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Abstract 
 

We study auditory context recognition for context-

aware mobile computing systems. Auditory contexts 

are recordings of a mixture of sounds, or ambient 

audio, from mobile users’ everyday environments. For 

training a classifier, a set of recordings from different 

environments are segmented and labeled. The 

segments are windowed into overlapping frames for 

feature extraction. While previous work in auditory 

context recognition has often treated the problem as a 

sequence classification task and used HMM-based 

classifiers to recognize a sequence of consecutive 

MFCCs of frames, we compute averaged Mel-spectrum 

over the segments and train a SVM-based classifier. 

Our scheme outperforms an already reported HMM-

based scheme. This result is achieved using the same 

dataset. We also show that often the feature sets used 

by previous work are affected by attenuation, limiting 

their applicability in practice. Furthermore, we study 

the impact of segment duration on recognition 

accuracy. 

 

1. Introduction 
 

Context-aware systems adapt to the context of users, 

where context comprises of information related to the 

current situation of the user [1]. Commonly used 

sensing systems include indoor and outdoor positioning 

systems, accelerometers, and video analysis. Perhaps 

surprisingly, a less-studied source is the auditory 

environment of our daily activities.  

Auditory scenes consisting of a mixture of sounds 

from everyday objects is a natural source of context 

information for context-aware computing. Most 

humans can quite naturally listen to audio of a scene, 

and deduce certain characteristics about the setting – 

people in the scene, whether it is outdoors or indoors, 

the types of other objects in the scene and their relative 

positions [2]. However, definitively classifying 

multiple locations exclusively from audio taken from 

those locations is difficult even for humans; Eronen et 

al [2] demonstrated that humans required on average 

14 seconds of audio, and achieved only 69% accuracy 

when given a 28-scene identification task. Nonetheless, 

the identification of scenes and locations by computers 

could have significant use in context aware computing, 

since it requires no centralized infrastructure, and no 

additional hardware besides microphones, which are 

already pervasively available in most portable devices. 

Peltonen et al. call this automated classification of 

auditory contexts, computational auditory scene 

recognition (CASR) [3].  

Following the earliest work in CASR by Sawhney 

[4], many researchers have reported experiments using 

variations in classifiers, feature sets and datasets.  For 

example, Ma et al. classified 12 auditory contexts using 

a hidden Markov model (HMM) based classifier [5]. 

They achieved 96% accuracy by using 9-state left-to-

right HMMs, with one Gaussian mixture component 

per state, using MFCCs features and their first and 

second-order deltas, with a log energy term. Similarly, 

Eronen et al. developed a HMM-based classifier for 28 

auditory contexts, using a different dataset that they 

collected [6]. To select the most suitable features for 

the task, they tried 11 different feature sets using a 

Gaussian mixture model and 1-nearest neighbor 

classifiers. They also studied the effect of audio 

segment length on recognition performance, showing a 

steady increase in recognition accuracy until 20s, and a 

plateau of 72% accuracy at 60s.  In [7], Lu et al. apply 

support vector machines (SVMs) for classifying among 

four classes: non-pure speech, pure speech, background 

sound, demonstrating 80% to 96% accuracy from 0.1 

to 1 second duration audio segments, respectively.  



Like our approach presented in this paper, they derive a 

single set of MFCC based features (means and 

variances) for each segment, instead of treating the 

problem as sequence classification task using HMMs.  

Unfortunately, with all of these different 

experiments reporting varying degrees of success, run 

independently using different data sets, classifiers and 

features, it is difficult to compare and definitively 

identify the best set of methods to use, or to say with 

any confidence how likely the results are to generalize 

to new scenes and audio capture devices. We feel that 

the field of CASR needs more work in achieving 

consistent, comparable results using common 

methodology, which can then be used to more easily 

interpret outcomes.   

In this vein, this paper contributes a re-examination 

of the dataset captured by Ma et al, comparing their 

HMM-based approach against an SVM-approach 

proposed by Lu et al. In addition, we consider the 

effect of feature choice and audio segment length on 

performance, evaluating various combinations of 

features and lengths as recommended by Eronen. Our 

results demonstrate improved accuracy on audio 

context recognition tasks over previously reported 

approaches using HMMs, through the use of SVMs and 

averaged Mel scaled log amplitudes of the spectrum 

(hereafter refer to as the averaged Mel spectrum).  To 

make our results comparable with those of Ma et al [5], 

we reproduce their scene classification experiments as 

described in their paper and employ their datasets1  in 

all of our experiments. However, we discovered several 

problems with this dataset which lead to unexpected 

performance results, which we discuss in Section 4. 

The rest of this paper is organized as follows: In 

section 2 the dataset and feature extraction procedure 

are described. Section 3 goes through our experiments 

and results. Section 4 is dedicated to further 

examination, connecting results to our procedure and 

dataset.  

 

2. Data and methods 
 

2.1. Dataset 
 

To be able to directly compare our results to the 

state of the art, we use the dataset from Ma et al. [5]. 

The dataset consists of recordings from 12 different 

auditory contexts recorded using a mobile device (8 

kHz, 8-bit, mono). The dataset is summarized in Table 

1 [5]. Because Ma et al. used one 5 minute recording of 

each environment for training and one for testing, we 

                                                           
1 http://fizz.cmp.uea.ac.uk/Research/noise_db 

follow the same setup. We call the set of recordings 

used for training ‘dataset1’ and the set of recordings 

used for testing ‘dataset2’. The database contains an 

additional set of 5 min recordings, but unfortunately it 

lacks the recording from one of the environments 

(building site). However, we use this set, called 

‘dataset3’, with the remaining 11 classes. Thus the 

dataset as a whole contains 175min of audio. 

Table 1. Recordings from 12 different environments 
(from [5]) 

Number Routine Environment 

1 Walk to bus stop Street (traffic) 

2 Take bus to office Bus 

3 Pass a building site Building site 

4 Work in office Office 

5 Listen to a presentation Presentation 

6 Urban driving Car (city) 

7 Shopping in mall Shopping mall 

8 Walk in city Street (people) 

9 Shopping in supermarket Supermarket 

10 Laundrette Laundrette 

11 Driving (long distance) Car (highway) 

12 Local or express train Train 

 

As mentioned in section 1, Ma et al. reported 96% 

accuracy when HMM-based classifier was trained 

using dataset1 and tested on dataset2. Nevertheless, 

they also reported that when using dataset1 for training, 

and testing using half of dataset3, the accuracy fell to 

75%. This showed that dataset1 is considerably more 

similar to dataset2 than to dataset3. 

 

2.2. Feature extraction 
 

For each segment, the 8kHz source audio signal is 

framed without pre-emphasis into 3 second non-

overlapping segments; each segment is further 

windowed (using a Hamming window) into 512-sample 

frames with a 384-sample overlap between them. From 

each frame, a 40-element Mel spectrum is computed 

and used to derive 12-element MFCCs for that frame. 

In addition to this baseline feature set, several 

additional features were computed: the overall log 

energy of the segment, the zero crossing rate, spectral 

centroid, and spectral flux [8]. Each of these features is 

averaged across all the frames in each segment to yield 

the features for each segment. The extraction procedure 

for the averaged MFCCs is described e.g. in [10]. For 

this set of experiments, we used Roger Jang’s audio 

toolbox to extract features [9].  Additionally, we chose 

not to use the standard deviation of the averages 

because in early experiments we noticed it did not 



improve results significantly, and because we wanted to 

keep the size of the feature vector similar to that of [5]; 

the feature sets are summarized in Table 2. 

 

2.3. Classifiers 
 

WEKA 3.5.5 [11] was used for training and testing 

the SVM-based classifiers.  All of WEKA’s default 

settings for SVMs were used except for kernel 

parameters, which were hand-tuned.  To perform 

multiclass classification using their binary SVM-

classifier, we employed a “one-against-one” (i.e., 

pairwise) voting scheme, because it seemed to perform 

the best for this problem [12].  

 

3. Results 
 

In this section we describe the performance of our 

classifier on Ma et al.’s 12-scene auditory context 

classification task.  We evaluate 8 different choices for 

features,  and analyze the impact of sliding 

segmentation, segment duration and temporal 

smoothing on recognition accuracy. 

 

3.1. Feature set  
 

The recognition accuracies achieved with different 

feature sets are compared in this section. In preliminary 

tests, we tuned the kernel degree for polynomial kernel, 

the gamma-parameter for the RBF kernel, and the 

regularization parameters for each. This was done by 

training on dataset1 and testing with dataset2. The 

difference in accuracy between the best-performing 

polynomial kernel (of degrees in the range 1 to 15) and 

the best RBF kernel was less than 1 percent. Therefore 

we chose to stick with the polynomial kernel for all 

tests described here. In all tests, a segment duration of 

3 seconds was used. The regularization parameter was 

increased from 1 up to 100000 with decade-steps for 

all kernel degrees and gammas. In the following, results 

are reported for the best-performing parameters. 

To compute the accuracy we trained the classifier 

using the particular choice of features on dataset1.  

Then, this trained classifier was run on all of the test 

examples for each class in datasets 2 and 3 in turn.  

Since the examples (in both test set and training set) of 

a class come from a single continuous audio recording, 

they cannot be considered entirely statistically 

independent, however this is how Ma et al. evaluated 

their classifiers and thus we chose to repeat the same 

procedure in our evaluation. 

Table 2 summarizes the results. The best overall 

accuracy across test datasets, 92.8%, was achieved 

using feature set 3, consisting of the 40-element Mel 

spectrum. Interestingly, this is slightly better than that 

of feature set 4, which and adds the MFCCs derived 

from the Mel spectrum. Hence, adding features can 

have detrimental effects on performance. 

When using dataset3 for testing, the classifier was 

trained using twelve classes, but tested presenting 

examples from eleven classes, because dataset3 lacks 

the building site recording (see section 2.1). The best 

accuracy, 87.1%, for dataset3 was achieved using 

feature set 3. Ma et al. reported 75% accuracy for their 

HMM-based classifier [5] for this setup. Some of the 

12% difference may amount to the test setup just 

described, although we assume Ma et al. have used a 

similar test setup for dataset3. 

 

3.2. Sliding window segmentation  
 

Limited audio data for training in CASR can cause 

key, short-lived acoustic events which may be useful 

for identifying a scene but happen rarely in the signal 

to be underrepresented.  For example, the sound of a 

door closing might be key to identifying an office 

scene, or a bus’s brakes to identifying a bus scene.  

One proposed approach to combat this scarcity 

suggested by [6], is to try to re-use some of these 

acoustic events across multiple training examples by 

overlapping segments in the training set.   

We therefore conducted experiments studying the 

effect of changing the segmentation to a sliding-

window approach on classifier performance.  A fixed 

inter-segment hop length of 0.1s (800 samples) was 

chosen and held constant across experiments; thus the 

number of examples from every class increased from 

100 to 2970. Otherwise the feature extraction was 

performed as described in section 2.2. In both tests, 

polynomial kernel SVMs were trained using the best 

performing kernel degree and regularization parameters 

in the same manner as our previous experiment. 

When testing this classifier on the same data (no 

overlapping, 100 examples per class) as in section 3.1, 

the accuracy rises to 88.3%. Thus, the more effective 

use of training data due to the segment overlapping 

improves accuracy only 1.2% at 3s (over the 87.1% 

shown in Table 2) 



Table 2. Summary of classification performance using different combinations of features.  The highest performing 
feature combinations for each dataset are highlighted in bold 

Feature set Features #of features Dataset2 Dataset3 Dataset2 -30dB Average 

Feature set 1 12-element MFCCs 12 87.0% 79.2% 87.0% 84.4% 

Feature set 2 12-element MFCCs and log energy term 13 93.1% 83.0% 27.6% 67.9% 

Feature set 3 40-element Mel spectrum 40 95.7% 87.1% 95.7% 92.8% 

Feature set 4 12-element MFCCs and 40-element Mel spectrum 52 95.2% 84.3% 95.2% 91.6% 

Feature set 5 12-element MFCCs, log energy term, and 40-

element Mel spectrum 

53 96.5% 85.8% 47.1% 76.5% 

Feature set 6 40-element Mel spectrum and zero crossing rate 41 95.5% 87.0% 95.5% 92.7% 

Feature set 7 40-element Mel spectrum and spectral centroid 41 96.1% 86.1% 96.1% 92.8% 

Feature set 8 40-element Mel spectrum and spectral flux 41 95.5% 83.4% 95.5% 91.5% 

 

3.3 Segment duration 
 

Next, we examined the effect of varying segment 

duration on classifier performance.  We maintained 

sliding window segmentation described in the last 

section, with a hop length of 0.1s. 

First, the green curve (with triangles) in Figure 1 

shows the results using dataset1 for training and 

dataset2 for testing, varying segment duration from 

0.1s to 10s. The recognition rate increases from 0.1s 

until 3s and then plateaus. A possible cause is our 

feature extraction and classification scheme; averaging 

may cause the difficulty of discriminating between two 

classes to vary with segment duration. Second, the 

classifier trained on dataset1 was evaluated on 

dataset3. The results are shown in Figure 1 as the blue 

curve (with diamonds). We examine these results in 

section 4.2. 

 

3.4. Temporal smoothing 
 

In an effort to increase classifier robustness, we 

evaluated an approach which combined multiple 

predictions for individual 0.1s segments (computed as 

described earlier) into a single prediction through 

majority voting. The purple (crosses) and the red 

(squares) curves in Figure 1 depict the performance 

achieved with this approach, when predictions are 

smoothed using windows containing 3-100 segment 

predictions, corresponding to overall audio durations of 

0.3s-10s. The test examples are presented to the 

classifier one class at a time, so the correct label 

changes 11 times (10 times with dataset3). Figure 1 

shows that temporal smoothing improves results for 

only the short segments. This is likely caused by the 

“filtering effect” over the noisy predictions of 

individual classifications of the 0.1s segments.  

 

3.5 Audio volume 
 

In practical daily use, audio captured from device 

microphones might be attenuated randomly for various 

physical reasons. For example, the difference between 

a mobile phone being placed on a surface in open air 

versus in a person’s pocket or purse could easily cause 

a 30dB or greater attenuation. Since performance 

degradation from such activities could impact the use 

of CASR in practice, we examined robustness of each 

our classifiers to signal attenuation. We did this simply 

by applying a 30dB attenuation to the signal captured 

in dataset2. Note the major differences in attenuated 

and unattenuated performance for some feature sets and 

no difference in others. As (perhaps) could be 

expected, the feature sets that contain a log energy term 

(2 and 5) do not perform well. This limits the 

applicability of such features in practice. For example, 

Ma et al. [5] include a log energy feature in their 

feature set, but did not study robustness with respect to 

variable signal power. 

 

4. Analysis 
 

In this section, we revisit our results, comparing them 

to those of Ma et al. [5], and investigate sources of 

performance degradations that we observed. 

 

4.1. Feature sets 
 

In Table 2 the accuracies of the feature sets from 3 

to 8 are comparable to the reported 96% of Ma et al. 

for dataset2. They used 12 MFCCs and a log energy 

term with their first and second-order deltas, resulting 

in a 39-element feature vector, and classified the 3s 

segment using 9-state left-to-right HMMs. Our feature 

set 3 is of comparable length.  

Next, we revisit the results of section 3.1 for feature 

set 3. The accuracies of individual auditory contexts 



are shown in Table 3 (polynomial kernel degree 2, one-

against-one scheme, 95.7% accuracy). Comparing 

these accuracies to the ones presented by Ma et al. in 

[5], a significant difference is that in [5] bus is 

recognized at 81% accuracy, whereas here it is 100%. 

As opposed to that, here supermarket is recognized 

with accuracy 83.8%, but Ma et al. report 100% for it. 

Finally, the accuracy for street (traffic) is 100% with 

our scheme, but 93% with the HMM-based scheme of 

Ma et al. For both schemes, launderette and shopping 

mall are among the most difficult to recognize. Either 

the different feature sets or the different classification 

schemes may cause these dissimilarities.  

 
Table 3. Accuracies of auditory contexts for 3s 
segment duration and feature set 3, using dataset1 for 
training and dataset2 for testing 
 

Auditory 

context 

Acc. (%) Auditory 

context 

Acc. (%) 

Street (traffic) 100.0 Shopping mall 77.8 

Bus 100.0 Street (people) 97.0 

Building site 100.0 Supermarket 83.8 

Office 100.0 Launderette 92.0 

Presentation 99.0 Car (highway) 99.0 

Car (city) 100.0 Train 100.0 

 

4.2 Segment duration 
 

Kernel degrees 1 and 2 provided the best results for 

most segment durations. With a few exceptions, 

accuracy fell for all segment durations as a function of 

kernel degree, for degrees larger than 2, indicating 

over-fitting of higher degree kernels.  

To analyze the unexpected drop-off in overall 

performance with segment lengths longer than 4s for 

dataset3 depicted in Figure 1, we studied it a bit 

further.  Figure 2 decomposes the aggregate 

performance to accuracies for classifying each of the 

individual classes. It can be seen that the peaks of the 

supermarket (squares, light blue) and bus (smooth line, 

red) largely cause the peak between 3s and 4s in Figure 

1. Examination of the confusion matrices revealed that 

the peak of supermarket is due to its confusions with 

street (people), launderette, and car having a minimum 

at 4s.  Similarly, the drop-off in performance with bus 

after 4s was due to a significant increase in confusion 

with presentation.  As mentioned above, some of these 

variances in accuracies may be related to our 

averaging-based feature extraction scheme. However, 

we believe that a number of these issues were caused 

by characteristics of the original recordings, as we 

discuss in the next section.  Further study with different 

datasets is needed to rule out any of these possibilities. 

 
 

Figure 1. Accuracy as a function of segment duration, 
using overlapping segments from dataset1 in training. 
Temporal smoothing is applied over the SVM 
predictions from 0.1s segments in a sliding window 
corresponding to the x-axis value 

 

  
 

Figure 2. Accuracies of classes as a function of 
segment duration; overlapping segments, dataset3 as 
test set 

 

With regard to choice of segment duration for a 

system implementation, the arbitrary choice of using 3s 

segments made by Ma et al. [5] seems to suit these 

dataset well, at least using our classification schemes. 

Using our schemes, accuracy seems to increase with 

segment duration until approximately 4s. However, 

shorter segment durations starting from 0.5s provide 

reasonable accuracy-latency trade-offs. We plan to 

confirm these results with another dataset in our future 

work. 

 

4.3 Dataset difficulties  

 
To get an idea of the cause for the lower  accuracy 

of our classifier on dataset3 compared to dataset2, we 

examined the spectrograms of the recordings from the 

datasets (Figure 3). Figure 3 shows frequencies up to 

4kHz for the first 60s segment from each of the 



selected auditory contexts (as opposed to only the first 

3 seconds reported in [5]).  

Note the large difference between the launderette 

recording from dataset1 and dataset2 in the high 

frequencies. Similarly, the frequency content of bus 

recordings from dataset1 and dataset2 are similar, 

whereas in dataset3 the energy is concentrated at lower 

frequencies. These differences confirm the intuition 

that not all launderettes or busses sound the same – and 

to ensure generalization to new environments of each 

class, datasets should contain more examples from each 

environment type. 

An additional difficulty in the source recordings 

surrounded gain issues in several of the samples.  In all 

three datasets, we noticed that there was considerable 

“clipping” in some of the recordings (e.g., the bus) – 

giving them a very harsh and noisy texture that made 

them barely recognizable to the experimenters. On the 

one hand, several of the recordings had virtually no 

human-audible signal (e.g., the office), which similarly 

made them hard to differentiate from any other near-

silent environment. We believe that these cases could 

have been mitigated by more careful gain control 

during the recording process, and may have artificially 

skewed results against several classes in the dataset. 

 

5. Summary 
 

In this paper, we presented results on using 

averaged spectral features with SVM-based classifier 

for auditory context recognition. The results show that 

despite the natural temporal continuity of mixtures of 

audio signals forming auditory contexts, SVM 

classifiers perform well compared to HMM-based 

classifiers in auditory context classification. In 

particular, using a feature vector of comparable size, 

the accuracy of our SVM-based classifier is about 13% 

higher than the reported accuracy of a HMM-based 

classifier for the same classification task 

(train:dataset1 , test:dataset3). For the other setup 

(train:dataset1, test:dataset2) our system achieved 

equal accuracy, but without using attenuation-sensitive 

log energy. In general, we think that energy-based 

features should not be used as such to recognize 

auditory contexts. 

Considering kernel degree 1 and regularization 

parameter set to 1 as a baseline, tuning the degree and 

the regularization parameter had no significant affect 

on recognition accuracy when using feature set 3. 

We studied also how the duration of analyzed 

segment affect recognition accuracy. While in our tests 

highest accuracy is obtained from segments longer than 

3s, durations starting from 0.5s provide reasonable 

accuracy-latency trade-offs. Considering the quality of 

the used datasets, we plan to confirm these results using 

another set of recordings.  

 

Figure 3. Spectrograms of recordings from the 
environments laundrette, bus, and shopping centre 
from dataset1, dataset2, and dataset3. Each 
spectrogram spans 60s of audio from the beginning of 
the recording. Frequencies up to 4kHz are shown 
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