

GUI— Phooey! : The Case for Text Input

Max Van Kleek1, Michael Bernstein1, David R. Karger1, mc schraefel2
1MIT CSAIL, 32 Vassar Street, Cambridge MA 02139

2USouthampton, Southampton, UK, S017 1BJ
{emax, msbernst, karger, mc}@csail.mit.edu

ABSTRACT
Information cannot be found if it is not entered. Research
shows that existing rich graphical application approaches
interfere with user input in many ways, forcing complex
interactions to enter simple information, requiring complex
cognition to decide where the data should be stored, and
limiting the kind of information that can be entered to what
can fit into specific applications' data models. Freeform
text entry suffers from none of these limitations but pro-
duces data that is hard to retrieve or visualize. We describe
the design and implementation of Jourknow. a system that
aims to bridge these two modalities, supporting lightweight
text entry and weightless context capture that produces
enough structure to support rich interactive presentation
and retrieval of the arbitrary information entered.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical l user interfaces.
General terms: Design, Human Factors
Keywords: Personal Information Management, input, text,
structured text, lightweight input

INTRODUCTION
Too often, even the best information retrieval tools cannot
help us find what we are seeking, because the information
we want was never recorded. This can happen for many
reasons. Sometimes, we simply do not recognize that the
information might be needed later [18]. At other times, the
perceived cost to launch and navigate through multiple
applications to capture the information seems too high for
the currently perceived value of the data. Finally, our
strong desire to record some information can be stymied by
the fact that there is no natural place for it---no folder
where we have confidence that we will be able to find it
when we need it [7], or no native application that may be
associated with the particular kind of data being entered.
Many of these problems vanish if we turn to a much older
recording technology: text. Recording a fragment of text
simply requires picking up a pen or typing at a keyboard.
When we enter text, each (pen or key) stroke is being used
to record the actual information we care about---none is
wasted on application navigation or configuration. The
linear structure of text means there's always an obvious
place to put anything---at the end. And the free form of
text means we can record anything we want to about any-
thing, without worrying whether it fits some application
schema or should be split over multiple applications. All of
this means that we have to do less to record text, which
makes it more efficient and also less of an interruption and
distraction than using complex applications.

While text is an outstanding solution for recording informa-
tion, its weakness lies in retrieval. Text's fixed linear form
reduces us to scanning through it for information we need.
Even with electronic text, the lack of structure means we
cannot filter or sort by various properties of the informa-
tion. When we aren't sure what we want, a blank text
search box offers few cues to help us construct an appropri-
ate query [34]. The shorthand we use to record information
in a given context can make it both hard to find and incom-
prehensible when we return to it later without that context
[19]. Furthermore, only text we explicitly enter is re-

Figure 1: The Jourknow interaction interface displaying
the set of textual notes, which we collectively refer to as
the codex. In addition to the text, Jourknow’s side panels
provide facilities for quickly scanning notes through epi-
sode thumbnails and navigating non-linearly by filtering
notes according to facets that characterize their contents.
The current context display (bottom right) provides a pre-
view of how the current editing session will be later por-
trayed in episodes.

corded, without any of the related contextual information
(such as a timestamp) that might be known to a sophisti-
cated application.
In this paper we argue that it is possible and desirable to
combine the easy input affordances of text with the power-
ful retrieval and visualization capabilities of graphical ap-
plications. We present Jourknow, a personal journal that
“knows what you mean” when you write things. That is, it
supports lightweight text input to be used for capturing
richly structured information for later retrieval and naviga-
tion in variety of interfaces. Jourknow provides the follow-
ing facilities:
• Entry of information by typing arbitrary scraps of text

(with all the text-input benefits mentioned above)
• Inclusion of structured information in the text through a

simple and user-extensible shorthand we call "pidgin"
• Extraction of structure from scraps of text, identifying

entities and relationships between them
• An arbitrarily flexible data model to record whatever

structure a user considers important
• Association of automatically-measured context with the

information being recorded
• Search and faceted browsing based on tags, entities, and

relations for finding relevant text scraps
• Automatic routing of relevant pieces of the entered in-

formation to traditional PIM applications such as calen-
dar, address book, and web browser so that it can be re-
trieved and visualized using those domain-specific
tools.

In order to deliver these interactions, we had to solve sev-
eral challenges: capturing structure from text not entered in
a form, modeling capture of desktop state for appropriate
association with a scrap, supporting interpretation and re-
trieval of individual text scraps, and integration of captured
data for use with existing applications. In the following
sections we present the related work that informs our ap-
proach, describe the interaction design and implementation
design details. We then discuss our immediate plans for
extending the Jourknow platform, iterating its design, and
most importantly, studying the impact of Jourknow on peo-
ple’s information scrap entry and reuse behavior.

RELATED WORK
In personal information management (PIM) research, there
is a tension between the desire for lightweight mechanisms
when inputting data and the desire for that data to be richly
structured once it has been entered. We see this tension
expressed in Kalnikaite et al.’s recent work in personal
note-taking tools, which describes the need for both effi-
ciency (reducing the effort required to add notes with a
particular tool) and accuracy (the fidelity of the resulting
notes and their later utility) [17]. Their study revealed that
efficiency was key to determining whether a user would
choose to use a particular tool for capture, but accuracy
determined whether notes would be revisited, and how long
notes would continue to be useful after they were captured.
There was little evidence that one tool regularly supported
both attributes. Our goal is to bridge this gap.

Challenges of structured input
For initial data capture, the need for fast, lightweight input
was driven by an understanding that both lack of control
over interruptions [8] and the cognitive load of multitask-
ing [14, 24] could severely impact performance of carrying
out a given task. Ross and Nisbett [29] identified some of
these impediments as channel factors, "small but critical
facilitators" that could dramatically impact a person's ac-
tions. Channel factor analysis has identified how even sim-
ple intervening steps to a task, such as, for example, need-
ing to explicitly assign a name to a file at time of its crea-
tion, or to navigate a complex set of GUI widgets on an
input form, impede a user’s work flow, occasionally to the
point of derailing them from ultimately accomplishing their
task(s).
Regardless of the UI, the mere requirement for structure
can interfere with peoples’ ability to record the information
they want. For instance, primary work by Bellotti et al. [3]
and Blandford [6] each found that people naturally use
partial, incomplete, or often vague descriptions of data in
their personal notes, while PIM tools often require rigid,
formal and exact specifications. According to Kalnikaite
[17], this mismatch between human practice and machine
form creates a considerable barrier to PIM tool use.

The need for structure
Despite our resistance as users to current UI mechanisms
like form-filling to associate structure with information as
found in calendar and address book applications, without
that structure, information becomes difficult to utilize effi-
ciently. Indeed, barring a word processor, applications from
iTunes to spreadsheets to large scale PIMs like Lotus
Notes, to databases, to faceted browsers [12] have well-
defined structured models to drive their user interfaces;
without them these tools would simply not work. Struc-
tured data is the lingua franca of these applications. These
structures can then be mined to support the user's needs,
such as through activity management [11, 18, 26], and data
manipulation and transformation [19, 31] Unfortunately,
the tremendous information management benefits offered
by rich graphical user interfaces over richly structured data
are entirely lost if the cost of entering information into
those applications deters people from doing so. [3]

Information Extraction
The field of information extraction (IE) [25] has focused on
the general problem of automatically identifying and inter-
preting structured information in free text, including refer-
ences to things and relations among them. Much of the
work in IE, however, has surrounded analyzing either
proper well-formed written or transcribed spoken natural
language, which, as we have found [5] differs in form sig-
nificantly from the abbreviated, often ungrammatical forms
people seem to use in their information scraps. Since tech-
niques for mining information from these abbreviated
forms (which often contain less syntactic and grammatical
structure) are significantly less well understood, we have
had to adapt existing NLP extraction techniques, choosing
particularly simple approaches in order to ensure predict-

able and reliable behavior. This is described in the Imple-
mentation section.

(Re)use of data/structure: contexts
In order to help recover entered data, Jourknow has also
been informed by studies of remembrance habits, which
find that data is often indexed by information extrinsic to
the bits themselves, such as relevant people [9], the path to
the information, or temporal aspects [22, 28]. There is evi-
dence to support the use of such virtual markers: Sellen et
al. has shown that even arbitrary pictures automatically
taken at intervals by a camera strapped to the user's body
can effectively prime a person's memory to help them recall
specific events in their daily lives [33]. Recently, Whittaker
observed that automatically capturing and associating in-
formation with notes (such as audio records) can help peo-
ple remember facts and meanings associated with personal
notes, which otherwise fade within a month [17]. Such "life
logging" has also been explored in the personal notebook
space. Dumais et al.'s Stuff-I've-Seen [9] demonstrates that
context pertaining to when users last viewed documents can
be used to ease their re-finding. Pepys [21] and the Re-
membrance Agent [27] incorporate location and the identity
of nearby persons to retrieve notes created in similar con-
texts. MyLifeBits from MSR has also sought to build a
lifetime personal information store that computes spatial
and temporal correlations among resources for retrieval
tasks, such as searching for documents based on co-
occurring events, co-located items, and time of access [10].

INTERACTION
In this section, we describe the design of our system, as
pictured in Figure 1. The overarching goal is to create an
effective bridge between rapid, low-cost, unconstrained
input based on text and context and effective retrieval and
output based on a structured data model and rich GUI. Our
design achieves this end through the following means.
Unconstrained text entry. Information is entered as free text
in a small text widget that can be invoked anywhere by a
keystroke.
Entity recognition. Jourknow recognizes named entities in
the entered text and associates the entered information with
them. New entities can be defined as needed.
Structure recognition. Jourknow uses simple subject-
oriented grammars (or pidgins) about defined concepts
such as meetings, dates, and locations for parsing structured
information in text fragments; e.g. "meeting with joe at 5pm
in G592", or "add milk to shopping list". Users can change
what forms Jourknow recognizes by example, as described
later, including extending the grammar to handle new types
of information, such as, for example, names and properties
of stamps in a user’s collection.
Context capture. Jourknow watches what a user is doing
and where they are doing it, and records that information
with input text to assist in later retrieval.
Application integration. Jourknow provides access to en-
tered text containing information that aligns with structured
applications directly through these applications, such as

calendar, address book, and web browser, so that the in-
formation can be used easily when they are needed, and can
be organized using those rich domain-specific tools.
First-class text fragments.. Jourknow treats its input, not as
one big blob of text, but as a large collection of text scraps
and entities that can be retrieved individually. This offers a
much finer grain of retrieval than other system, so that user
can home in on exactly what they need.
Structured retrieval. Jourknow offers search and faceted
browsing based on tags, entities, and relations for finding
relevant text scraps and entities.
In the remainder of this section, we offer more detail on the
mechanisms listed above.

Text: Lightweight Input of Information
The two main design goals for data input into Jourknow
are, first, efficiency, the ability to get the information into
the computer as easily and conveniently for the user as pos-
sible; and second, fidelity, the facility to capture the struc-
ture of information in as flexible and non-restrictive a way
as possible.
To address light-weight data entry, Jourknow provides a
simple unrestrictive text input in which the user may type
notes in any way they please. Specifically, data entry into
Jourknow divides the user’s text buffer into notes that may
be freely rearranged. The set of all a person's notes and
their contents in Jourknow is called the codex. To reduce
the cost of switching applications to add notes to Jourknow,
Jourknow provides a number of shortcut hotkeys that make
it possible to interact with it while other applications have
focus. The "toggle visibility" hotkey instantly brings
Jourknow into focus, and dismisses it from view when
pushed a second time. A "paste" hotkey sequence sends
any selected text from any application directly into a new
Jourknow note and brings it into view, while a "bookmark"
hotkey, if pressed while viewing any document or web
page, adds the document's title and link to a new Jourknow
note. Similarly, text may be simply dragged and dropped
or pasted into an existing or new note from another applica-
tion, rearranged within a note, or moved between notes.
Notes in the codex can be categorized by adding tags,
which by default are identified syntactically as a single
word starting with the '@' symbol. Notes may have any
number of tags. Additionally, tags may optionally have
values, which by default are identified with a colon follow-
ing a tag. For example, class notes for an algorithms
course could be tagged just as "@class", both "@class" and
"@algorithms", or alternatively, "@class:algorithms".
These tags may be later used to quickly select subsets of
notes to be viewed, as described in Filtering, Exploration,
Finding and Reminding. Tags are scoped to the entire note,
and thus all text and subtext (described next) in the note
inherit the tag. The syntax used to recognize tags may be
changed in Jourknow's preferences.
Beyond unstructured text and tagging, Jourknow provides
two mechanisms by which users can express structured
information to the system in a way that Jourknow will be

able to understand. The first is a simplified language or
“pidgin” [32] which allows users to express structured data
items more naturally for particular predefined domains,
such as for events, meetings, or address/contact informa-
tion. Our goal is for our pidgin to automatically capture
common kinds of structured data entry that are entered in
unstructured form. The second mechanism is the use of a
lightweight triple syntax (based on Notation3 [4]), a do-
main-generic grammar with which the user may make
statements to express arbitrary structural properties and
relationships among entities, without having to predefine
pidgin for the domain or ontology. Examples of each are
illustrated in Figure 2. When Jourknow's pattern recogniz-
ers (described in System Implementation) identify either
type of structured information, Jourknow creates subtext
for it, which are structured entities that reflect its interpreta-
tion of what was written.
If a user wishes Jourknow to recognize new pidgin phrases
for new domains not covered by the Jourknow’s base gram-
mars for events, addresses and to-dos, Jourknow makes it
easy to do so. The user can simply use a pidgin means
expression anywhere in their codex, which, when
interpreted, creates a subtext structure (described in the
following section) representing a mini-grammar that the

pidgin language processor can subsequently use to recog-
nize the new forms. An example of a means expression to
handle pidgin forms such as “new cafe Diesel at Davis Sq
wifi yes” into subtext would be “‘new cafe <A> at
wifi <C>’ means <A> a :cafe; :at_location ;
:has_free_wifi <C> .” , where the expression after “means”
represents the intended structure expressed in Notation3,
and tokens in brackets represent corresponding “slots” for
values. Users can also require that the slots conform to a
particular type by adding the required type in brackets, for
example: “<A Date>”.

Subtext: the structure within the codex
The subtext consists of instantiations of any structures de-
scribed in the codex. Once instantiated, these structures
can be "brought to life,"---manipulated like objects in tradi-
tional PIM applications, used to set reminders, or sorted
and filtered by property or value. To maximize their avail-
ability and utility, Jourknow exports a view of subtext
structures that represent PIM data types such as events,
contacts, and to-do items to the user's standard PIM appli-
cations. Edits via these external representations are re-
flected in the subtext, and are made visible in the codex
through a revision indicator. We describe how this is done
in System Implementation.
For example, the pidgin "mtg at Luna Cafe @ 5pm w/
Akemi cell 617-xxx-yyyy re:camping this weekend” trans-
lates to a subtext which encodes the fact that there is a
meeting that is happening at a location known as the “Luna
Café”, at 5pm today, with a person named “Akemi”, whose
cell phone number is “617-xxx-yyyy”, on the topic of
“camping this weekend”. Instantiation of this subtext
causes an event to appear in the user's calendaring applica-
tion with the appropriate date, time and subject, as well as
contact information to appear (if one didn't already exist)
for a person named “Akemi” with the appropriate phone
number, in the user's address book.
Note that ambiguity with resolving names of places and
people to records is in general a significantly difficult prob-
lem. For example, if the user already has several contacts
with a name "Akemi", it would be impossible for Jourknow
to tell (from the example above), which Akemi the user
was referencing. Jourknow deals with this by first attempt-
ing to find an exact match for an identifier among the
names of all the entities in the subtext. If an exact match is
unavailable, Jourknow presents a list of near misses with
edit distances less than 20 percent of the identifier's length.
If the user does not choose one of the presented alterna-
tives, Jourknow resorts to creating a new subtext item to
represent the structure being mentioned.

 Figure 2. Jourknow supports combinations of tags and
unstructured text (top), pidgin grammars (middle), and
Notation3 (bottom).

Such ambiguous naming situations can be avoided in sev-
eral ways. First, the user can add nicknames to various
entities by adding a nickname pidgin expression, which
creates a subtext structure that causes the nickname to be
functionally equivalent to the original form when matching.
For example, "AK means Akemi Kuromasa" generates a
subtext that establishes the phrase "AK" as equivalent to
“Akemi Kuromasa” when searching for a subtext element.
Users can add additional names explicitly to specific sub-
text entities through either pidgin or Notation3 expressions,
such as “:AK :name Akemi-chan.", which is a Notation3
expression attaching the name Akemi-chan to the subtext
entity identified as :AK, causing any subsequent references
to Akemi-chan in any pidgin expressions to resolve to :AK.
More details on named entity matching are described in
System Implementation.
As soon as a structured data item is recognized, Jourknow
provides visual feedback of how the expression was inter-
preted, by indicating groupings of words into clauses as
parsed, boldfacing headwords, and underlining values for
recognized data types (see Figure 2). This feedback is im-
portant because as described later, many pidgin grammars
are ambiguous; therefore, it may not be possible for
Jourknow to select the correct parse. If Jourknow chooses
an incorrect parse, the user may hit a button to cycle
through alternative parses, or failing that, correct the inter-
pretation manually. Similarly, this feedback gives the op-
portunity for the user to see what entities Jourknow has
matched in the pidgin expression, if any, and to allow the
user to correct its name resolution if necessary.
Clicking on any entity that Jourknow has recognized in a
text fragment conjures a view of the subtext known as the
structure editor, which allows the user to directly view and
manipulate a subtext element's properties and values (Fig-
ure 3). When the user completes editing of the subtext,
Jourknow then updates the text to reflect the user's changes
to ensure that the codex always maintains a correct view of
the subtext.

Context: the activity and environment of the data
The context consists of information describing the circum-
stances under which a particular note was created or edited.

The purpose of this information is to be useful as a "hook"
to help quickly re-find a piece of text, or for reminding the
user about the text's meaning, by priming recall of the ac-
tual situation in which the note was written. Specifically,
Jourknow captures two types of situational context around
the time a piece of text was edited: the user's desktop ac-
tivities, and aspects of their physical environment. An ex-
ample of the former are files and web pages the user was
examining or editing, applications the user was using, and
with whom the user was communicating. Examples of the
user’s physical context include their location, the identity
of people detected nearby, and photos of the user from the
user's laptop's web cam. Our goal is to make these avail-
able geo/temporal/activity contexts serve in the same way
that physical contexts help re-finding of physical notes.
We make the captured context visible to the user by means
of episodes attached to each note (Figure 4). Intuitively, an
episode should correspond to a continuous period of time
that was characterized by one activity. Jourknow has the
ability, however, to segment time according to different
criteria, to support the multitude of ways we think about
our activities. Example segmentations involve simple time-
based approaches such as by hour, time of day (morn-
ing/afternoon/evening) or those defined according to par-
ticular phenomena observed in the context, such as the
user's location, times during which certain music was being
played, or stretches of uninterrupted activity in a particular
application. For each episode that such a segmentation
defines, Jourknow consolidates and summarizes all the
context observations that intersect with the time interval for
which that episode was defined, into an episode context
view (Figure 4).
To explore the detailed captured context of a Jourknow
entry, the user can view a selection of the most relevant
information surrounding the writing on the note by expand-
ing the context panel attached to each note. This view in-
cludes desktop screenshots, photos of the user and his or
her surroundings, the most active documents and web
pages, and location information (including an interactive
map). If the user edited a note over several different ses-
sions, a tabbed interface allows the user to view all of the
relevant gathered contexts.

Filtering, Exploration, Finding and Reminding
There are various ways a person may wish to access infor-
mation once it has been captured in their codex. For exam-
ple, when in class, a student may wish to "focus" on a sub-
set of their codex consisting of all the notes for that particu-
lar class, ordered chronologically, or by topic. Therefore,
users may wish to filter or order notes based on some as-
pect of their content, such as those tagged a certain type,
containing certain text or entities, or a piece of structured
data. A user may also wish to select subsets of notes that
meet criteria concerning the situation(s) in which they were
created, viewed, accessed or edited, such as being edited at
a particular place or time. In Jourknow, we sought to fa-
cilitate both types of criteria for filtering, in order to facili-
tate focusing on a particular subset of notes, exploration,
and re-finding. Using data contained in the text, subtext,

Figure 3. Clicking on text which has associated sub-
text displays the structure editor, a form-like view of
the subtext structure that allows the user to quickly ver-
ify and update values for properties, similar to a tradi-
tional form-based user interface

and context, and the correspondences that Jourknow main-
tains between them, it became possible to unify all of these
different axes for filtering into a single, simple interface.
For Jourknow, we have chosen the mechanism of incre-
mental search that combines faceted browsing [12] with
keyword search. Facets allow the user to quickly filter
notes based on either content- or context-based features or
combinations thereof, such as tags, tags with values, struc-
ture therein contained, access time, location, by associated
resources. Users first select the facet with which they wish
to filter their codex, and then are presented list of values
they can select from for that facet. Keyword search lets
you further refine or directly jump to notes containing a
particular word or phrase.
After the desired subset of notes is achieved, using episode
views it becomes possible to explore relationships among
the contextual factors surrounding a note to answer ques-
tions such as: where was I exactly and what was I doing
exactly when I came up with those great ideas?
Finally, beyond exploring information in an ad hoc way,
the user may wish to set up information to surface to the
foreground of the desktop in a certain situation in the fu-
ture, such as "tell mc about this when i'm in her office."
Bellotti describes this kind of information foregrounds as
supporting the "in the way property" of reminding [3].
Jourknow's tagging and pidgin enables these kinds of re-
minders to be triggered currently by any part of the context
such as time, location or application state.
SYSTEM IMPLEMENTATION
The key technical challenges surrounded supporting the
following functionality:

1. Unconstrained textual input
2. Flexibility in how information can be structured; with-

out requiring people to predefine (or adhere to prede-
fined) ontologies

3. Interface with desktop applications; specifically,
alignment of subtext with applications' data ontologies

4. Extraction of subtext from unconstrained text; particu-
larly supporting incomplete grammatical input, partial
phrases, and informal language

5. Capture of context, and subsequent selection and pres-
entation of relevant contextual events for supporting
effective re-finding and memory priming

6. Maintaining appropriate correspondences among the
user’s text, extracted subtext, and captured context

In this section, we describe our solution to these six chal-
lenges; Figure 5 illustrates the design of Jourknow.

Data Model: Three Representations
Text
Jourknow maintains three different knowledge bases (KBs)
to hold the structures that become the text, subtext, and
context components introduced earlier. The text KB main-
tains what is traditionally thought of as the "contents" of
the codex, specifically what is needed to construct each of
the notes and their respective contents. Instead of saving
and overwriting snapshots of the notes as most text editors
do today, the text KB preserves the entire history of edits
the user made, similar to log-structured file systems [16].
Maintaining a complete edit history in this manner enables
Jourknow to identify exactly when each character was cre-
ated, edited or automatically generated in response to an
external edit to underlying subtext, as well as to recreate
the state of the journal at any arbitrary point in the past.
Being able to identify the time of creation efficiently for
each character in the codex is critical to Jourknow's func-
tionality, because it is the key by which Jourknow estab-
lishes a correspondence among text, subtext, and the con-
text chronology. To facilitate fast creation time lookup of
characters, Jourknow maintains (in memory) a data struc-
ture which packs the character creation time (represented to
millisecond granularity) into the data structure used to rep-
resent each character in the buffer. Note that there is no
scalability issue here, as the complete set of text typed by
an individual cannot fill an appreciable portion of current
memory. This creation time is kept with the character for
the entire duration of its existence, and follows each char-
acter as it moves due to edits to surrounding text. New
characters assume the current time, and characters that are
cut or copied from one location in Jourknow and pasted
elsewhere gain additional timestamps corresponding to
each paste. This makes it possible to “manually re-plant”
context associated with a note simply by moving appropri-
ate text between notes. These time signatures of text are
used to establish correspondences with subtext and context
elements, described in the next two sections.
Subtext and application integration

Figure 4. The expanded view of context summarizes
the user’s activities during the time interval specified by
the episode. The salience heuristics used to select
events to be shown to generate the summaries are de-
scribed in section Implementation. Tabs at the bottom
allow users to see past episodes for notes that have been
edited in multiple episodes.

Entities in the subtext KB are represented as graphs in RDF
[13]. Subtext that originates from pattern extractors such as
the pidgin parser or the Notation3 processor are grounded
in the PLUM and Jourknow ontologies which are mapped
to standard RDF ontologies, such as iCalendar [7] for
events and vCard [15] for contacts. Use of these standard
ontologies makes it possible to use existing tools [23] to
help with ontology alignment to schemas used by external
sources, simplifying the process of importing subtext such
as events from atom/RSS feeds, contacts from the user's
LDAP server or IMAP e-mail account, and bookmarks
from the user's web browser. Importing subtext items can
assist the name ambiguity problems mentioned earlier by
providing additional information with which to identify
people, places and things mentioned in the codex.
Similarly, when manifestations of the user’s subtext
(“shadows”) are exported to the user's applications, ontolo-
gies must first be aligned with the target application's
schema. Unfortunately, establishing a good mapping from
instances grounded in the rich, expressive ontologies of the
semantic web, to rigid schemas of PIM applications often
requires somewhat arbitrary decisions regarding determin-
ing which fields best align (e.g., should "about" correspond
to "comment" or "description"?). As more applications
adopt flexible data representations in the future, we hope
better mappings will become possible.
In order to effectively maintain the illusion of a single uni-
fied data model across the user’s PIM applications,
Jourknow stores explicit bidirectional pointers between
each subtext item and all its exported shadows. Some ex-
ternal APIs such as GData [1] already generate unique IDs

for identifying elements; in this case, these IDs are used as-
is; in other cases, Jourknow generates an identifier and
stores this both with the subtext item and in a miscellane-
ous field of the shadow. Once this correspondence is estab-
lished, maintaining synchronization is simple; Jourknow
periodically polls applications using its data transfer API,
and examines all items that are tagged with a subtext identi-
fier. For each such item, it casts it back to the Jourknow
representation, and compares field values; if values have
changed, this indicates that the user has edited the subtext
externally. Likewise, when the user updates the subtext via
the codex, Jourknow first determines whether the subtext
already has exported shadows; and if so, updates these
shadows with new values. If a conflict is detected (which
should be very rarely the case, as Jourknow propagates
updates externally immediately after they occur) this con-
flict is indicated as a correction in the codex. Jourknow
currently exports shadows to Google Calendar via the
GData API, and Apple's iCal and Address Book via Ap-
plescript.

Context
The context KB consists of a chronology of observations
made of the user's desktop state and actions, and of their
situation/environment, which is created and maintained by
PLUM. [34] PLUM executes a sequence of observer
knowledge sources at a regular frequency (usually 2-3Hz),
which call various facilities in the underlying operating
system to yield observations. Examples of activities cur-
rently observed by PLUM knowledge sources include the
identity of the application that has focus at each moment,
the names and locations of any documents or web pages
being viewed or edited, the user's activity in chats, writing
emails, or music listening, as well as periodic desktop
screen captures and the user's activity/idle state. Examples
of environment/situational state captured by observers in-
clude the user's location (as perceived through Placelab
[20]) and web cam snapshots of the user.. Each observa-
tion each have an associated "validity" time interval, which
represents the largest contiguous time interval for which,
according to the observer, the observed phenomena re-
mained unchanged. All observations made by knowledge
sources are encoded as RDF graph structures (for represen-
tational flexibility), grounded in the PLUM ontology.
Episodes and saliency heuristics
In order to find the set of episodes associated with particu-
lar text in the codex, Jourknow finds all the episodes whose
intervals intersect the creation times of the text. Once as-
sociations are made between text and episodes, Jourknow
extracts observations relevant to each episode by finding all
observations that overlap with each relevant episode's in-
terval. However, there may be a great number of observa-
tions; in order to prevent inundating the user with a record
of their activities, we have designed saliency heuristics to
select observations that are likely to be memorable and
relevant to the user. These heuristics include, for each type
of context observation, most recently observed, most fre-
quently observed, and longest total duration. We addition-
ally defined an "outlier" saliency heuristic inspired by TF-

Figure 5. Architecture of Jourknow, illustrating the
relationship between the codex, subtext, and context.

IDF [30] which weights context proportionally to its total
observed duration during a particular episode, and inversely
proportionally to its total frequency observed across epi-
sodes. This latter heuristic has proven useful in filtering
out routine visits to commonly revisited web sites, as well
as intermediary pages that consumed little face time.
Structure extraction from text
To support the various modes of input described in the In-
teraction section, Jourknow provides three types of textual
pattern analysis: simple syntactic forms (i.e., regular ex-
pressions), recursive-decent parsing, and Notation3 inter-
pretation. As the recognition process can be compute-
intensive (particularly for the recursive-decent parsing),
Jourknow runs recognizers only on regions containing
changed text, and executes recognizers asynchronously and
independently on their own threads.
The syntactic recognizer uses a standard regular expression
engine to find syntactically structured elements in the text,
including tags, file paths, and URLs. The Jourknow pidgin
language processor (PLP) expands the scope of Jourknow's
extraction capabilities to context-free languages. We have
thus far designed pidgin grammars to handle the most
common found types of PIM data: events, contacts, and to-
dos. To implement PLP, we extended NLTK_lite's
rdparser, [2] a simple deterministic top-down parser for
context-free grammars. Our modifications involved allow-
ing the inclusion of regular expression as terminals, which
we defined to match if and only if the regular expression
matched the entire token. This modification greatly simpli-
fied the recognition of tokens by syntactic form (such as
dates) without a separate lexical analysis phase, and en-
abled us to add "wildcards" to the grammars, to stand in for
words or combinations of words that could not be known a
priori. This occurred frequently in our pidgin grammars,
such as with names of people, locations, or the topics of a
meeting.
While enabling wildcard terminals greatly enhanced the
expressiveness of our grammar language, it also dramati-
cally increased parse ambiguity. Modifying the grammar
to not requiring phrase headwords (usually prepositions
such as "at" or "with") made the number of ambiguous
parses combinatorially larger, but also dramatically im-
provd usability of the grammars, as we observed [5] that
prepositions were often omitted in people’s information
scraps. Fortunately, we were able to tackle the complexity
of parse ambiguity resolution in three ways. First, inter-
leaving wildcard token matching into parsing made it pos-
sible to “wrap” lexical ambiguity problems into parse am-
biguity resolution, greatly simplifying handling from both
an implementation and user-experience standpoint. Sec-
ond, because the rdparser automatically returned all possi-
ble parses for a particular sentence under the grammar, it
reduced the problem of ambiguity resolution to choosing
the correct parse tree from the returned set of possible
parses. Finally, we devised a simple heuristic that worked
well in most cases: to choose the parse tree that was broad-
est at its base. This corresponded to the parse tree that rec-

ognized the greatest number of separate clauses, and at-
tached them closest to the root. This eliminated the most
common source of incorrect parses, the consumption of
clauses by wildcard terminals, as evidenced by errors such
as interpreting the meeting pidgin expression “meeting with
Michael at Stata” as a meeting with a person named “Mi-
chael at Stata” rather than a meeting with a person named
“Michael” at a location named “Stata”. Jourknow allows
the user to easily override the heuristic’s choice through
manual selection of the correct tree.
Associating text with subtext: Timeprints
When a pattern extractor first identifies a previously unseen
structure in the text, it generates a new subtext entity to
represent the item. To allow future edits of the original text
to properly update the correct subtext entities, it is neces-
sary for Jourknow to be able to uniquely identify a text's
corresponding subtext. To effectively and reliably support
this lookup, we tag each new extracted subtext with a "time
fingerprint", computed by taking the set of creation times
of the source text. Jourknow maintains a hash of such fin-
gerprints to corresponding subtext entities, and when the
source text changes, the corresponding subtext's timeprint
is updated to reflect the change. Unique mentions of the
same text can therefore correspond to different subtext enti-
ties, and will appear as separate “shadows” (each linked to
its respective note) in legacy PIM applications as described
earlier.

INITIAL USER FEEDBACK
We demonstrated Jourknow to five people to solicit initial
informal reactions to Jourknow’s design and features. With
this demonstration, we sought only to get an overview of
whether people could easily understand how the various
features of Jourknow related to one another, and second, to
gain an impression for the features they thought were use-
ful and/or desirable towards their own information organi-
zational practices. As discussed in the next section, we
have plans to up this work with a formal study of the sys-
tem, both to measure the suitability of specific aspects
(such as pidgin language recognition) as well as a longitu-
dinal usage study to evaluate the system as a whole.
Demonstration participants were given a tour of the inter-
face and its features, and invited to interact with the proto-
type for 20 minutes. Overall reactions were very positive,
and all expressed enthusiasm for the text-input interface,
with which, as computer scientists, they seemed immedi-
ately comfortable. They also seemed to be universally en-
thusiastic about the capture and association of context cap-
ture with notes. Opinions were split about whether the tag-
ging functionality would be useful for retrieval, as opposed
to using only keyword search. Three participants expressed
a desire to be able to incorporate other media in Jourknow's
notes, such as pictures, music and documents. One partici-
pant was impressed by the ability to edit Calendar entries
bi-directionally (i.e., either by editing their note, or their
appointment in their Google calendar). Another expressed
a desire to be able to automatically publish notes in
Jourknow to his blog.

DISCUSSION
Our work is situated between two extremes of textual in-
formation input. On the one end, we have the natural lan-
guage used by everyone to communicate, with all its flexi-
bility, inefficiency, and ambiguity. On the other end, we
have the rigid, concise, unambiguous programming lan-
guages and data syntaxes used by programmers to commu-
nicate information to machines. While folklore tells us that
most people cannot program and do not want to, that only
rules out an extreme of the spectrum. There is lots of room
in the middle. Individuals already seek conciseness (and
precision) in the notes they jot to themselves. We hypothe-
size that current input mechanisms, such as forms, avoid
data entry ambiguity by placing a significant navigational
burden (and significant input limitations) upon the user.
Essentially, the computer is passing the buck to the user to
parse the input for them. We speculate that requiring users
to obey the strictures of a relatively natural pidgin may be
less of a burden. We believe that a restricted, pidgin vari-
ant of natural language can be simultaneously natural
enough for people to adopt and unambiguous enough for a
computer to understand, particularly since we allow input
text to "detour" into arbitrary unstructured language at
need. While most people may not be able to become as
precise in their input as programmers, people’s current use
of forms demonstrates that they have the incentive and ca-
pability to accept limited constraints on how they express
information so that a computer can understand it.
A potential criticism of our approach is that it is simply
"NLP-lite"---that as soon as we solve the problem of rec-
ognizing arbitrary natural language, our approach will not
be needed. But there are several reasons to pursue our ap-
proach. First, a complete NLP solution remains distant at
this time, and is more than is needed for the simple data
capture we are supporting. Thus, our approach offers many
of the benefits of NLP input, sooner. Second, we note that
individuals’ jotted notes are generally not in natural lan-
guage. They include abbreviations, ungrammatical con-
structions, and a variety of other language hacks to make
entry more efficient. Users do not want to waste time craft-
ing grammatically complete sentences to record informa-
tion fragments. While NLP might ultimately be able to
handle this unnatural language as well, note that shorthand
is highly individualistic, requiring a solution that learns for
each user differently---an even more challenging problem
than standard NLP. Third, our approach emphasizes the
value of bridging from a more naturalistic input framework
to a traditional GUI output environment, in contrast to
many natural language systems that assume natural lan-
guage is the right modality for both directions.
Our dispatch of captured subtext to existing applications
reflects a compromise strategy. While these applications
provide good domain-specific interactions, one of our ma-
jor arguments in favor of text is that it saves the user from
having to choose a domain for the information they enter,
and instead create domain-crossing collections of informa-
tion that they feel are connected. It is unfortunate, then,
that at retrieval time the user must again make domain-

choices based on application boundaries. It would be better
for the user to be able to create rich GUI visualizations that
cross domains to aggregate any objects users consider con-
nected and exploit their structure to display them well.
This goal has been pursued in the Haystack system [19]
among others. We believe it will combine fruitfully with
the lightweight input mechanisms described here.

CONCLUSION/FUTURE WORK
The information management benefits offered by rich
graphical user interfaces over richly structured data are
entirely lost if the cost of entering information into those
applications deters people from doing so. In this paper, we
have argued that we may not have to choose between
lightweight input and sophisticated retrieval and output.
Text provides an excellent lightweight input mechanism
that can express arbitrary information but can also express
rich structure through individualistic shorthand; that struc-
tured information and related contextual information can be
navigated and retrieved through rich interfaces while pro-
viding breadcrumbs to help a user locate the less structured
parts. We have outlined the design of a system that mini-
mizes the work of text entry, and uses a variety of tech-
niques to capture subtext (structure in the entered informa-
tion) and context (situational metadata about the entered
information) for use in retrieval and presentation. We have
also described the implementation of a system that meets
the design. Our plan now is to use the affordances of
Jourknow as an evaluation platform to study which features
work in which contexts to best support lightweight capture
of structured data.

REFERENCES
1. Google Data API.
2. Natural Language Toolkit.
3. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow,

D.G. and Ducheneaut, N., What a to-do: studies of task
management towards the design of a personal task list
manager. in CHI '04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, (Vi-
enna, Austria, 2004), ACM Press, 735-742.

4. Berners-Lee, T. Notation3 (N3), A Readable RDF
Syntax.

5. Bernstein, M., Kleek, M.V., Karger, D. and schraefel,
m. Information Scraps: How and Why Information
Eludes our Personal Information Management Tools.
In submission to ACM Transactions on Information
Systems.

6. Blandford, A.E. and Green, T.R.G. Group and Individ-
ual Time Management Tools: What You Get is Not
What You Need. Personal Ubiquitous Comput., 5 (4).
213-230.

7. Connolly, D. RDF Calendar - an application of the
Resource Description Framework to iCalendar Data,
2005.

8. Czerwinski, M., Horvitz, E. and Wilhite, S. A diary
study of task switching and interruptions Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, ACM Press, Vienna, Austria, 2004.

9. Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin,
R. and Robbins, D.C. Stuff I've seen: a system for per-
sonal information retrieval and re-use Proceedings of
the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval,
ACM Press, Toronto, Canada, 2003.

10. Gemmell, J., Lueder, R. and Bell, G. The MyLifeBits
lifetime store Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence, ACM Press,
Berkeley, California, 2003.

11. Harrison, B.L., Cozzi, A. and Moran, T.P. Roles and
relationships for unified activity management Proceed-
ings of the 2005 international ACM SIGGROUP con-
ference on Supporting group work, ACM Press,
Sanibel Island, Florida, USA, 2005.

12. Hearst, M.A. Clustering versus faceted categories for
information exploration. Commun. ACM, 49 (4). 59-
61.

13. Herman, I. and Swick, R. Resource Description
Framework, 2007.

14. Hudson, J.M., Christensen, J., Kellogg, W.A. and
Erickson, T. "I'd be overwhelmed, but it's just one
more thing to do": availability and interruption in re-
search management Proceedings of the SIGCHI con-
ference on Human factors in computing systems:
Changing our world, changing ourselves, ACM Press,
Minneapolis, Minnesota, USA, 2002.

15. Iannella, R. Representing vCard Objects in RDF/XML.
16. Jambor, M., Hruby, T., Taus, J., Krchak, K. and Holub,

V. Implementation of a Linux log-structured file sys-
tem with a garbage collector. SIGOPS Oper. Syst. Rev.,
41 (1). 24-32.

17. Kalnikaite, V. and Whittaker, S., Software or Wet-
ware? Discovery When and Why People Use Pros-
thetic Memory. in CHI, (San Jose, CA, 2007), ACM
Press.

18. Karger, D.R. and Jones, W. Data unification in per-
sonal information management. Commun. ACM, 49
(1). 77-82.

19. Karger, D.R. and Quan, D. Haystack: a user interface
for creating, browsing, and organizing arbitrary semis-
tructured information CHI '04 extended abstracts on
Human factors in computing systems, ACM Press, Vi-
enna, Austria, 2004.

20. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower,
J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J.,
Potter, F., Tabert, J., Powledge, P., Borriello, G. and
Schilit., B., Place Lab: Device Positioning Using Radio
Beacons in the Wild. in Pervasive, (Munich, Germany,
2005).

21. Lamming, M., Brown, P., Carter, K., Eldridge, M.,
Flynn, M., Louie, G., Robinson, P. and Sellen, A. The
design of a human memory prosthesis. The Computer
Journal, 37 (3). 153-163.

22. Lansdale, M. and Edmonds, E. Using memory for
events in the design of personal filing systems. Int. J.
Man-Mach. Stud., 36 (1). 97-126.

23. Lanzenberger, M. and Sampson, J., AlViz - A Tool for
Visual Ontology Alignment. in International Confer-
ence on Information Visualisation (IV'06), (2006).

24. Mark, G., Gonzalez, V.M. and Harris, J. No task left
behind?: examining the nature of fragmented work
Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, ACM Press, Portland, Ore-
gon, USA, 2005.

25. McCallum, A. Information Extraction: Distilling Struc-
ture from Unstructured Text ACM Queue.

26. Moran, T.P., Cozzi, A. and Farrell, S.P. Unified activ-
ity management: supporting people in e-business.
Commun. ACM, 48 (12). 67-70.

27. Rhodes, B. and Crabtree, I.B. Wearable Computing
and the Remembrance Agent. BT Technology Journal,
16 (3). 118-124.

28. Ringel, M., Cutrell, E., Dumais, S. and Horvitz, E.
Milestones in Time: The Value of Landmarks in Re-
trieving Information From Personal Stores INTERACT
2003, ACM Press, 2003.

29. Ross, L. and Nisbett, R. The Person and the Situation:
Perspectives of Social Psychology. Temple University
Press, 1991.

30. Salton, G. and Buckley, C. Term-weighting ap-
proaches in automatic text retrieval. Inf. Process.
Manage., 24 (5). 513-523.

31. schraefel, m.c., Smith, D.A., Owens, A., Russell, A.,
Harris, C. and Wilson, M. The evolving mSpace plat-
form: leveraging the semantic web on the trail of the
memex Proceedings of the sixteenth ACM conference
on Hypertext and hypermedia, ACM Press, Salzburg,
Austria, 2005.

32. Sebba, M. Contact Languages: Pidgins and Creoles.
Macmillian, 1997.

33. Sellen, A., Fogg, A., Aitken, M., Hodges, S., Rother,
C. and Wood, K., Do Life-Logging Technologies Sup-
port Memory for the Past? An Experimental Study Us-
ing SenseCam. in CHI, (San Jose).

34. Van Kleek, M. and Shrobe, H., A Practical Activity
Capture Framework for Personal, Lifetime User Mod-
eling. in User Modeling, (Corfu, Greece, 2007).

