P ∗ = arg minP∈O(s) ‖fω(X)−XP>‖F , where O(s) =

{
P ∈ Rs×s | P>P = I

}
and

s the dimensionality of the feature space, can be obtained by solving the orthogonal Procrustes
problem, with closed-form solution P ∗ = UV > [21]. Here, U and V are the left and right singular
vectors of fω(X)>X , i.e. UΣV > = SVD(fω(X)>X). This regularization approach efficiently
enforces orthogonality; we use it for training the adversary of the GW generative model.
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Figure 1: Results of the GW generative model. Learning a mixture of Gaussian distributions
a. with adversary fω and `1-regularization (β = 1). The GW generative model can be applied to
generate samples of c. reduced and d. increased dimensionality compared to the target distribution or
e. map graph data into R2. e. Learning to generate MNIST digits (β = 10).

3 Results

As a proof of concept for the formulation and regularization, we illustrate the versatility of our
method on popular problems for generative modeling. As a sanity check, we test the model’s ability
to recover 2D mixtures of Gaussians. The GW generative model recovers mixtures of Gaussians
both with a static Euclidean as intra-distance representation and with a learned adversary fω (Fig. 1a)
that stabilizes the learning. We also observe that `1-regularization indeed helps position the learned
distributions around the origin. We further test whether the GW generative model can translate across
different dimensionalities: as Figures 1b and c demonstrate, it learns distributions in lower and higher
dimensions. In addition, we let our model learn from geodesic distances between the nodes of a
graph; it indeed captures the graph structure in Euclidean space (Fig. 1d). For the experiments on
synthetic datasets, generator and adversary architectures are multilayer perceptrons (MLPs) with
ReLU activation functions. To illustrate the ability of the GW generative model to generate images,
we train the model on MNIST [11]. Figure 1e displays generated MNIST digits throughout the
training process. Both generator and adversary follow the deep convolutional architecture introduced
by Chen et al. [6]. For both datasets, the adversary was constrained to approximate an orthogonal
operator. The results highlight the effectiveness of the orthogonal Procrustes regularization, which
allows successful learning of complex distributions without further adjustment.

4 Discussion

We presented a new generative model that learns across incomparable spaces by comparing intra-
distances of each space. Disentangling data and generator space enables a wide range of new
applications, and our preliminary experimental results suggest the effectiveness of this approach. Our
novel Procrustes-based regularization principle enforces networks to function as orthogonal operators.
Future work includes exploring the applicability of this regularizer in a wider range of contexts, and
designing constraints to achieve specific characteristics of the generated samples.
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