

AtomsMasher: Personal Reactive Automation for the Web
Max Van Kleek1, Paul André2, Mikko Perttunen3,

Michael Bernstein1, David Karger1, Rob Miller1 and m.c. schraefel2

1CSAIL, MIT
32 Vassar St.

Cambridge, MA, 02139, USA
max@mit.edu

2Electronics and Computer Science
University of Southampton

SO17 1BJ, UK
pa2@ecs.soton.ac.uk

3Dept. of Electrical
and Information Engineering
University of Oulu, Finland
mikko.perttunen@ee.oulu.fi

ABSTRACT
The rise of "Web 2.0" has seen an explosion of web sites
for the social sharing of personal information. To enable
users to make valuable use of the rich yet fragmented sea of
public, social, and personal information, data mashups
emerged to provide a means for combining and filtering
such information into coherent feeds and visualizations. In
this paper we present AtomsMasher (AM), a new frame-
work which extends data mashups into the realm of con-
text-aware reactive behaviors. Reactive scripts in AM can
be made to trigger automatically in response to changes in
its world model derived from multiple web-based data
feeds. By exposing a simple state-model abstraction and
query language abstractions of data derived from heteroge-
neous web feeds through a simulation-based interactive
script debugging environment, AM greatly simplifies the
process of creating such automation in a way that is flexi-
ble, predictable, scalable and within the reach of everyday
Web programmers.
Keywords: toolkit, programming language, end user auto-
mation, rdf, context aware, mashup, reactive behaviors.
INTRODUCTION
Despite the ever-increasing quantity of potentially valuable
information brought to us by the Web and other channels of
digital communication, our limited time and energy neces-
sitates that some be neglected. In this paper, we explore the
potential for web-based personal reactive behaviors to help
us both cope with this information, and utilize it, saving us
time and effort. These behaviors let users specify simple
actions for responding to incoming information, leveraging
web information sources for increased adaptivity. Some
examples are as follows:
• contextual information such as location – remind me to

call my mother when I get home;
• bridging channels of communication – translating texts

I send from my phone to Facebook status updates;
• make my apps schedule aware – filter my e-mails and

documents pertaining to my current meeting;
• queries across multiple sources –find out if any bands I

like are playing tonight, and which of my friends that
like similar music are free to come.

While programmers could write custom applications to

realize each of these behaviors, doing so would require
repeatedly solving the same problems a number of times
from scratch. Specifically: the transformation of raw data
from web APIs, the identification of items of interest
within that data, and articulating conditions for action.
AtomsMasher addresses these needs by providing a single,
consolidated representation of data aggregated from arbi-
trary sources on the web, an object relation mapper (ORM)
and query language to simplify access to this representa-
tion, and a rule engine for efficiently determining when
behaviors should be run. This tool is aimed at a similar
audience to that of most mashups and end-user automation,
the “growing groups of web designers and developers fa-
miliar with scripting languages”[1], reducing the barrier to
let users “jump in” and specify their behaviors in as simple
and efficient a manner as possible, interactively experi-
menting and debugging as they go along.

SYSTEM DESCRIPTION
AtomsMasher consists of data management components, a
programming language interface, and a graphical interface
for behavior development and simulation/debugging. In
order to simplify installation and access by web developers,
AM is deployed as a self-contained Firefox plug-in that can
be pulled up with a hotkey as a sidebar or full screen inter-
face (see figure 1). The role of each of the components is
described.

Data modeling and rule engine
The “engine” of AM consists of code for data acquisition
(fetching, filtering and storage) and behavior management
(a rule chainer). The former is responsible for pulling

 Keep this space free for the ACM copyright notice.

Figure 1. The fullscreen AtomsMasher interface, display-
ing: rules, query and state variables, splitters, feed rules.

structured information from web data sources (i.e., Atom or
RSS feeds and REST-based APIs), and transforming this
information into instances of a common, open ontology that
can be extended by users. Due to the highly varied infor-
mation returned in often inconsistent form from Web APIs,
entries processed by AM’s generic feed parser are handed
over to hand-written feed-specific transformation plug-ins
called atom splitters, which are responsible for distilling
elements from obtained form into the AM ontology. Once
ontology elements have been derived from new feed items,
they are persisted in a knowledge base (KB) that is kept
locally in the user’s Firefox profile. This KB acts as the
world model for evaluating behavior antecedents and ac-
tions. Since behaviors can only access instances in the KB,
the KB serves the important role of decoupling data sources
from use. To reduce the need for users to write splitters, we
have constructed a repository where authored splitters can
be uploaded for others to use; when new data sources are
added, AM checks this repository for new feeds prior to
asking the user for help.
AM’s rule engine is modeled on a simple forward-chainer,
with AM-specific extensions. To speed up trigger identifi-
cation, antecedents are compiled into SQL queries that get
pushed down into the underlying SQLite engine of the tri-
ple-store DB. The chainer keeps track of its history of fir-
ings to avoid repeated triggerings with previously fired
bindings.

Programming language interface
To maintain familiarity to web programmers, AM extends
JavaScript (JS) to provide mechanisms for easily specifying
rules and referring to stored entities in the KB. To this end,
we combined the roles of a object relation mapper (ORM)
with that of a query language like jQuery (jQuery.com) to
create AM query variables (AMQVs) representing entities
in the KB as JS objects, i.e., query sets. Applications of
operators to AMQVs evaluate to new AMQVs with ex-
panded or restricted sets of values, representing all non-
false values resulting from mapping the operator over each
of the items in the original set. The end result is that queries
to the KB resemble plain expressions involving JS objects.
Besides query variables, AM maintains a global JS object
that functions as a persistent state model that can be driven
by new incoming data items. This state model is used to
make convenient the tracking of aspects of the user’s state,
such as their location or current activity. The state model is
updated whenever a behavior that assigns to the state vari-
able object is fired.

Rule simulation and debugging environment
AM’s UI provides two facilities to help users debug their
behaviors. The first, inspired by the Pig pen [3], is behav-
ior simulation, in which AM generates a set of example
“situations” for which a particular behavior antecedent
would fire, and the resulting action it would take. The sec-
ond is an easy-to-inspect history of firings for debugging
past actions.

SCENARIOS
We provide an implementation of the last scenario from the
introduction (friends and music preferences), to illustrate
how suitable feed or state rules, and behavior or query rules
can be written in AM syntax. Implementations for the other
scenarios can be found at http://snipurl.com/2wto4. This
illustrates an ambitious use of AM to query across poten-
tially hundreds of data sources—i.e., our friend’s calendars.
In this rule, triggered remotely from our phones via a text
message, we isolate a set of concerts the user may wish to
attend, by finding the intersection between concerts in the
area and artists on the user’s recently played (Last.fm) list.
The script then selects friends of the user who have no ap-
pointments scheduled, and who have recently listened to
any of the artists that are in concert. The list of such friends
and concerts are returned in a reply.
// run if we get an incoming text message from
// ourselves with command “goodshows”
when(New.type==Message.Text&&New.contents==“goodshows”) {
 cs = events({type:'concert', start:Now.day()});
 playedmusic = recentlyPlayedMusic();
 freefriends = friends().filter(function(friend) {
 return friend.cal.freebetween(Today.hour(18),Tomorrow);
 });
 goodshows = cs.filter(function(c) {
 return c.location.nearTo(my.location,miles(2))&&
 playedmusic.artist.eq(c.artist);
 }); // now reply to original message
 reply(New, freefriends.
 musicPlaylist.artist.eq(goodshows.artist));
}

CONCLUSIONS AND FUTURE WORK
By combining heterogeneous sources of personal and social
information available on the web, AtomsMasher enables
the construction of rich, context-aware reactive behaviors.
In particular, AM demonstrates the simplicity and expres-
sive power gained in deriving a unified data representation
from heterogeneous web feeds, and the use of simple lan-
guage extensions to make these representations natural to
web developers already familiar with Javascript.
Ongoing work spans two main areas: language design and
user interface design. We will identify the most useful
types of rules and use them to reconsider rule syntax. Our
user interface will draw on work in visual programming
and PBD to simplify the initiation, understanding, and scru-
tability of actions. In addition, we will be investigating the
sharing of behaviors (similar to the Co-Scripter wiki [2]) as
well as privacy and security implications of our work. We
are currently planning an in-depth evaluation into the utility
and unexpected applications of AM, as well as the usability
of our rules and predicates, with a public release in the fall.

REFERENCES
1. Hartmann, B., Wu, L., Collins, K., Klemmer, S.R. Pro-

gramming by a sample: rapidly creating web applica-
tions with d.mix. UIST’07.

2. Leshed, G., Haber, E., Lau, T., Cypher, A. Co-Scripter:
Sharing ‘How-To’ Knowledge in the Enterprise.
GROUP’07

3. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tom-
kins A., “Pig Latin: A not-so-foreign language for data
processing”, ACM SIGMOD 2008.

