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The Ki/o Kiosk Project is a research effort to explore the potential applications for
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Chapter 1

Introduction

It is often heard that conversations started “around the office water cooler” lead to

some of the most interesting and memorable interactions in today’s workplace. This

project investigates the role of informal, opportunistic interactions in public areas

of the workplace, and explores how ubiquitous computing systems may be built to

improve these interactions.

This chapter introduces the research agenda, provides historical context, and

presents the motivations behind the work in the remaining sections of this paper.

1.1 What is Ubiquitous Computing?

The field known as ubiquitous computing 1 2 is devoted to changing the relation-

ship between humans and computers towards allowing computers to become in-

visible and recede into the periphery of people’s lives. As the world has become

increasingly reliant on personal computers and the Internet, computers have be-

gun to complicate and dominate, rather than simplify everyday tasks. Moreover,

computers have come to occupy increasingly more physical space on desks, and in

modern living environments, while, at the same time, they consume increasingly

1The term “ubiquitous” is used interchangeably with the term “pervasive” in the research commu-

nity. This paper adopts the former term.
2The origin of the term and the concept is generally attributed to the late Mark Weiser from the

Xerox Palo Alto Research Center in the early 1990’s.
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more amounts of time, require more attention, and demand more mental faculties

to run simple tasks. Computer systems today demand that the user be responsible

for translating what users want to accomplish into a representation the systems can

understand. Much of the exertion required to operate computers originates in hav-

ing to continuously learn how to properly perform this translation, using whatever

clues provided by the system designers. Ubiquitous computing reverses this process,

by making computers responsible for the translation from the physical world into

the system’s representation. Thus, ubiquitous computing systems act like intelligent

personal assistants, capable of understanding what people are trying to accomplish

in order to determine how best to intervene and assist them. Therefore, ubiquitous

computing systems allow people to concentrate on what is truly important, ie., their

actual tasks, rather than focusing on the onerous steps of operating the computer

systems to perform these tasks.

Ubiquitous computing also eliminates the artificial notion of a personal com-

puter as an independent, isolated computational entity. It instead proposes that

computation should be available everywhere as a shared natural resource, just like

the air we breathe[39]. Thus, ubiquitous computing is a departure from personal

computing, and is widely considered the “third great wave in computing”, after

the development of time-shared mainframes, and the subsequent rise of personal

computers [59].

1.2 What are Intelligent Environments?

Since ubiquitous computing systems need the ability to deduce users’ intentions,

preferences, and the state of the world automatically, they require the ability to

perceive the physical world, interpret these observations, make inferences, and then

take appropriate action.

When these systems, capable of perception, cognition, and action, are embodied

in a physical space, they are collectively known as Intelligent Environments3, or IEs.

3The term intelligent environment is often used interchangeably with the terms smart spaces,
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To date, prototype IEs have been developed primarily for such spaces as conference

rooms, classrooms, and offices. The Ki/o Kiosk Platform extends this notion by de-

signing IEs specifically for informal public spaces, such as hallways, lounges, break

rooms, and elevator lobbies.

The ultimate vision of ubiquitous computing is that Intelligent Environments will

pervade all physical spaces, thereby enabling access to digital information anywhere

and at any time.

1.3 The Field of Human-Computer Interaction

To build effective IEs, certain requirements are immediately apparent; it is clear

that advances in computer hardware, such as semiconductor chip size, manufactur-

ing costs, and reliability, along with advances in their communications capabilities,

are essential for building ubiquitous computing systems. Fortunately, Moore’s Law

has already helped us to make inroads along many of these dimensions, giving

us match-box-sized computers, fast processors, and wide-area networking capabili-

ties4.

What Moore’s Law has not been helpful for, however, is the design of ubiquitous

computing software applications, consisting of their user interfaces, supporting tool

sets, and middleware [55].5 To make ubiquitous computing systems useful and

natural for people, these higher level designs must resonate with people’s subjec-

tive preferences in the ways they like to work, communicate, and live. Yet, isolating

these preferences and identifying how to design systems to fit them has remained

challenging, largely due to a multitude of as yet unanswered questions about hu-

man psychology and physiology.

The burgeoning field of Human-Computer Interaction (HCI) seeks to make this

human-centered design tractable by taking a scientific approach to discover what

reactive environment, or aware space
4Those unfamiliar with Moore’s Law should refer to http://www.webopedia.com/TERM/M/

Moores Law.html
5 Middleware is used to describe software that mediates between two or more disparate software

components.
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qualities make good designs for particular types of people. HCI accomplishes this

through an iterative design discipline that involves first studying how people ini-

tially perform a task, without any additional technology, then, formulating an hy-

pothesis of how technology could assist the task by realizing a prototype system (or

mockup). Finally, users are asked to evaluate the system and recount their experi-

ences of using the prototype. Users’ feedback is used to improve the design, which

is then again tested and revised. This process of iterative user testing not only serves

to determine and maximize the usability of the system being designed, but also to

form more generally applicable design principles.

The primary research focus of the Ki/o Kiosk Platform is to determine how to

design effective and useful IEs for informal public spaces. This includes studying

how users prefer interacting with kiosks, what users want to be able to do, and

whether IEs for informal public spaces are fundamentally useful for people. These

questions all fall within the research field of HCI, and thus the Ki/o Project takes an

HCI, or user-centered design approach. Other design considerations, such as speed

or accuracy of underlying algorithms, remain secondary concerns to the project.

1.4 Why Kiosks? Motivations for Kiosks as IEs

Public spaces play an important role in the social and professional interactions of

people in the workspace. As will be described in this section, today’s knowledge

workers are required to work closely with one another, while facing environmental

and social pressures in crowded, disjointed, or physically fragmented workspaces.

Intelligent Environments that occupy public spaces, such as Ki/o Kiosks, seek to

alleviate some of these pressures while promoting a sense of community.

18



1.4.1 Understanding the Knowledge Worker

The Need to Collaborate

In 1959, economist Peter Drucker predicted that the knowledge worker, a new class

of skilled worker whose job is exclusively to create, manipulate, and disseminate in-

formation, would become a dominant figure in the work force of the United States

by the end of the century [15]. The rise of the knowledge worker, he predicted,

would spur radical social transformations by creating an upheaval of the existing

skillsets, levels of education, and domains of specialization required for specific

jobs. Knowledge workers are evaluated based upon how much they know, and

how effectively they can learn new skills and concepts, rather than on exclusively

what they produce. Since knowledge workers must be extremely specialized in

order to be effective on most tasks, they must frequently rely upon collaborations

with other knowledge workers. Drucker speculated, thus, that this rise of knowl-

edge worker collaborations would promote new types of teams . . . teams that were

small, self-organized, dynamic, and short-termed, and which crossed traditional

organizational boundaries.

Peter Drucker’s predictions have largely become true; knowledge workers cur-

rently comprise over one-third of the work force of the United States, and theirs is

the fastest growing type of occupation. These workers currently command among

the highest average salaries in the business industry, and require more skill and

specialization than any other field [15]. Hoping to maximize their returns on their

investments in these “gold-collar workers,” companies have sought to understand

how knowledge workers function, and thereby determine how best to increase their

productivity. This has led to workplace studies examining sociological and psycho-

logical aspects of the knowledge worker’s physical workplace, including their office

design and layout, and studies of how knowledge workers communicate and relate

to one another.

Among the findings of these studies are results that indicate the frequency and

importance of small informal meetings. Related findings have indicated that knowl-
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edge workers spend more time away from their desks, interacting in public spaces.

These findings have served as the main impetus for exploring how augmenting pub-

lic areas and informal meeting spaces with ubiquitous computing tools could ease

and improve knowledge workers’ day-to-day activities.

The Workplace As Meeting Nexus

One of the observed trends is that knowledge workers are increasingly deviating

from standard 9-5 work days at the office, and are instead working remotely from

home, late at night, or on weekends. The greatest contribution to this shift is cur-

rently believed to come from social and environmental pressures induced by shared

office and cubicle workplace arrangements during the regular work-week, which

deprive workers of privacy and control of their environments, as well as to avoid

distractions. The arrival of remote collaboration and telecommuting tools has per-

mitted a tentative means of escape, by allowing knowledge workers to work wher-

ever and whenever they please.

The primary drawback to working independently and remotely is the increased

difficulty for workers to meet face to face to work together, despite the increasing

need for workers to collaborate. The result is that many knowledge workers have

begun working in two phases: remotely, at odd hours when they require solitude,

and at the office, when they need to connect with others. Thus, the role of the

workplace has become a sort of meeting nexus, where knowledge workers come

with the purpose of interacting with others.

The Creative Office

The rapid rate of technological progress over the past two decades has not only in-

spired a sudden, urgent need for knowledge workers, but has also placed extreme

demands on companies to be flexible and accommodate for change. As Jeremy My-

erson and Philip Ross describe in their book, The Creative Office, companies have

had to drastically reduce the time-to-market for new ideas and products in order to
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stay competitive. This has caused large companies, in particular, to have to restruc-

ture by foregoing the monolithic, controlling, factory-office style office management

schemes of the mid-twentieth century for fast, flexible structures that can produce

ideas quickly in order to drive ahead of the competition. Realizing that the knowl-

edge workers’ ability to think creatively and communicate with others is becoming

a crucial determining factor towards a company’s ability to be innovative, agile and

successful, management in these companies has started to dissolve both physical

and organizational barriers between employees. Physically, office space is being

laid out to favor open, mobile layouts that encourage workers to move about dur-

ing the day, instead of traditional, static, enclosed, personal offices or cubicles [33].

Organizationally as well, these companies have begun dissolving both vertical dis-

tinctions between levels of the corporate hierarchy, as well as horizontal divisions

across departments, with the goal of eliminating any barriers limiting intra-office

collaboration. Instead of formal organizational groups, these companies are foster-

ing self-organized, informal collaborative groups. These collaborative groups tend

to be small, transient, and dynamic; groups usually assemble exclusively for the

purpose of solving or discussing a single, specific, design problem or topic, and

dissolve after the problem has been solved.

These informal collaborative groups are usually formed spontaneously and ran-

domly, often as the result of workers discovering common interests or another

worker’s expertise. Although there is no definitive way that these shared inter-

ests are discovered, they often have been attributed to random, chance encounters

in informal spaces.

Random Encounters and Informal Meetings

A number of recently conducted workplace studies have provided evidence to sup-

port the theory that random, chance encounters in public spaces lead to infor-

mal collaborative meetings. These studies suggest that casual, social exchanges of

nascent ideas in informal settings often trigger collaborative idea cascades. Sched-

uled large-group meetings that follow fixed agendas, in contrast, have been viewed
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as milestones where information and developments can be formally disseminated

to one’s peers, but where few original ideas or feedback is generated.

The Steelcase Workplace Index Survey, entitled “Employees On the Move”, con-

ducted by Opinion Research Corporation (ORC) in May 2002 studied 977 office

workers in a variety of settings in order to determine what workplace offerings

enhance the quality of people’s lives the most. The findings were unexpected, par-

ticularly for Steelcase, a company specializing in the design of ergonomic desks and

chairs for the workplace. Figures published by the study indicate that, on aver-

age, less than half of the participants’ work-week was spent sitting at their desks.

Instead, the remainder of the time was spent at meetings away from their desks,

holding impromptu meetings “in secondary spaces, such as hallways, enclaves, and

at water coolers” [51].

Further evidence supporting the transition from formal meetings to informal

gatherings was revealed by a study for the iLAND project led by Norbert Streitz

of the German National Research Center for Science and Technology (GMD). This

study interviewed 80 members of creative industrial design teams on how technol-

ogy currently played a role in their their design meetings, versus how they would

like technology to shape their meetings in the future. The study revealed that most

team members felt that formal “brainstorming” sessions in meeting rooms were run

archaically, rarely utilizing the available computer technology in the creative pro-

cess. Instead, team members felt that meeting rooms of the future should “have the

character of a marketplace, or a landscape providing opportunities for spontaneous

encounters and informal communication” and that “team meetings are not anymore

conducted by meeting in a room, but by providing an environment and a situation

where encounters happen.” [53].

Standing During Informal Meetings

Other statistics collected by the Steelcase study revealed an increasing preference

for conducting short meetings with members standing in informal group rather

than sitting fixedly around a conference table. Participants reported that 64 percent
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preferred standing in impromptu meetings rather than an alternative posture, such

as sitting at a conference table, or leaning.

Since these findings suggest that informal impromptu meetings tend to be un-

planned, and usually occur while standing in random public spaces, participants

are rarely prepared with writing or recording tools to record notes. Therefore, peo-

ple must try to remember and later recall the conversations they had. This is very

difficult, particularly for more involved meetings, when multiple or technical ideas

are discussed, or when a series of impromptu meetings occur successively. Personal

experience has shown that all but the most salient topics frequently get forgotten

before they have a chance to be written down. Ki/o was designed primarily to cap-

ture these spontaneous meetings, enabling one to log everything that is discussed to

make it convenient for later access and retrieval. This application, the Opportunistic

Meeting Capture system, will be discussed later.

1.4.2 Building Community Across Physically Disjointed Workspaces

Another motivation for designing IEs for public informal spaces is to try to bridge

physically disjointed workspaces via awareness services. These awareness services

try to build a sense of community by conveying local contextual information to

remote sites through facilities such as live audiovisual links.

The need for awareness services has increased phenomenally over the past

decade. Workspaces fitting increasing numbers of knowledge workers within their

limited real estate, accompanied by growing concerns over the social effects of

packing workers together in tight “cubicle farms” have forced fragmentation and

expansion to satellite offices. A number of large corporations have also expanded

to offices in disparate time zones around the world to keep the company productive

24 hours each day. This has increased the need for tying awareness services across

physical space and time to encourage workers to remain socially in contact with

their peers in remote locations.

One primary motivation for the Ki/o Kiosk Platform is to provide passive virtual
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presence and awareness facilities by providing audiovisual views into remote public

spaces. Ki/o also supports a community digital bulletin board application, which

can be used to uniformly disseminate and coordinate information display across all

sites. Telecommuting workers could also take advantage of the Ki/o facilities in

order to gain a feeling of presence.

1.4.3 Kiosks for IE Research

Research in designing IEs for primary spaces such as meeting rooms, offices and

classrooms has encountered a number of significant challenges. These challenges

are rooted in the general-purpose nature of these spaces, combined with their flex-

ibility to accommodate a large group of people using the space simultaneously.

Perception

One such challenge has surrounded the problem of perception, or accurately sens-

ing and interpreting the state of users and the physical world. Perception is a crucial

component of IEs and has the greatest potential to improve the overall user expe-

rience by enabling the systems to observe its users, and to deduce user intentions

and desires automatically. This frees users from potentially having to explicitly

input this information when it is needed. Perceptual data can be used to trigger

automatic, reactive behaviors, or tailor and expedite interactions with the UI, such

as by predicting what the user might do next. This can be compared to granting

IEs the ability to sense and “do what’s right,”, as well as to “read” their users’ body

language.

Research in methods underlying perceptual systems falls within the very active

domains of machine vision, sound processing, and sensory fusion. Unfortunately,

even the most current techniques in these domains today run into difficulties with

general purpose spaces such as meeting rooms and classrooms. These spaces ac-

commodate groups of dramatically varying sizes, and within them, people can move

about freely, and assume various postures while doing any number of various ac-
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tivities. As a result, the task of accurately locating people within the space, and

disambiguating their mutual auditory and visual signals for the purpose of deter-

mining contextual clues has remained inherently challenging.

Fortunately, kiosks feature constraints that help to reduce some of these percep-

tual challenges. These constraints arise from kiosks’ small, fixed interaction volume,

which consists of the physical region in which users must stand in order to interact

with it. This is typically a function of the size of the kiosk’s display, and mode of

user interaction; kiosks typically require users to stand in proximity to interact with

them, and have relatively small displays. Therefore, cameras and other sensors can

be focused and optimized for users standing within this volume. A related feature is

the maximum number of simultaneous users of a kiosk; the interaction volume lim-

its the practical number of simultaneous users to two or three, thereby simplifying

disambiguation.

An IE’s perception systems consists of both hardware and software components.

The design of the Ki/o sensing hardware, such as cameras, motion detectors, pres-

sure and distance sensors, is described in Chapter 3. Data from these sensors, in

turn, is collected and aggregated to form higher-level conclusions about the world.

A specific software architecture design known as a blackboard architecture was cho-

sen for this purpose, and is described under section 4.5.

Interaction Modeling

Interaction modeling is a process by which user interface systems learn predictive

models of its users and their tasks to facilitate future user interactions. This can

reduce the burden on users by saving them from having to repeatedly specify ev-

erything exactly as they want it done, by allowing systems to learn about its users

from prior experiences interacting with them.

Interaction modeling on kiosks is absolutely critical, because it can potentially

significantly reduce the startup time6 to use the kiosk, and as a result, allow inter-

6 Startup time is the amount of elapsed interaction time with a user before he or she is able to
perform his or her desired task. Large startup times plague most traditional user interfaces today.
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actions with the kiosk to be made vastly more quick and efficient. A user model

can automatically supply information to an application that the user would have to

otherwise explicitly provide with each interaction.

Modeling interactions with kiosks could potentially be simpler than in other

types of spaces because most interactions with the kiosk will be brief and done to

accomplish a single or small number of tasks. As described in the last section, re-

strictions on the practical number of people that can interact a kiosk will almost

certainly simplify interaction modeling as well. As described in section 5.4.1, deter-

mining how to most effectively perform interaction modeling is one of the primary

research questions left for further investigation.
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Chapter 2

Background

The Ki/o project serves as an extension of previous IE research of the AIRE group

at the MIT Artificial Intelligence Laboratory. This chapter provides the historical

context of the previous work done by AIRE, and serves to indicate the Ki/o project’s

position within the context of MIT’s broad ubiquitous computing project, Project

Oxygen. It also presents a summary of related ubiquitous computing research done

elsewhere that have been the most influential to the project.

2.1 Ubiquitous Computing at MIT: Project Oxygen

Project Oxygen is a united effort between the MIT AI Laboratory and the Labo-

ratory for Computer Science (LCS) to make computers systems human-centered,

omnipresent, and invisible [39]. Its name was devised by Michael Dertouzos, di-

rector of the LCS from 1974 until 2001, who aspired to re-unite technology with

humanism and wished computers could become transparently available and acces-

sible to anyone, anywhere, thereby seeming “as natural a part of our environment

as the air we breathe” [26].
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2.1.1 AIRE: Agent-based, Intelligent, Responsive Environments

Within Project Oxygen is a wide array of subprojects that span various disciplines

in computer science. The AIRE research group focuses on technologies related to

building Intelligent Environments. Using its distributed agent architecture, Meta-

glue [9], AIRE has built software architectures for intelligent environments in the

forms of offices and conference rooms (e21), handheld computers (h21), and now,

kiosks (Ki/o).

The Intelligent Room

The primary prototype test bed for the e21 architecture is embodied in a conference

room known as The Intelligent Room [5]. A large number of projects have come out

of work in the Intelligent Room, including Metaglue itself, the Metaglue resource

manager, RASCAL [18], and a framework for specifying layered, reactive behaviors,

ReBA [25][24].

h21: Next-generation Handhelds

As described in Chapter 1, today’s workplace is becoming increasingly decentralized

and distributed, and the need for the knowledge worker to continually be on-the-

move is increasing. To enable the knowledge worker to access this information

anywhere in the workplace, Project Oxygen created the h21 handheld Intelligent

Environment. The h21 is the result of a collaborative effort with AIRE, the Net-

works and Mobile Systems (NMS) group in the LCS, and Compaq Corporation’s

Cambridge Research Laboratories (CRL). Like the other AIRE spaces, these h21s

run a distribution of Metaglue, but on top of a minimal variant of the Linux operat-

ing system. Physically, these h21s consist of a Compaq iPaq handheld computer with

extra components, including wireless Ethernet, memory, and occasionally a small

camera and accelerometer [52]. In addition, the NMS group has developed an in-

door, GPS-like location system for the h21 known as the Cricket Location System.

With the Cricket, any h21 may constantly be aware of its own precise coordinates
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and orientation within a building [42]. As will be described in Chapter 4, these

Crickets can be used for location-based awareness and information services.

Ki/o: Kiosks for Informal Spaces

Ki/o kiosks, thus, constitute the third type of AIRE space, falling between e21 and

h21 in size and complexity. As will be discussed in the remaining parts of this

paper, the form factor and intended use scenarios of Ki/o kiosks produce a new set

of design requirements unique from those of either e21 and h21.

With the introduction of both the h21 and Ki/o platforms, the need for Metaglue

agents to be able to easily share information across IE boundaries has suddenly

become extremely critical. This requires Metaglue to transition from a simple, flat

local namespace for to a global, hierarchical namespace, and the need to create a

means by which access control can be exercised between IEs. This cross-IE version

of Metaglue is dubbed Hyperglue and is currently under development.

2.1.2 Perceptual User Interfaces

AIRE’s partner group in Project Oxygen, the Vision Interfaces Project (VIP), has fo-

cused on designing perceptually driven user interfaces and developing robust vision

algorithms for AIRE spaces. VIP has contributed person-tracking, face-detection,

and head-pose tracking [31] systems to AIRE spaces, enabling experimentation with

various types of perceptually-driven non-command user interaction [34].

2.2 Related Work: Kiosks

2.2.1 DIGITAL Smart Kiosks

One of the first inspirations for the Ki/o kiosk project was Digital Equipment Cor-

poration’s Cambridge Research Laboratories’ Smart Kiosks project, which deployed

a number of prototype kiosks around Boston. These vision-enabled kiosks featured
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a series of unique animated disembodied avatars that would watch and summon

users passing by. Large touchscreen CRT displays were used as the primary interac-

tion method, while vision and synthesized speech were used for backup input and

output channels. The tight integration among the various vision, avatar, GUI and

application execution components made responsive, real-time interaction possible,

and the researchers were able to gather thousands of hours of user interaction data

from the experiment [8]. Since this project served as one of the first examples of

an interactive vision-based perceptual information systems running in real-world

non-laboratory settings, it served as an early social litmus test for camera-based vi-

sion systems in the future. Their results indicated that user response was positive,

and that providing visual feedback of the vision algorithms in action alleviated most

users’ shyness or privacy concerns.

2.2.2 The IBM BlueBoard

Researchers responsible for the Bluespace ubiquitous computing office at IBM Re-

search have developed interactive touchscreen public displays of various sizes

known as BlueBoards for the purpose of group information sharing in public spaces.

Users approaching a BlueBoard first authenticate with it using their standard cor-

porate RFid tags, which then causes the BlueBoard to load up each individual’s

personal calendar, messaging and personal file browser. Large plasma-display

BlueBoards are placed in prominent public spaces for simultaneous multi-person

interaction, while smaller ones have been designed for outside personal offices

to display office awareness information (such as person availability), and allow

visitors to leave notes when the occupant is away [46].

The BlueBoard and Ki/o projects are similar in many respects, differing mainly

with respect to particular research emphasis. As will be described later, the Ki/o

project research emphasis leans toward perception-driven, non-command, agent-

based user interaction, whereas BlueBoard seems to emphasize high-visibility, overt,

direct-manipulation style interfaces. Furthermore, one of the ultimate primary ap-
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plications of the Ki/o lies the capturing of informal meetings, whereas BlueBoard

seems to serve more as a digital portal to a user’s personal data.

As will be described in the next section, a third project, known as Aware Com-

munity Portals was a project to develop kiosk-like interactive wall projections from

the MIT Media Lab for the purpose of community building and awareness. Since

this project shared many of the goals of the Ki/o platform, it, too was important in

defining the scope of the Ki/o project.

2.3 Related Work: Media Spaces and Awareness

2.3.1 Xerox EuroPARC: Portholes

Inspiration for the O2Flow Architecture, described in section 4.3 came from a num-

ber of early experiments with audio-visual links to tie disjointed physical spaces at

Xerox PARC in the 1980s. The first such application which used media spaces for

the purpose of awareness was the Portholes project in 1992 by Paul Dourish and

Sara Bly at Xerox EuroPARC, who discovered that when cameras and displays were

not actively being used for a videoconference, users wished to see displays of pub-

lic spaces, such as near coffee pots and lounges. Dourish and Bly believed this

desire was motivated by people wishing to find out what activities were going on

in these spaces, such as to see who was there, who was talking with whom, who

was available for interaction. This information, they believed, encouraged spon-

taneous interaction and contributed to the social health and sense of community

in the workplace [14]. Unlike video conferencing systems and prior media space

experiments, their system was intended to be viewed passively, in the background

of user’s tasks.

2.3.2 Media Lab: Aware Community Portals

Subsequent to the development of Portholes, a large number of projects incorporat-

ing awareness into groupware and media space applications have been developed.
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Nitin Sawhney at the MIT Media Laboratory summarizes nearly a decade of re-

search devoted to collaborative applications involving video and audio links in his

paper Situated Awareness Spaces, including describing a project he participated in

designing, called Aware Community Portals [47]. His impressive prototype inte-

grates a large number of elements many of these earlier designs to provide both

spatial and temporal awareness, large-group presence indication, and group inter-

est awareness and display.

2.4 Informal Meeting Capture

The field of Computer Supported Collaborative Work (CSCW) has seen a wide va-

riety of research projects dealing with both synchronous and asynchronous, co-

located and telepresent prototype meeting capture and facilitation tools. Many of

these focus on the whiteboard as the center of collaboration, such as Dynawall [19],

Tivoli [40], We-Met [60], M-Pad [45], and DUMMBO [6]. Only one of these, how-

ever, has been targeted to augmenting unplanned, random informal interactions as

might occur as the result of random encounters in secondary spaces. For their sys-

tem, DUMMBO, Jason Brotherton, Gregory Abowd and Khai Truong from the Geor-

gia Institute of Technology outlined how the design requirements for unplanned

informal meetings differ from traditional meetings; for informal meetings, startup

time and cost for using the system must be absolutely minimal, and, secondly, the

system must support the inherent lack of structure of these types of meetings. This

lack of structure makes later retrieval and organization inherently more computa-

tionally difficult for informal meetings, yet all the more important [6].
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2.5 Mobile Devices

2.5.1 Xerox PARC: ParcTab

To get ideas about how mobile devices, such as Oxygen h21s or notebooks or tablet

PCs might be able to seamlessly interface with Ki/os and other Intelligent Environ-

ments, a number of projects incorporating devices of various sizes and form factors

were examined. ParcTab was an early ubiquitous computing infrastructure at Xerox

PARC (designed in part by Mark Weiser) that consisted of devices in 3 forms, the

“inch”, “foot” and “yard” form factors, Even at the “inch” scale, the petite ParcTab

mobile unit was integrated with the rest of the system, communicating over in-

frared. The “yard” unit was the Xerox Liveboard, which supported simultaneous,

multi-person operation [57].

2.5.2 Carnegie-Mellon University: Pebbles

The Pebbles project, started in 2001 by Brad Myers at Carnegie-Mellon University,

has sought to develop software that enables existing standard PDAs running Pal-

mOS or WinCE to be used to control and augment traditional user interfaces on PCs.

Examples of novel applications that have already been developed with the Pebbles

architecture include a remote-commander application which provides convenient

access to application macros, as well as convenient zoom, pan, and presentation

control widgets, or remote scribble and clipboard manipulation functionality all via

the PDA display [32].

2.5.3 GMD: iLAND and Roomware

Another demonstration of tight integration among heterogenous mobile compo-

nents was done by the iLAND project, mentioned in section 1.4.1, from the German

National Research Center for Science and Technology (GMD). Through their BEACH

software, note contributions from anyone using any of their RoomWare components

could be shown, moved, duplicated and manipulated in a direct-manipulation man-
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ner through the use of dragging and throwing gestures. Their simple and elegant

solution for cross-device information sharing and collaboration seems appropriate

for both informal and full meetings alike [53].
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Chapter 3

Physical Design

This chapter describes the physical aspects of the Ki/o kiosk IE. It presents a tour

through the design process that was used to arrive at its current design, and pro-

vides the rationale used to evaluate alternative designs.

3.1 Identifying the Physical Form

The task of designing the physical form of IEs for transitional spaces requires con-

sideration of creative, aesthetic and sociological factors as well as practical and

logistical ones, such as physical and budgetary constraints. Many of these charac-

teristics are specific to the site where it is to be installed, such as the size and shape

of the space allocated to the installation, and what affordances the space provides

for embedding and mounting equipment into floors, walls, and ceilings.

Due to the number of variables dependent on the installation site, no one design

for Ki/o would fit all environments. Although this means that Ki/o IEs have to ulti-

mately be designed on a site-by-site basis, this can be made simpler by considering

multiple typical installation scenarios and determining what elements these have in

common.

For insight on the different types of spaces and installation scenarios, the design

process began with a survey of public spaces around the MIT campus that have been

augmented with various types of digital information displays.
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Figure 3-1: The List Visual Arts Center Media Test Wall

3.1.1 Survey of Existing Information Displays

The survey yielded a number of interesting displays which ranged widely in size,

integration, and interactivity. The List Visual Arts Center (LVAC) Media Test Wall

was the largest display that was surveyed, and consisted of an approximately six-

foot square rear-projection screen deeply installed in the wall, coupled with a sound

isolation dome speaker hanging from the ceiling (see Figure 3-1).

This display, which presently remains active, occupies an entire section of wall

connecting the entrance and elevator lobby of the building to the main hallway. The

open space provided by the lobby as well as its proximity to the nearby computer

cluster and classrooms yields high visitor traffic. This display presents a rotating

exhibition of the LVAC’s video art collection, and is therefore non-interactive. The

sound dome focuses the audio to observers standing under the parabola, and at-

tempts to minimize noise pollution to the surrounding space. The result is a suc-

cessful, eye-catching installation that captures the attention of passers-by, while

respecting its surroundings.

A dramatic contrast to the LVAC display were kiosks recently installed in the
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Figure 3-2: KIS Kiosks in the Aeronautics and Astronautics Department

newly renovated Aeronautics and Astronautics Building. These kiosks, designed by

Kiosk Information Systems Inc (KIS) are much more conservative in their design,

in that they do not attempt to depart the traditional notion of an information kiosk

(see Figure 3-2). Since these kiosks are self-standing units, they are are simple

to install, replace, and upgrade, but unfortunately appear less integrated with the

environment. Equipped with a small screen, keyboard and mouse, the designers of

the kiosk intended this to be used by a single person at a time, standing directly in

front of the kiosk where the keyboard and mouse may be reached. Unlike the LVAC

display, these kiosks were placed in smaller corridors and stairwells, and therefore

received vastly less visibility and traffic.

A third display, at the Microfluids Technology Laboratory, shares many of the

most desirable properties of both of the former two displays. As visible in Figure

3-3, its large plasma display device is eye-catching and permits comfortable viewing

from a distance, while a trackball mouse welcomes users to approach the display

and to interact with it. However, unlike the KIS kiosk, the size and horizontal as-

pect ratio of the display area suggests that a small group of two or three people
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Figure 3-3: Microfluids Laboratory Hallway Display
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could simultaneously gather around the display, such as for a collaborative discus-

sion. Furthermore, by being installed in a larger glass case embedded in the hallway

wall, this display manages to appear well integrated with the environment, while

maintaining the flexibility of having its components later replaceable and upgrad-

able.

3.1.2 Physical Design Criteria

This survey of existing displays facilitated identifying qualities desirable for the Ki/o

kiosks, as well as determining the most relevant dimensions upon which designs

could vary on a per-site basis. The most important qualities and dimensions are

discussed below.

Display Area

The size and shape of the display has the greatest impact on how many users can

simultaneously view it, as well as how close users have to be. While larger displays

have many obvious advantages they are also exponentially-by- size more expensive

to acquire, install, and maintain. The current best large-screen display technologies

are projection and plasma displays, the former of which suffers from extremely high

maintenance costs due to short bulb lifespan, while the latter suffers from low visual

resolution and extremely high costs. Therefore, until a single viable display with all

the desirable qualities (high resolution, low cost and low maintenance) is available,

the type of the display must be chosen on a per-site basis.

Form and Installation Technique

How a display is presented in its environment shapes new users’ impressions of

a system and affects their a priori expectations for the system’s capabilities and

pleasantness of use. These expectations are usually derived from associations of

prior experiences with other, more familiar systems. In order for users to draw the

appropriate associations and expectations, a physical form must be chosen which
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suggests a connection to an appropriate familiar system, while simultaneously ap-

pealing to users’ aesthetic sensibilities.

This is a challenging task because the installation technique will be invariably

dependent on the affordances of each installation site. On the one hand, the display

should appear seamlessly integrated with the environment in which it is installed.

This may demand that display designers work with building architects to make

plans for the display prior to building construction or during renovation. However,

most designs will not have this luxury, and extensive building modification will be

logistically impossible. An example of an alternative approach is the installation

technique for the KIS kiosks described earlier. In this case, installation involved

little more than merely strategically placing the self-standing structure in an open

space. While a tighter integration has aesthetic benefits, the KIS kiosk lends itself

to practical benefits such as ease of installation, equipment access, maintenance,

and upgrading. As described earlier, the Microfluids display installation provides

a balance by permanently embedding a glass case in the wall, which provides the

flexibility to allow its contents to be changed easily while providing the aesthetic

appearance of seamlessness.

Although ultimately designs must be considered on a site-by-site basis, installa-

tions may be evaluated on the basis of their practicality, lack of requirements for

difficult building modifications, and degree of aesthetic integration with its sur-

roundings.

Mode of User Interaction

Another important consideration is the question of what hardware devices the kiosk

will use to perceive users’ actions. This choice plays a key role in the user experi-

ence, by determining how easily users can communicate their intentions and desires

to the system.

In the three displays surveyed, only the KIS and Microfluids display were inter-

active, and both of these used traditional desktop input devices, specifically key-

boards and trackball mice, to provide input. Although this may be sufficient for the
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KIS kiosk due to its similarity in form factor to a PC, these input devices are usually

extremely clumsy, non-ergonomic, and limited when used away from the desktop.

Among the problems are an inability for multiple people to interact with the display

simultaneously. Various alternative input devices will be discussed in greater detail

later in section 3.2.

Criteria Specific to IEs

The design criteria heretofore discussed are relevant to designing any interactive

digital public information display. However, since IEs also have facilities for percep-

tion and action, they usually have a number of additional requirements that dictate

further physical design constraints.

These requirements specific to IEs comprise those needed by perception and

sensing hardware, which may consist of monocular and stereo cameras, motion

detectors, and distance and pressure sensors, as well as the ability to move and

change its physical embodiment or surroundings, such as via motors and servos.

For example, Ki/o IEs, using a set of cameras or motion detectors, could determine

how to best move its displays when a user approaches, such as placing them within

reach of a user in a wheelchair.

The first generation of Ki/o IEs that have been designed to accommodate flex-

ible experimentation with a wide variety of hardware devices, so that a variety of

sensors, cameras, and actuators could be tried and evaluated. Thus, modularity

has been favored over aesthetic value or tight physical compactness. The various

physical prototypes will be described and illustrated in section 3.3.

3.2 User Input Devices

Traditional input devices such as the keyboard and mouse have evolved for use on

desk surfaces and are designed and optimized for the ergonomics of desk surfaces.

While in some situations it may be unavoidable to use a keyboard and mouse at

a kiosk, alternative input devices can provide a far more efficient physical inter-
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face for the transient types of interactions that are typical of kiosks. The following

discussion addresses some of these alternative input devices.

3.2.1 Tangible Input Devices

Tangible input devices, such as those popularized by Hiroshi Ishii and Brygg Ullmer

at the MIT Media Lab seek to simplify human-computer interaction by extending

user interfaces and abstract digital entities into the physical world [23]. Their re-

search surrounds the vision that if digital information can be embodied in familiar

physical forms, such as blocks, tiles, containers, or post-it notes, they can be directly

manipulated easily by practically anyone.

By tightly coupling physical and digital entities, Ishii’s prototypes have success-

fully demonstrated significant reduction in the gulfs of execution and evaluation 1

which plagues most UIs in existence today. Furthermore, they reduce the learn-

ing curve required to manipulate user interfaces, by literally providing a physical

metaphor for abstract actions.

However, creating effective tangible input devices requires that the designer

have access to prior knowledge about the types of data to be manipulated. If there

are multiple such types of data, a physical surrogate must be designed for each.

Realizing that Ki/o IEs may embody a wide assortment of types of data rang-

ing from awareness-related information to captured meetings and notes, no single

model could be isolated that could be realized as a physical surrogate or set of sur-

rogates. Therefore, designing a tangible user interface was deemed too difficult, at

least for the first design. Instead, other, more generic direct-manipulation interface

devices such as touchscreen displays were considered.

1a term introduced by Donald Norman with respect to UIs to refer to the (1) cognitive gap be-

tween wanting to do something and being able to actually do it, and (2) the difficulty in determining
whether or not the desired output was actually achieved.
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3.2.2 Touchscreen Displays

Touchscreen displays enable users to interact with displays directly by touching

and tapping their surfaces. Touchscreen technology has evolved over the past few

years improving in sensitivity and pointing accuracy, moving from traditional re-

sistive sensing to capacitive sensing techniques that can detect a hand even as it

approaches the display surface. Several manufacturers, such as 3M have developed

simple glass overlays that fit over the surface of standard CRT or LCD displays,

transforming them into touch-sensitive displays.

From a user standpoint, touchscreens provide a simple and obvious mode of in-

teraction that requires little learning. However, as discovered during the initial user

evaluation period of the Ki/o prototype, if steps are not taken to redesign software

that were originally optimized for mouse interaction, the user interface can seem

unresponsive and frustrating. This is largely attributable to the difference in control

precision provided by a touchscreen versus a mouse; mice can be accelerated or de-

celerated nonlinearly to provide rapid navigation or fine-grained control, whereas

touchscreen displays provide a linear, one-to-one mapping between physical and

virtual space. Another difference involves how taps map to mouse clicks; many

users will not make a distinction between glass presses and taps.

3.2.3 Sensing and Perception

IEs such as Ki/o have perception subsystems made to provide the capability of sens-

ing and perceiving their physical surroundings. Perception has the potential to

greatly enhance the user experience by enabling the system to automatically de-

duce what the user wants by gathering and analyzing contextual clues, much in the

way that humans read body language. Unfortunately, much of this field is still an

area of open research, and is one principal areas of exploration in designing IEs

such as Ki/o.

In order to perceive the world, IEs must rely on sensors of various types and

forms. Data from low level sensors, such as motion detectors, pressure and distance
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sensors can be aggregated to form higher-level conclusions about the world. A

software architecture for doing this known as a blackboard architecture, will be

described in section 4.5.

3.3 Design Prototypes

Four Ki/o prototypes of varying forms have been designed for different spaces

around the AI Laboratory. These range in size and functional capability, from the

complete Lobby prototype to the minimal embedded wall display.

3.3.1 Lobby Prototype

About the Space

The first Ki/o prototype was designed for the eighth-floor elevator lobby of the

LCS/AI laboratory building. This space was chosen for its proximity to the AIRE lab

space, and for the large number of people that regularly pass through the space.

Approximately eighty faculty, researchers, and staff members’ offices reside on the

floor, comprising roughly ten research groups. Visitor traffic is particularly high

when gatherings are held in the eighth floor Playroom for lab-wide research collo-

quia and meetings of the GBACM (Greater Boston branch of the ACM).

The lobby’s proximity to the AIRE research group facilitates monitoring and reg-

ular maintenance of the IE. It also permits monitoring of community reaction to the

system, and encourages communication of feedback back to the Ki/o designers who

reside nearby.

The lobby features thick brick walls that have remained basically unmodified

since the inception of the laboratory in 1969. Although these walls make it impossi-

ble to embed anything within them, a more recently installed drop ceiling provides

convenient hidden space for obscuring equipment and wiring.
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Figure 3-4: Early designs for Ki/o

Choosing a Form

Although the solid nature of the walls seemed to controvert the design goal of a

seamless integration the surrounding environment. The problem of how such an

integration could be achieved with these constraints became the primary objective.

Several floor-standing installations resembling a number of variations of the KIS

kiosk concept were initially proposed (see Figure 3-4). Most of these were discarded

on the basis of being too large and imposing, and for lacking integration with their

surroundings. A more minimal and purely functional design which could better

connect the kiosk to its environment was sought.

During this design process, construction of the new Stata Center, a building

designed by Frank Gehry and Associates to replace the current building holding

the LCS/AI lab, had just begun across the street. The freshly poured base concrete

structure of the Stata Center revealed the building’s dramatic inner angled pillars

45



and irregular shapes that constituted the building’s unconventional, post-modern

design style. Inspired by Gehry’s design and hoping to convey a feeling for the

design of the AI laboratory’s new home, a new Ki/o design was proposed.

This new design (see Figure 3-5) uses long aluminum rods to mount Ki/o dis-

plays and equipment to the lobby wall. Two touchscreen 17” LCD displays are

mounted on one pole each, which crisscross diagonally and meet the ceiling and

wall at different angles. The hollow poles allow for the channeling of all display

and device-related cabling up through the poles into the drop ceiling where it is

connected to the remaining Ki/o support hardware concealed in the ceiling. The

poles are intended to deliver the appearance of being somehow structurally con-

nected to the building, and thus being architecturally part of the lobby, while min-

imizing modifications to the walls. A small monocular camera mounted above the

LCD displays senses passers-by and approaching users, while a standard desktop

microphone senses ambient sound. An isolation dome speaker hanging above the

displays was chosen to deliver stereo sound to users standing underneath, while

minimizing reflection outside the immediate area.

Display Requirements

While a wide variety of display options were under consideration, a number of

factors influenced the choice of using a pair of standard desktop LCD displays for

this first prototype lobby installation.

A lobby installation such as this required a display that could be noticeable and

discernible from up to approximately 30 feet away, but which also provided enough

resolution to support a readable display of text for users standing nearby and in-

teracting with it. The display also had to be large enough to allow small groups of

people to stand around it, view it, and interact with it simultaneously comfortably.

A third important practical consideration dealt with the cost of each display; since

displays have become the most expensive single component of computer systems

today, the ability to build multiple Ki/o prototypes given a particular budget rests

largely on the cost of the type of display chosen.
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Figure 3-5: Ki/o Lobby Prototype
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Plasma displays today come in sizes and form factors ideal for far-away visibility

and supporting nearby multi-person interactions. However, low pixel density and

their extremely prohibitive cost led to the adoption of LCD displays instead.

Desktop LCD displays support resolutions and pixel densities higher than plasma

displays and comparable to that of traditional CRTs. Unlike projection-based dis-

plays, LCDs are also high-contrast (typically 500:1 contrast ratio). The main limit-

ing factor with LCD displays is their size; current displays only achieve a maximum

of 23 diagonal inches.

One technique to expand display surface area of LCDs is to create one large

logical display out of multiple independent LCD displays. Unfortunately, since each

display requires its own frame buffer, graphics accelerator, and video signal driving

circuitry, this technique is limited by video card hardware scalability constraints.

Fortunately, with the advent of increasingly powerful video cards, native multi-

head support from a single card is becoming commonplace. Furthermore, since

LCDs do not require analog signal feeds, video cards providing a direct digital video

interface (DVI) can omit RAMDAC chips used to drive the displays. In the future,

elimination of RAMDAC chips could provide enough real estate and cost savings

to warrant supporting even more digital displays. Thus, tiling small, affordable

desktop LCD displays to form larger composite display surfaces seems the current

most cost effective, flexible option for the near future.

Audio Output

Many Ki/o applications are likely to need Ki/os to be able to produce audio output.

However, since the lobby prototype is in a high-traffic gathering area, too much

audio output could contribute to noise pollution which could be detrimental to

interactions nearby. As a potential solution, a sound output device was sought that

could focus sound exclusively to within the region of interaction, and limit external

leakage.

A commercial product that seemed to fit these requirements called the Sound-
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Tube2 consisted of an upwards-facing speaker which projects sound into a large

plastic dome. Although this dome is supposed to focus the sound directly for a

person standing underneath, and thereby minimize leakage outside the region, in

practice, the degree to which this was effective did not meet expectations. How-

ever, users frequently commented on the unusual appearance of the device, making

comparisons to The Cone of Silence from the popular 1960’s television series, “Get

Smart”. Due to its effectiveness in attracting the attention of passers-by, use of the

SoundTube device has continued on the lobby prototype, both as a sound output

device and as an aesthetic accent.

User Input

As just described, three main input devices were chosen for the Ki/o Lobby pro-

totype. Touchscreens provide the main mode of user interaction, while a simple,

VGA-resolution color USB QuickCam camera and microphone provide perceptual

inputs. As will be described in section 4.4, the perceptual input from the camera

is processed through a pipeline which extracts information about whether and how

many users are nearby the kiosk. At the time of this writing, the microphone is only

used to transmit ambient sounds as awareness information via O2Flow. However,

plans for using the microphone for speech-driven user interfaces using the Galaxy

natural-language dialog system are discussed in section 5.2.

3.3.2 Lounge Prototype

Although the Ki/o lobby prototype is the only deployed Ki/o system thus far, plans

are underway for immediate construction of several other Ki/o kiosks. The first of

these is for installation in an informal break area in the AIRE research lab space,

visible in figure 3-7.

This Ki/o installation will differ from the lobby prototype in several significant

ways. First, users will most likely be interacting with it in a group, sitting around

2see http://www.soundtube.com/
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Figure 3-7: Lounge setting for next Ki/o prototype
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the glass table. Therefore, interaction sessions with this kiosk are likely to span

a longer time, and potentially involve more people simultaneously than the lobby

prototype. At the same time, since this lounge is not within a primary circulation

route of the building, it will likely receive less visitor traffic than the lobby. Finally,

since the users will be sitting, interaction must be done at a distance instead of

directly through a touchscreen tactile input.

To address these new demands, a projector and screen were chosen as the pri-

mary display medium and surface for the lounge. As visible in the figure, the large

projection area should allow all users to be able to see and read text on the display

effectively. For interaction, a small camera functioning as a laser pointer tracker

was chosen because it enables the use of a laser pointer to simulate a mouse from a

distance. Once this prototype is built and deployed, both choices will be evaluated

for usability and effectiveness.

3.3.3 Hallway Prototype

The initial Lobby prototype design was the first example of how a Ki/o kiosk be

installed in a transitional space, such as a hallway or elevator lobby. However, for

many hallways, this design would be inappropriately large, and would not fit the

design goal of being low-profile and unobtrusively integrated into the environment.

One of the next versions of Ki/o will attempt to be low profile and occupy as

little public space as possible. The installation visible in Figure 3-8 illustrates a

simple implementation which takes advantage of indentations in a wall for storing

bulky desktop computer hardware, thereby intruding as little as possible on hallway

space. This particular kiosk, equipped with a touchscreen, speakers, keyboard and

mouse is used to allow the MoreMagic server administrators at the AI Laboratory to

monitor the status of all servers in the building, using the NetSaint suite of diagnos-

tic tools. The keyboard and mouse allow administrators to use the kiosk directly as

a terminal console when problem arise.

An alternative design is visible in Figure 3-9. This display, which is actually a

52



Figure 3-8: MoreMagic Network and Server Diagnostic Console Kiosk
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Figure 3-9: Ki/o Wall installation

part of the Intelligent Room, is mounted directly onto a hollow wall which conceals

cables running to a desktop computer in a neighboring machine room. By only ex-

posing components that need to be visible, this is perhaps the most elegant design,

but also has the most elaborate requirements due to the need for a custom wall

and adjacent machine room. In the future, embedding necessary computer hard-

ware within the display itself may eliminate the need for both the special wall and a

nearby machine room. Tablet PCs equipped with wireless Ethernet could potentially

be ideal for this purpose.
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Chapter 4

Software Architecture

The demands of ubiquitous computing create many challenges for software design

and development. As the research field matures, it has spawned new software de-

sign strategies and new programming models, repeatedly identifying and redefining

design goals along the way. While many of these techniques have been tested on an

experimental, individual basis, few of them have been integrated into larger systems

and tested for actual use. The goal of the Ki/o project, therefore, is to consolidate

and tailor existing methods across research domains into a software architecture

that can be built, deployed in a real setting, and evaluated by users.

This chapter describes the the Ki/o software architecture, a prototype software

toolkit for IEs installed in informal, public, or transitional spaces. The chapter

begins by introducing the initial software design goals, and follows with sections

devoted to detailed descriptions of the individual software components newly in-

troduced by this project into the Metaglue system. The chapter concludes with a

discussion of how these components interact with each other and with pre-existing

Metaglue components, and provides a glimpse at several prototype end-user Ki/o

applications built using this software architecture.
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4.1 Architecture Design Goals

The purpose of the Ki/o software architecture is to serve as a toolkit to simplify

development of end-user Ki/o applications. Thus, the software architecture aims to

fulfill a role similar to that of contemporary user interface and application toolkits,

such as Microsoft’s MFC (Microsoft Foundation Classes). However, in addition to

providing standard tools available in such a toolkit, such as GUI and communica-

tions capabilities, the Ki/o software architecture must support the needs of ubiq-

uitous computing applications in intelligent environments. These capabilities may

include speech recognition, natural language understanding, and visual perception.

To help identify the needs of these ubiquitous computing applications, this sec-

tion presents the application design goals at a high level.

1. Ubiquitous access to information and services

To achieve the ubiquitous computing objective of allowing computation to be

available anywhere, regardless of the physical machine the user is interacting

with, the Ki/o software architecture should permit all user data and IE ser-

vices to be accessed transparently from anywhere. Transparent data access

implies users of Ki/o kiosks do not have to worry about remembering which

computer they left their data on, or how to transfer the data to their desktop

or another IE. This is a problem that can be solved using a combination of a

proper application/UI model, with network computing, which assumes that a

high-speed network is available to connect all of the machines with which a

user may interact, including mobile, handheld devices1.

2. Location and context-based information services

Ki/o UIs should be able to provide information relevant to the user’s physical

location and context. One example of such a situation-based service would

1 A good example of ubiquitous data access can be seen in the the Athena computing environment

at MIT. Athena workstations distributed throughout campus, which vary widely in architecture and

specifications, present users with the same view of their data and available application software
wherever they go.
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be a Ki/o located near shared public printers indicating the current printer

and print queue status when approached by a user who has a print job in the

queue. The Ki/o could further permit manipulation, reordering, or removal

of jobs from the queue, as well as possibly allow the user to contact others

whose jobs are in the queue as well.

3. Transparent flow of user state and task context between devices and spaces

The Ki/o UI should support user state migration, meaning that users current

work state and task context should be able to migrate between spaces, de-

vices, and IEs, following the user. While devices and spaces have such widely

varying computational resources, display capabilities, and input devices, that

the user work context may not be fully realizable in a particular device, they

should still be restorable when the user has entered a space where such capa-

bilities once again exist.

4. Multi-modal Input and Multimedia Output

Ki/o UIs should support navigation and interaction via multiple modalities,

such a via speech or gesture. To respond, they should likewise be capable

of utilizing channels of communication that are most appropriate for the sit-

uation, such as text, video, graphics, or speech. Together, these capabilities

increase perceptual bandwidth2, or efficiency of information transfer between

people and a user interface, by enabling users to express their desires more

naturally, easily and succinctly, and, in turn, to receive information from the

system in a clear, easily understandable fashion by using its most natural rep-

resentation.

5. Non-command Interaction and Reactive Behaviors

Non-command interfaces3 treat users’ time and attention to be its most im-

portant and scarce resource. These interfaces attempt to infer what the user

2also known as interaction bandwidth, see [44] for a more complete definition
3 sometimes compared to Do-What-I-Mean interfaces, demonstrated by the Interlisp programming

system[54]
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wishes to accomplish, and actively tries to assist or automatically perform ac-

tions without explicitly being commanded to do so4.

Reactive behaviors, which are actions triggered directly by perceptions, consti-

tute the simplest form of non-command interaction. An example of such a re-

active behavior would be a program that automatically turns on Ki/o displays

in response to sensing that a user has approached. The theory of subsumption

architectures supports the idea that any complex behaviors, including those

responsible for human cognition, can be modeled by multitudes of primitive

reactive behaviors interacting and suppressing one another[4].

The Ki/o should at least initially support reactive non-command behaviors,

and later support more elaborate, task-specific non-command interaction.

6. Direct-manipulation interaction

The philosophy behind direct-manipulation interfaces, as discussed in the last

chapter, promotes putting users more directly in control of their systems, by

reducing automation and abstraction surrounding data manipulation. While

this seemingly contradicts the non-command based interaction philosophy,

studies of direct manipulation interfaces underscore the importance of making

systems fully visible, understandable, and easily manipulatable by users. The

design of Ki/o applications should attempt to capture these qualities.

7. Awareness Displays

As described in Chapter 1, one of the motivations for the Ki/o project was

to attempt to build a better sense of community among members of an or-

ganization or workgroup. This goal is increasingly important for physically

fragmented workspaces such as workgroups with remote or satellite offices.

In these situations, it is highly unlikely for any members from the satellite

office to casually encounter people from the main site in an informal setting,

4 A widely familiar example of an early non-command interface is the Office Assistant available

in recent versions of Microsoft Office, which used Bayesian inference techniques to determine what
actions to take based upon what the user was doing.
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and vice-versa, causing both locations to drift apart socially.

Awareness displays attempt to connect disjoint workspaces by capturing and

transmitting information about local workspaces, and re-displaying them at

the remote sites in a non-obtrusive way. One example of an early aware-

ness display was the Portholes project[14] which, regularly took still, low-

resolution photos of offices and public spaces in a laboratory and displayed

them on every workgroup member’s desktop. This permit any of the members

to automatically tell whether someone was at their desk, and whether or not

they were available for conversation.

To support awareness displays, the Ki/o software architecture should support

a mechanism of capturing and transmitting awareness information to remote

IEs, including other Ki/o kiosks. At the same time, the architecture must

include facilities for allowing users to easily opt-out of sharing awareness in-

formation to provide privacy when desired.

4.2 Software Organization

4.2.1 Agent-based Programming: Metaglue

The Ki/o software design is an amalgamation of components each designed to serve

one or more of the application design goals discussed earlier. These components are

constructed and connected using an agent-based programming framework known

as Metaglue, designed for originally for the Intelligent Room.

Unlike traditional software systems, the Metaglue agent architecture in the In-

telligent Room has no central control logic or structure. Instead, each agent, an

independent software entity with its own state and code, embodies a primitive,

simple behavior. As Michael Coen, one of the original architects of Scatterbrain,

a predecessor to Metaglue, describes, the theory is that when these simple agents

are assembled and permitted to communicate with one another, more complex, ag-

gregate behaviors can be achieved even without central control[10]. He further
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Figure 4-1: Ki/o Software Architecture Organization

argues that, in fact, this technique of distributed control is more fault-tolerant, by

not relying on a single point of failure, and scalable.

With this agent programming approach, adding a new capability to the Metaglue

framework consists simply of adding agents that embody those capabilities, and

that fulfill the basic Metaglue communication capabilities to permit communication

with other agents. Thus, the capabilities added to Metaglue for Ki/o, responsible

for tasks such as perceptual processing, context aggregation, and media streaming,

took the form of collections, or societies, of Metaglue agents. These individual agent

societies are described in depth next.

4.2.2 Ki/o Services

Although Metaglue agents generally communicate with one another on an ad-hoc,

peer-to-peer basis without any strict organizational structure, for illustrative pur-

poses it is useful to categorize the various agent societies by the services they offer.

Figure 4-1 organizes the Ki/o agent architecture by levels of abstraction for the

types of services offered. These layers are briefly described as follows:
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1. Metaglue

At the bottom is Metaglue, which provides all the facilities for low-level agent

management and communication. Its primary responsibilities consist of con-

trolling the birth of, and keeping track of, all live agents in a system. This

information is then used to permit agent intercommunication, by providing

applications with a layer of abstraction so they never have to explicitly know

the location, identity, or status of each particular agent in order to communi-

cate with them. Metaglue accepts queries for looking up agents based upon

capability as well as explicitly by name, providing an additional layer of ab-

straction.

A detailed account of the Metaglue system, its history, architecture, and design

can be found in [41] and [58].

2. Multi-modal World I/O

This layer provides other Metaglue agents interfaces to the physical world

through various channels, including speech, video, and audio. The input ser-

vices provide abstractions around keyboards and mice, sensors, video capture

devices, low-level location sensing (Cricket) devices, and provides low-level

signal processing services for these devices, such as speaker identification and

speech recognition. For output, the GUI Manager controls GUI construction,

and allows GUIs to be routed and reformatted for different sizes and types

of displays. An alternative text output channel might be text-to-speech (TTS),

computer-generated synthesized speech.

3. Semantic Services

The next layer consists of higher-level semantic services which serve to aggre-

gate and interpret knowledge in a variety of ways. The perceptual inferencing

system receives raw data from visual trackers (cameras) and sensors, and

drives towards possible interpretations of this raw data. The Ki/o software

architecture uses a blackboard architecture[36][35] which will be described in
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section 4.5 to provide this perceptual goal-directed inferencing capability. A

natural language understanding (NLU) engine called START extracts seman-

tic interpretations from raw English text and is also able to output semantic

concepts as grammatically correct English sentences. A semantic store pro-

vides an organized, permanent storage service for semantic information and

permits retrieval in a number of ways. The resource manager is responsi-

ble for fulfilling requests for abstract services and functionality with concrete

agents that can provide that service, and resolves contention when resources

are limited[18]. For example, an agent wishing to display data formatted in

HTML may query RASCAL for an agent with such capability. The resource

manager, in turn, could analyze the situation and respond with the most ap-

propriate agent, possibly a standard web browser or perhaps an HTML page-

to-speech reader.

4. User Context Management

The User Context Management layer provides common services needed by

oxygen (ubiquitous computing) applications and their intelligent UIs. Its re-

sponsibilities include transforming contextual information provided by the

lower levels into models of the user and what the user’s goals. These models

can then be used directly by top-level applications to drive application state

and to personalize the UI. The PLANLET project provides a portable way of

explicitly representing user tasks. Using this representation will be one way

to fulfill the goal of enabling the flow of task context between spaces.

5. Application

The Application layer consists of the software pertaining to the actual task

the user wishes to accomplish. Much like traditional applications, Ki/o ap-

plications provide core high-level logic and abstractly relying on lower-level

software services. Several trial Ki/o applications, including a web information

display and an interactive 3D floor plan are described in section 4.6.
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4.3 O2Flow Awareness Network

4.3.1 Design goals

The O2Flow network was intended to simplify the acquisition, dissemination, and

reception of various types of awareness information. Examples of such data may

include low-level proximity and motion sensor data, still images from cameras, or

live video.

This type of awareness information exhibits several characteristics that distin-

guish it from other data transmitted in Metaglue :

1. Time-sensitive, non-essential delivery - Awareness information is almost al-

ways extremely time-sensitive, but at the same time is not absolutely critical

for delivery; therefore, if awareness information is lost, it should not be

re-transmitted.

2. One-to-many reception - Since awareness is a type of notification mechanism,

the messages will be intended for a one-to-many type of transmission.

3. Stream-based payloads - Many awareness sources, particularly live video or

audio, are best modeled as continuous data streams rather than as individual

messages.

While the Notification mechanism[58] already part of core Metaglue provides

a means for message broadcast to all agents with a society, it is entirely discrete-

packet message based. Using this transport would not suit stream-oriented data

such as video, since the sheer number of messages required to sustain a continuous

video stream would overload the mechanism. Furthermore, the notifier provides a

guaranteed-delivery contract, which is not necessary for awareness information.

Thus, a more lightweight, stream-compatible dissemination architecture was

sought, and the yielded the O2Flow architecture, described next.
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4.3.2 Design Description

The simplest possible design was sought for achieving the goals above. Fortunately,

the standard Java libraries provided capabilities that allowed made the design and

implementation straightforward.

The network transport chosen to achieve time-sensitive, non-essential delivery

is the standard unicast datagram protocol (UDP)5. When a multi-host broadcast

was needed, UDP packets could be routed using IP Multicast towards a multicast

address [29]. Applications wishing to receive this awareness information could,

thus, “tune in” by joining the multicast session. Meta-information about session

management, such as multicast address and port, is communicated through the

standard Metaglue notifier or direct method calls. This was deemed appropriate

since this traffic was limited to infrequent, small packet data.

Deciding how to encode audio and video streams was less straightforward. Cri-

teria included quality, bandwidth required, encoding and decoding overhead, and

availability of codecs. The last criterion was ultimately what determined how much

implementation work was required, and thus was the highest priority. Computa-

tional efficiency of encoding and decoding were actually the second highest, since,

for simplicity, the encoding or decoding would be done inside a Java virtual ma-

chine. Actual codec image quality versus bandwidth requirements were tertiary

concerns due to the lack of need of high-quality video transmission in awareness

applications.

The video encoding chosen is the ITU-T standard H.263 video codec, a modern

version of the H.261 codec popularized by early videoconferencing systems such as

the Polycom PictureTel. The H.263 codec was chosen over over MPEG-1 or MPEG-2

due to it being designed for low-bitrate communications, and for being supported

by most videoconferencing applications on virtually every popular platform. Sim-

ilarly, the GSM 06.10 is a low-bitrate, lossy audio codec that deemed adequate

for compressing awareness audio streams. GSM 06.10 was originally designed for

5Unlike TCP, UDP packets are not retransmitted when dropped.
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use in compressing speech for cellular phones in Europe, and is still widely used

for this purpose today [49]. Optimization for low-bitrate communications seemed

potentially important to allow mobile devices to receive transmissions via wireless

transports such as bluetooth or WiFi 802.11b6 Finally, an efficient Java implemen-

tation of both codecs was provided in the Java Media Framework (JMF), a library

from Sun Microsystems designed for the purpose of capturing and manipulating

media streams.

The JMF also facilitated encapsulation and transmission of the H.263 stream

over the network. The RTSP (Real-Time Streaming Protocol), used widely across

the Internet multicast backbone (MBONE), is an IETF-standard multimedia presen-

tation control protocol designed for both unicast and multicast video and audio

transmissions over IP networks [48]. RTSP supports Quality-of-Service metrics and

reception quality monitoring through the RTCP (Real-Time Control Protocol), inte-

grated into a session management mechanism for multicast media broadcasts. RTSP

works with its transport protocol, RTP (Real Time Protocol), which are both directly

supported by JMF, providing a simple means by which multi-stream broadcast ses-

sions could be started, joined and managed. Unlike HTTP, which is transported over

TCP, RTSP is UDP-based and leaves retransmission up to the higher-level application

or media session manager.

4.3.3 O2Flow Architecture

The internal architecture of the O2Flow Agent is visible in Figure 4-2. As can be

seen, the process of capture and transmission of awareness audiovisual streams is

accomplished by using Java Media Framework’s facilities for capturing media from

low-level system devices, encoding, and encapsulating them for network transport.

JMF accomplishes data capture by controlling hardware capture devices such

as microphones and cameras through native interfaces exposed through the under-

lying operating system. After JMF captures a frame of data, O2Flow passes the

6In retrospect, however, the rate at which wireless bandwidth is increasing makes this less of a
concern.
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Figure 4-2: O2Flow Internal Architecture

data through several filters that compress and prepare the frame for transmission

over the network. As described earlier, the H.263 and GSM codecs are compres-

sion filters that convert raw frames and PCM-encoded audio into low-bitrate data

streams. After data compression, another filter is used to encode the data in an

RTP-compatible format. Finally, the data gets passed to the RTP Session Manager,

which manages the transmission over the network. O2Flow then either requests the

Session Manager to create a new RTP session for the transport, or to add the stream

to an existing multicast session already in progress. A multicast session can support

any multiple concurrent streams originating from different sources, where all par-

ticipants jointly receive all the streams in the session. The Session Manager then

starts the stream, using the RTSP for broadcast meta-data, and RTP for the data

payload. Clients who have joined the session periodically send out RTCP replies to

each of the broadcasting sources, with information about their reception statistics.

This informs the Session Manager about current network conditions, which allows

it to potentially take corrective measures, such as such as by offering a more highly

compressed (lower quality) stream in response to high network congestion. The

rest of the details of data transmission are handled automatically by lower-level

protocols, including IP multicast.

For receiving streams, O2Flow relies on the JMF Media Player object to perform
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the necessary depacketization, decoding, buffering, and rendering. O2Flow places

control of the Media Player’s video canvas and graphical control components to the

GUI Manager Agent, a Metaglue service responsible for laying out and composition

of graphical components. Under normal circumstances, the GUI Manager queries

the Metaglue Resource Manager to determine what display resources are available,

and then transports the GUIs across machines to acquire a particular display re-

source. However, since the O2Flow agent GUI components must display video and

audio, the GUI must exist on the same machine as an O2Flow agent instance. Thus,

the O2Flow agent explicitly requests the GUI Manager to respect this constraint

when laying out the display component.

4.4 Simple Perception Agents

To enable perceptual computing, Metaglue needed a means by which it could han-

dle streams of perceptual video data. The Simple Perception Agents (SPA) were

designed to fulfill this purpose.

4.4.1 Design Goals

The design goals of the SPA architecture can be described as follows:

1. Simplicity and Flexibility - The architecture should be simple and straightfor-

ward to implement, aiming first for basic perceptual applications, yet suffi-

ciently flexible for future development of more advanced vision algorithms.

2. Perceptual Capabilities On Demand - Vision algorithms should be treated them-

selves as agents, or at least as dynamically loadable modules that can be spon-

taneously invoked to provide perceptual capabilities on demand.

3. Scalability - Finally, any vision system being designed, particularly in Java,

should consider the computational capacity of such a system
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Figure 4-3: Simple Perception Agents

4.4.2 Architecture Description

As can be seen by comparing Figure 4-3 with the architecture of O2Flow, SPA

strongly resembles the “capture” half of O2Flow. SPA, again, uses the Java Media

Framework to gain access to capture devices, and passes the raw data obtained

through a series of filters. However, instead of compressing and encoding this

data and preparing it for transport over the network, these filters perform sim-

ple machine-vision algorithms on the data, publishing these results to the rest of

the Metaglue system. This publishing is done through the perception-inferencing

blackboard system, which will be presented in section 4.5.

The core of the SPA architecture consists of a processing pipeline. Frames

grabbed from a capture device are inserted directly into the front of this pipeline.

Each stage embodies a single logical processing operation, such as colorspace con-

version or face detection, and passes the resulting data on to the remainder of the

pipeline. A split may be inserted at any point in the pipeline to create two differ-

ent parallel pipelines stemming from the same stage. Each branch off of a split
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gets an identical copy of data coming into the split. Breaking up vision processing

into pipeline stages in this manner fulfills modularity and allows for the expression

of arbitrarily complex vision processing through construction of the branched data

pipeline.

The vision pipeline is built dynamically at runtime by the SPA system. The

system allows agents to manually specify how they want the pipeline constructed,

which allows users to build custom processing pipelines exactly as they desire. How-

ever, SPA also supports automatic pipeline construction which pieces together a

pipeline using information from each module about what it requires and produces.

This allows the SPA to be treated more as a generic service that other agents can use

to ask directly for perceptual capabilities, and helps fulfill the capability-on-demand

objective described in the previous section.

Automatic pipeline construction is performed by working backwards from the

desired end-goal. Each SPA pipeline component is designed to answer queries about

the type of data input that it requires, and the output that it generates. Using this

information, it is trivial to search the space of pipelines to generate a pipeline that

bridges the source to the desired module. For example, if a face detection capability

were desired, SPA first searches all modules for one that, for example, specifies that

it could output the number of human faces it detected in a frame. It then queries

the input requirements of that module, and searches, in turn, for a module that can

satisfy these new requirements. This proceeds recursively, building up a potential

pipeline, until the input requirements can be satisfied by the capture device itself,

or no pipeline is found. In the latter case, the SPA system notifies the agent society

that it was unable to fulfill the request.

4.4.3 Prototype Vision Algorithms

A few basic vision algorithms or perceptual filters have were implemented in the

first version of the SPA. A description of these initial SPA perceptual filters follows:

1. Difference/Motion detector - This filter uses background-subtraction to deter-
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mine how much a scene has changed from a known empty scene captured

either periodically, or during calibration. This filter can also be used to de-

termine the amount of motion in a scene by taking the absolute difference

between pixels in successive frames.

2. Skin detection - Douglas Chai and King Ngan demonstrated a technique in [7]

for quickly and easily isolating pixels in images that have a high likelihood

of representing human skin. Their technique rests on their discovery that

when images of various skin tones are analyzed in the YUV colorspace, the

color balance components U and V remain consistent across ethnicities. Thus,

their technique for skin segmentation involves simple thresholding of the U,V

components. This simple technique was borrowed and integrated into the SPA

for skin pixel segmentation.

3. Low-pass filtering - Also demonstrated by Chai and Ngan paper, various tech-

niques of low-pass filtering segmented image data may be useful for certain

other vision operations, such as finding coherent connected regions. In their

paper, they introduce a low-pass filtering technique known as density regular-

ization using simple erosion and dilation procedures. In the initial version of

the implementation, the SPA low-pass filter performs simple averaging and

thresholding instead of dilation.

While these methods are by no means representative of modern algorithms in

computer vision, they nonetheless provide basic examples of how algorithms can be

written and integrated into the SPA. In addition, while being extremely simple and

limited, combining these prototype plug-ins yields pipelines that can detect when

a person has approached or left the kiosk, as well as approximately how many

people are standing near the kiosk at any time. Thus, these filters already provides

interesting and potentially useful perceptual information that can be processed and

handled by other kiosk software components.

70



4.4.4 Distributed SPA: Extending SPA for Distributed Vision

Machine vision algorithms can be computationally expensive, requiring extensive

mathematical computation, and sometimes needing several passes over each pixel

in each frame. Although, for simplicity of implementation, these SPA vision pro-

cessors are implemented in Java, this implementation choice makes performance-

related issues much graver. Most real-time machine vision systems today rely on

optimizing code for specific machine architectures to allow execution at speeds sev-

eral orders of magnitude faster than unoptimized code. Yet, this is not possible for

interpreted Java bytecode.

One way to alleviate such a computational bottleneck is to embrace one of the

tenets of ubiquitous-computing: to allow computational capacity, like any other

ubiquitous computing service, to be treated as global resource flowing across phys-

ical machine boundaries. Distributed agent systems like Metaglue were designed

to make this easier, by permitting agents to migrate between compute nodes, and

by simplifying communication and coordination between nodes. Furthermore, an

application such as machine vision lends itself to distributed computing because

most vision algorithms feature substantial parallelism. This property permits vi-

sion algorithms to be decomposed into smaller steps, some of which must be done

sequentially while others can be done in parallel7.

By leveraging Metaglue’s distributed agent facilities, the SPA may be able to

support distributed vision processing to arbitrary granularity. This could be accom-

plished by modifying the SPA so that individual vision processors are embodied

as separate agents that coordinate using the standard Metaglue communications

mechanisms. Sharing frames or streams of frames between nodes could be sim-

plified via a multicast mechanism resembling O2Flow, where any number of nodes

can listen to the results posted from any previous nodes. The perceptual blackboard,

described next, could facilitate the re-integration of this distributed processing into

simple, coherent conclusions. Although such a distributed version of SPA has not

7For an early example of machine vision across a set of heterogeneous workstations, see the
DeVIouS system: [22].
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yet been realized, the design of SPA has been made to facilitate such an extension.

4.5 Perceptual Blackboard

One of the greatest challenges in ubiquitous computing software design has been

determining how to coordinate all the components that constitute an IE. In partic-

ular, the input half of this problem consists of how to process the large quantity of

potentially related, yet heterogeneous, contextual and perceptual data originating

from a large number of sources. How exactly to merge data in a general, yet coher-

ent and constructive, way is the topic of perceptual or multi-modal data fusion, an

area of much active research today.

4.5.1 Design Goals

1. Simplify application design - The main design goal of the perceptual black-

board is to provide a convenient interface for end-user ubiquitous applications

to access information related to context and perception. One way to do this

is to choose to provide an event-driven interface to the application, just as

conventional GUI toolkits do today.

2. Diversity in models and inferencing engines - Since perceptual fusion in kiosks

is a general problem dependent on the particular application or task at hand,

it would be dangerous to commit to a particular model or inferencing engine,

such as neural networks or a rule-based system. Thus, the architecture should

accommodate, yet be independent of, any specific inferencing algorithm or

technique.

3. Flexibility in knowledge representation - Again, since the architecture must sup-

port a variety of applications and tasks, it should support flexibility in knowl-

edge representation.

4. Modular capability - The system should be able to dynamically handle requests
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for specific types of perceptual information by activating expert modules on

an as-needed basis.

5. Storage and retrieval of historical context - Since historical context could prove

useful for future inferences, this system should store and manage retrieval of

historical contextual information.

4.5.2 Why a Blackboard?

The process of transforming raw perceptual inputs into data that is useful to ap-

plications is a problem that is ill-defined and potentially complex. As described in

this section, blackboard architectures are well-suited for exploring such problems,

where formal models individually fail, or where an appropriate model has not yet

been realized. Furthermore, a simple mapping from blackboards to distributed

agent systems make blackboard architectures even more appealing for Metaglue.

Blackboards form general-purpose knowledge-based system architectures that

remain uncommitted to any particular formal model or inferencing technique. This

gives blackboards a flexibility and neutrality not present in individual inferencing

engines. Another useful property exhibited by blackboards is their inherent mod-

ularity. All sources of information or expertise are encapsulated into knowledge

sources, which are individually independent entities, but may be made to cooper-

ate and communicate across the blackboard. Since knowledge sources work inde-

pendently, they can be added, removed, or replaced at will without breaking the

system.

Since a blackboard knowledge source can be made to embody any formal model

or inferencing algorithm, any blackboard architecture is at least as capable as its

constituent components alone. However, according to Daniel Corkill, blackboard

systems are, in fact, inherently more powerful because inferencing can be accom-

plished across heterogenous graphical models. This inferencing may be done in

an opportunistic manner8, or in a goal-directed fashion. This property, Corkill de-

8Corkill defines opportunistic as meaning having the control capability to perform the most ap-
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scribes, makes blackboards much better-suited for ill-defined problem areas [11].

The first blackboard system, Hearsay II, was itself built to explore a new problem

domain at the time, speech recognition and natural language understanding [43].

Penny Nii has also demonstrated that blackboard architectures are able to conduct

both data-directed and goal-directed inference simultaneously, or to switch between

the two through merely by manipulating the scheduling mechanism [36]. This abil-

ity to build out from islands of confidence, hypotheses the system believes is most

likely to be correct, enables the type of opportunistic inferencing that distinguishes

blackboards from many other inferencing systems in AI, which are usually either

goal-directed or data-driven.

Blackboards have also been used to facilitate coordination and cooperation for

problem solving in distributed agent systems. In such systems, the blackboard itself

may not exist in any one location; instead, relevant pieces of it may exist inside

each particular agent in the system. In such distributed blackboard systems, syn-

chronization is maintained through message-passing, publish-subscribe or a broad-

cast mechanism, without any loss of functionality or generality [16]. As will be

described in the next section, since blackboard architectures are functionally equiv-

alent regardless of whether they are distributed or centralized, the first Metaglue

blackboard prototype, the ContextKeeper, was designed as a service embodied in a

single Metaglue agent.

4.5.3 The ContextKeeper: a Blackboard Prototype for Metaglue

The remaining parts of this section are dedicated to describing the ContextKeeper,

the first-generation prototype blackboard for Metaglue. This blackboard is inspired

by the Simple Blackboard System presented by Corkill in [11], but is adapted using

Metaglue’s object-oriented (Java) agent design methodology.

propriate problem-solving action at each step in the inference process.
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Blackboard Representation

In ContextKeeper, knowledge sources are embodied in Metaglue agents. These

knowledge source agents, however, are special in that they must adhere to a strict

social contract with the ContextKeeper Agent, which manages the storage, retrieval,

and access control of all blackboard knowledge. This social contact permits the Con-

textKeeper to arbitrate the direction of inference in the system, by scheduling and

choosing which agents get to contribute facts. As described earlier, Nii and Corkill

describe scheduler control as a critical component for directing inference.

The ContextKeeper blackboard itself stores all incoming knowledge in a Meta-

glue hashtable, which is backed for persistence by a database. This knowledge can

take the form of any Java serializable object that conforms to the ContextData inter-

face.9 This interface contains methods required by the blackboard to organize and

manage knowledge objects. These methods include accessors for the time of the

context data object’s creation, the agent identifier of its creator, and a type specifier.

This last piece of information designates the partition, or layer, of the blackboard to

which the data belongs. The ContextKeeper supports an arbitrary number of such

layers, used to reduce search during retrieval. These layers can represent levels of

abstraction, such as in HearSay II, or any other logical partitioning scheme.

Truth Maintenance and Knowledge Management

Within each layer of the blackboard, the ContextKeeper collects knowledge objects

into a simple list, ordered by time of creation. Once a piece of knowledge has been

added, it is considered immutable and cannot be retracted or modified by any ex-

ternal agents. However, it may be deprecated if another assertion gets added that

contradicts the original assertion. Thus, the notion of “truth” in the blackboard is

represented by the frontier of the blackboard; that is, every assertion that has not

been deprecated is considered “true”. By deprecating, rather than replacing, obso-

lete contextual data, knowledge sources can continue to have access to historical

9a simple implementation of the ContextData interface which can be extended is also provided,
called BasicContextData
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data for inferencing based on temporal patterns10.

The ContextKeeper grants all Metaglue agents access to knowledge on the black-

board through a query interface that supports a number of different types of search

requests. Most of these requests involve finding the most recent piece of knowledge

that fits a given search criteria. For these requests, the algorithms start at the end

of the list (where the most current items are located) and perform a linear reverse

search examining each entry until the query is satisfied.

Unfortunately, preserving all historical context data means that the blackboard

can amass a virtually unbounded amount of knowledge. This means that the Con-

textKeeper agent would continue to grow until it exhausted all available physical

memory, and then cease to function. Searches through such an enormous database

could take an unacceptable amount of time. Thus, the ContextKeeper needs a

means of knowledge retirement to enforce an upper bound on the amount of memory

and time that searches may take. However, retirement must be done carefully, so

as to not counteract the purpose of keeping historical information in the first place,

and must make sure to not adversely affect knowledge sources’ ability to function.

The ContextKeeper supports fine-grained knowledge retirement through the use

of dynamically interchangeable retirement policies. An example of such a retirement

policy would be the N-first-in-first-out policy, which enforces a limit of N distinct

knowledge elements of a particular type by removing the oldest such element when

a new one is added. Another example would be the temporal-resolution-reduction

policy, which lowers the frequency of older knowledge elements by pruning old,

temporally proximate elements. Such a policy could be useful for storing data such

as the weather, where keeping track of every half-hour weather update for a day two

weeks ago provides virtually no additional benefit over knowing the approximate

nature of the weather for the whole day. Custom retirement policies can be defined

simply by implementing the ContextRetirementPolicy interface, and by instructing

the ContextKeeper to respect this new policy for a particular type of knowledge

10Markov chains or hidden Markov models are examples of types of knowledge source that use
temporal patterns to synthesize current hypotheses
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data.

Knowledge Sources

The interaction between the ContextKeeper and the knowledge sources is predomi-

nantly a publish-subscribe mechanism. When a knowledge source is enabled, it first

registers itself with the ContextKeeper. During this registration process, the knowl-

edge source asks the ContextKeeper for a subscription to notifications of certain

types of knowledge when they get added to the blackboard. The ContextKeeper

performs a callback to the knowledge source when matching knowledge is added

to the blackboard.

After the ContextKeeper has finished informing everyone of the new piece of

knowledge, it queries each of the knowledge sources to determine if any of them

have triggered. Triggering indicates that the knowledge source has computed new

knowledge that it wishes to contribute to the blackboard. If this is the case, control

is handed over to the ContextKeeper’s scheduler,which then decides which knowl-

edge source gets to actually fire. Here, firing means that the knowledge source gets

to contribute its new information to the blackboard. When this new piece of knowl-

edge has, at last, been added to the blackboard, knowledge sources are informed of

the update, and the process repeats again.

Scalability Concerns

Since access to the blackboard must be performed serially (to prevent concurrency-

related race conditions that may cause erroneous behavior), there is a significant

risk that the ContextKeeper will form a performance bottleneck in the Ki/o archi-

tecture. In this design, it is clear that the ContextKeeper’s ability to fulfill search

requests, dispatch, trigger, and fire the appropriate knowledge sources is going to

be the limiting factor for the speed of the blackboard.

Unfortunately, optimization of this has proven difficult. First, in order to keep

the triggering conditions as general as possible, the current design has resorted
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to explicitly querying each of the knowledge sources whether it has triggered ev-

ery time a new piece of knowledge has been added to the system. Historically,

rule-chaining systems facing the same problem have been able to optimize trigger-

checking by using a RETE network, which groups identical triggering conditions

across rules together, so that they would only have to be checked once [17]. How-

ever, knowledge sources in this system could potentially have complex, mathemat-

ical or probabilistic triggering conditions not easily expressible or decomposable as

a logical combination of predicates. As a result, the current design encapsulates

trigger checking within a method in the knowledge source.

Fortunately, two simple policies regarding the design of knowledge sources can

greatly help keep the ContextKeeper free:

1. Knowledge Caching - Knowledge sources should minimize the degree to which

they query the blackboard through its query interface. This can be done by

caching new knowledge notifications even if they do not immediately result

in a trigger. That way, when knowledge later arrives, it may be combined with

cached knowledge to permit the knowledge source to trigger and fire without

having to query the blackboard.

2. Freeing the ContextKeeper thread - As mentioned earlier, all calculations in-

volved in trigger-checking and firing should be performed on the knowledge

source’s own thread instead of in the ContextKeeper’s thread. This implies that

the methods entered by the ContextKeeper should merely access shared vari-

ables that have already been set by the knowledge source’s internal thread.

These measures permit the ContextKeeper’s thread to peek in and drop or

grab appropriate information and run to the next request.

Further optimizations to the ContextKeeper will be postponed for future work.

Prototype Knowledge Sources

The first application to use the ContextKeeper is the Ki/o Web Information Portal,

an intelligent web browser that attempts to present visitors pages that they might
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Visual perception observations:

1. People are passing by

2. One or more people are standing in front of the kiosk

3. Nobody is nearby

GUI events:

1. User has touched the screen

2. User has requested a master navigation button

3. User has requested a hyperlink on a web page

External knowledge:

1. A new weather report has been received

2. A new news story has been posted on BBC

3. A new news story has been posted on CNN

Inferred hypotheses:

1. A person is observing the kiosk.

2. A person is actively interacting with the kiosk

2. The person who was in front of the kiosk has left

Table 4.1: Perceptual events generated by the ContextKeeper

be interested in seeing. In order to determine how it should behave and what

pages to display, the web display application relies on the ContextKeeper to feed it

contextual clues.

The initial set of knowledge sources developed for this application post simple

observations about world. A complete list of the types of observations that these

initial knowledge sources generate is illustrated in Table 4.1.

The first collection of visual perception observations are posted by various per-

ceptual filters among the SPA agents. For example, the observation “People are

passing by” relies on the SPA motion detector filter, which measures and reports

differences between successive captured frames. The second and third observations

are fed by the skin color segmentation filter, described earlier, which detects and

isolates pixels that resemble the color of human skin.

The GUI events describe any interaction with the touchscreen. These events are
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mapped to standard mouse events, such as pointing, clicking and dragging.

External knowledge is posted by miscellaneous Metaglue agents that retrieve

knowledge from a variety of external sources. The initial set of agents retrieve

weather and news information by connecting to various Web services. These agents

are responsible for performing initial parsing, processing, and filtering of such news

and weather data so that it is in a representation that is easily interpretable by Meta-

glue agents.

The inferred hypotheses are knowledge sources that read the events that other

sources have posted on the blackboard, and combine them to produce speculative

interpretations as to what actually occurred. As a simple example, if the SPA percep-

tion filters detect skin coloring in front of the kiosk, and recent touchscreen events

are posted, a knowledge source will make the (obvious) hypothesis that someone

is currently standing in front of, and interacting with, the kiosk. While this may

initially seem like a trivial and useless inference, adding this hypothesis frees appli-

cations by allowing them to subscribe to this higher-level interpretation instead of

directly to the lower-level events. This layer of abstraction allows the lower-level

events to be modified without the application being adversely affected.

4.6 Putting it All Together: Applications

The previous sections discussed details of various new components introduced into

the Metaglue system for the purpose of building perceptual, contextually aware

Ki/o applications. Since the success of these designs ultimately depends on how

well the components actually serve their purposes, the components of the Ki/o

architecture have been tested in a real-world setting.

This section will illustrate the first set of Ki/o applications, some of which have

already been deployed on the prototype kiosks in the laboratory, and others of

which are still early works-in-progress. Although these applications are largely

“toy” applications, and do not exploit all of the functionality of Metaglue or the

Ki/o architecture, they do provide a starting point for designing richer applications
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in the future.

4.6.1 Web Information Interface

Since one of the core objectives of the Ki/o kiosk prototype is to facilitate infor-

mation access and dissemination throughout the laboratory, the first application

designed for the Ki/o kiosk was chosen to be an information access portal. Instead

of designing a format and renderer specific for the Ki/o display, the Web seemed

like a logical starting point due to its ubiquity, visibility and accessibility. Thus,

as described previously and as visible in Figure 4-4, this application consists of a

relatively conventional graphical Web browser user interface, with navigation and

status bars at the top. Unlike a regular Web browser, however, behind the scenes,

this application relies on perceptual and contextual information to determine what

content to display.

Design

The design of the Web Information application can be logically divided in three

simple pieces:

� User Interaction Component - This is analogous to the the UI of a traditional

application, including all on screen GUI widgets. The main GUI widget in

this application is a large HTML rendering panel.11 This layer packages all

user-generated GUI events, such as activation of hyperlinks, into ContextData

objects that it feeds the ContextKeeper blackboard.

� HTML Generator Agent(s) - The HTML Generator agents format particular

types of data into HTML on demand for display by the UI. This component

can be thought of as an encapsulation of Java servlets as Metaglue agents.

� Supervisor - The supervisor component holds the application together, by driv-

ing the UI and HTML generators. The supervisor schedules content to be dis-

11For the initial prototype, a Java Swing JEditorPane was used in place of a full web browser.
Plans for replacing it with a more standards-complete HTML renderer are underway.
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Figure 4-4: Screenshots of the Web Information Display, v. 1.0
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played, and coordinates with the ContextKeeper to determine when, and what

to display.

4.6.2 Supervisor

The Supervisor component forms the core application logic, and has a number of

responsibilities. In its simplest incarnation, the Supervisor acts as follows: First,

it watches the ContextKeeper for urgent messages to display. In an emergency or

urgent situation, any agent posting such a message would cause the Supervisor

agent to immediately pass the information through an appropriate HTML Genera-

tor agent, and then to the HTML renderer for display. Otherwise, the supervisor

watches for other sorts of perceptual and contextual events. If a hypothesis of high

certainty is posted that nobody is nearby, the supervisor starts cycling the display,

either choosing content at random, or recently updated information, such as news

stories, that are likely to attract passers-by.

Alternatively, more sophisticated content choosing strategies should be simple

to implement, particularly as the supervisor has access to all the contextual infor-

mation on the blackboard. Experimentation with such strategies is left for future

work.

4.6.3 AI Lab Video Database

In addition to Web-formattable content, a number of historical AI Lab movies were

available to be displayed by the Ki/o. Unfortunately, the simple HTML renderer

chosen is implemented in Java, and does not support Netscape plugins or ActiveX

controls. Thus the standard mechanisms for displaying video on the web was in-

appropriate. To get around this limitation, HTML Generators were used to render

a custom web page for selecting the appropriate video, which contained links to

special Metaglue servlets. As these servlets could then be used as a bridge back into

Metaglue from a Web page, it was then a simple matter to command Metaglue to

display the appropriate video. In this case, for displaying videos, Metaglue used its
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Figure 4-5: Screenshot of The Ki/o Interactive Floorplan, v. 1.0

internal GUI Manager agent to invoke a Java interface to Apple’s QuickTime player,

which performed the actual decoding and playback.

4.6.4 The Interactive Floorplan

The first Ki/o prototype was deployed in an elevator lobby of the AI Laboratory.

At this location, many people construed the Ki/o prototype to provide floor infor-

mation service, perhaps from prior experiences with kiosks in modern hotels and

skyscrapers. It thus became quickly apparent that a map of the floor layout, with a

directory of lab occupants would be useful and popular.

Version 1: Simple Interactive Floorplan

The first version of the floorplan application, developed by Ki/o by Justin Maynard

and Mark Pearrow, can be seen in Figure 4-5. It consists of a two-dimensional

representation of the floor from above, and allows users to touch any space they
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want to know more about. The application then draws a path indicating a route

from the kiosk to the destination, queries the AI lab personnel database to find the

room’s occupants, and displays the results. Each office and lab space is labeled with

its official room number.

If the user was looking for a specific person without knowing their office, they

could look up the appropriate location via the person’s last name. Once the name

is displayed, clicking on the name displays a path from the kiosk to the appropriate

person’s office.

While this application served its purpose well for the 8th floor, unfortunately, it

was limited to the top three floors of the laboratory. After its initial deployment,

it quickly became apparent that similar floorplans for the Laboratory of Computer

Science, occupying the lower floors of the building, as well as the AI Lab’s remote

annex, were absolutely necessary.

Furthermore, instead of modeling the physical spaces within the floorplan pro-

gram, each floorplan was treated as a simple bitmap. As a result, the routes that

were displayed had to be hard-coded, as were office labels and the kiosk’s location.

Seeking a more flexible solution, the design for Version 2 of the Floorplan appli-

cation was devised.

Version 2: 3D Awareness Floorplan

To determine how to model the physical layout of the building in a flexible and

efficient manner, the Computer Graphics Group in the LCS was consulted. Coin-

cidentally, Jason Bell, a master’s student with the Computer Graphics Group, had

been concurrently developing an application programming interface (API) to sim-

plify access and representation of internal building geometry data. This floorplan

application seemed a perfect trial application for his API, and thus a collaboration

was formed.12

Through the rich representation of space provided by the Computer Graphics

Group’s data and Bell’s API, it was possible to model both the floors inside the

12For specific details about this API, refer to [1].
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laboratory with respect to one another, as well as other remote buildings on the

MIT campus as well. Thus, it became possible to model satellite offices outside the

AI Laboratory, as well as to other related laboratories around campus.

For version 2 of the floorplan, the following design goals were established:

1. 3D visualization - The display should render the floors of the laboratory as

a single, integrated 3D model reflecting its physical layout to allow users to

easily see spatial relationships between interior locations.

2. Clear, update-able space labels - Like version 1.0, all rooms should be labeled

with its name and its occupants. To avoid 3D clutter, the display should at-

tempt to dynamically expand textual labels upon user selection.

3. Simple, user-intuitive navigation - 3D views are frequently difficult to navi-

gate using current today’s 2D input devices. However, since it is critical that

this application be intuitive and easy-to-use for first-time users, by default

the application should provide constrained navigation to a number of easily-

selectable pre-set viewing angles, and only provide free-form navigation for

advanced users.

4. Intelligent Route finding - A route-finding algorithm should be developed

which can automatically compute paths between arbitrary landmarks within

the building, including those on different floors and in remote annexes. This

route-finder should be able to additionally provide users with a textual de-

scription of directions for clarification.

5. Situated icons displaying activity in the Lab - In addition to providing static in-

formation about the laboratory’s physical layout and its floor directories, the

floorplan provides a convenient way of conveying special events in progress

within the laboratory, such as lectures and seminars, at-a-glance. This aware-

ness information, which might be retrieved from the ContextKeeper or exter-

nal sources such as lab event calendars, may appear as icons in the model

corresponding to the respective location in the lab.
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This 3D floorplan will serve an important role in helping laboratory members

find one another when the AI and LCS are reorganized and transition to the new

space in the Stata Center. Additionally, visitors to the Stata Center will most likely

find the floorplans helpful in navigating the radical arrangement of spaces in the

new building.

Current status

At the time of this writing, implementation of the 3D floorplan is still in an early

stage of development. An initial prototype developed by Bell to demonstrate Java3D

rendering of floorplan data acquired through his API is visible in Figure 4-6. A full

prototype is slated for completion by Summer 2003.

4.6.5 Competitive Crossword Puzzle Application

Description

A third Ki/o application is an experiment towards inspiring competitive, friendly

social interaction among members of the AI Lab. The application is a multi-player

competitive crossword puzzle game, which allows any number of people to simul-

taneously try to fill in the puzzle from any AIRE space within the laboratory.

This game can be played in a synchronous or asynchronous fashion. In syn-

chronous mode, everyone accessing the puzzle sees the exact same view, including

guesses made by other people. When the board is live, it displays a list of other

people who are currently participating, and updates the board as people fill in their

guesses. If multiple people enter a guess simultaneously, an arbitrator agent checks

timestamps and determines which person was first, and gives that person credit.

Since guesses are not verified by the system until the game has ended, the system

allows people to clobber another person’s guess with their own. However, if the orig-

inal person’s guess was indeed correct, the victim is rewarded and the clobberer’s

score is reduced.

When a board is filled or the time is up, a game is considered over. Players’
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Figure 4-6: Annotated screenshots of early 3D Floorplan Prototype (courtesy of

Jason Bell).
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Figure 4-7: Screenshots of early collaborative crossword prototype (courtesy of

Tyler Horton).

scores are calculated in proportion to the number of correct words they have in

the puzzle, minus the number of incorrect clobbers they performed. Players are

then grouped into “teams” by research group, and overall statistics are collected

and displayed on a daily or weekly basis. New games are started by the system at

random times throughout the day.

To maximize the social effects of the game, each person’s guesses are labeled

with the person who made that guess. Players can leave comments on clues to

help (or even distract) other participants. The list of current participants can be

used to initiate a two-way communications link with a participant through O2Flow

audiovisual links, or the MetaChat, Metaglue’s instant messenger service.

In asynchronous mode, identical puzzles are issued to different locations, but the

puzzle is not updated between sites. Instead, statistics about each team’s progress is

displayed abstractly, as a graph, to encourage competition and participation. Exper-

iments will be conducted to determine which version of the game is more popular.
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Implementation Status

This application is currently undergoing active development with the help of Tyler

Horton, an undergraduate researcher in the AIRE group. A screenshot of the current

prototype he developed is visible in Figure 4-7.

4.7 Conclusion

This chapter described the Ki/o software architecture as it currently stands, con-

sisting of a wide variety of components responsible for providing basic awareness,

media stream handling, perception, inferencing, and context management capabil-

ities. However, support for many of the capabilities required to achieve the goals

outlined at the beginning of the chapter, such as multi-modal interaction and seam-

less user state migration, do not yet exist. These are items of current active research,

and will be discussed in the next chapter as future work.
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Chapter 5

Future Work

5.1 Opportunistic Meeting Capture

One of the initial motivations for the Ki/o project was to see how intelligent en-

vironments in public gathering places could help capture and bolster new ideas as

they are informally spawned or communicated. To study this, designs have been de-

vised for an Opportunistic Meeting Capture application to detect, record, and index

informal gatherings in front of Ki/o kiosks, and then later provide retrieval access

to people who participated in the meeting. This application would also provide a

whiteboard-like interface with which the gathered participants can scribble, ma-

nipulate notes on the touchscreen, and link to external documents and web pages.

When participants later regrouped at the same or another IE, the meeting footage

from the prior interaction with relevant notes would be automatically retrieved and

displayed for easy manipulation.

Unfortunately, realizing this application is challenging at multiple levels, and as

a result, only initial steps have been achieved. One initial effort has been made

to determine how to best capture and synchronize all data coming into a system

during a meeting, including touchscreen events, whiteboard writing, audio, and

video input. All of these channels can potentially be used to provide information

that can be to aid in later automatic retrieval. Harold Fox, a graduate researcher

in the AIRE group, is currently attempting to extract speech from audio recorded
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in multi-person meetings and use this to deduce the topics of discussion. Video

processing can aid with determining who the meeting participants are, as well as to

help indicate who is speaking at any moment.

A prototype of the meeting capture application is currently targeted for summer

2003.

5.2 Speech and Natural Language Interfaces

One approach to designing more natural computer interfaces is to model computer-

human interaction after how humans interact with one another. This research has

led to the development of natural language (NL), dialog-based interfaces that are

capable of holding conversations with the user in the user’s native language. Since

these NL-based dialog systems can potentially eliminate all communication barri-

ers between computers and humans, they have become viewed as a fundamental

capability needed towards achieving the ubiquitous computing vision of allowing

computers to enter and interact with the natural human environment.

5.2.1 Speech at the Kiosk

Natural-language dialog could improve interaction with Ki/o kiosks in a large num-

ber of ways. Since users could directly express what they want to the kiosk, in-

teraction speed and efficiency would increase. By combining speech with other

interaction channels, such as the touchscreen, users have dramatically more free-

dom with the way can they express their desires to the kiosk. This benefits of this

sort of multi-modal interaction has been demonstrated in a number of prototype

systems already [28][56][38].
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5.2.2 Galaxy

The MIT Spoken Language Systems (SLS) group1 has been devoted towards build-

ing a robust and feature-rich natural language dialog framework. This system,

called Galaxy [50], was originally designed for speech-based applications over the

telephone. The group has developed and deployed a number of such applications,

including Jupiter, a weather information system, and Mercury and Pegasus, flight

scheduling and status systems.

Although all of the SLS group’s deployed applications have been telephone-

based, a number of features of Galaxy make it a good choice for being used in a

kiosk-like setting. Since telephone-based systems must be prepared to understand

virtually anyone who calls, Galaxy has been built to be speaker-independent, and

robust against line noise and speech impediments. Ki/o kiosks feature similar re-

quirements, since they too, must be prepared for anyone to approach. Since Ki/o

applications treat the user’s attention as its most precious resource, speech on Ki/o

must not require training or the user to wear any special device, such as a close-

talking microphone. Galaxy already meets these requirements.

5.2.3 Research Direction

Due to the possibly great advantages towards integrating Galaxy with the Ki/o ar-

chitecture, the two research groups have decided to pursue a collaboration with this

goal in mind. This integration creates a number of challenges and design questions

at both low, software architecture level, through the high, HCI level. These issues

are outlined here.

1. Interfacing Galaxy and Metaglue - Galaxy and Metaglue have orthogonal archi-

tectures that are not directly compatible. Reconciling Galaxy’s programmable-

hub architecture with Metaglue’s autonomous agent scatterbrain architecture

requires a consideration of how these two systems should interface with one

another. A high degree of integration could require substantial work for both

1See the SLS group’s web site at http://www.sls.lcs.mit.edu/
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architectures, while simply connecting the architectures may make it difficult

and inelegant for use.

2. Representing NL-dialog in Ki/o applications - A question surrounds how to rep-

resent NL-dialog when designing ubiquitous applications. Galaxy supports

spoken applications that are mixed-initiative, which means that neither the

user and the computer assume a dominant role in a conversation. A goal of

Ki/o would be to achieving this sort of collaborative, flexible interaction across

all UI modalities2.

3. Multi-modal dialog and discourse modeling and management - Currently, Gal-

axy’s dialog and discourse management systems have been designed to handle

context maintenance and inheritance for supporting anaphora, ellipsis and de-

ictic expression resolution for speech-only interactions. Questions remain as

to how the methods currently employed generalize to the multi-modal do-

main.

4. HCI issues - A number of new HCI issues crop up when the kiosk becomes

capable of holding NL-dialogs with users. Most of these issues surround al-

lowing the user to detect and recover from misinterpretations of what the user

has said.

Early progress has been made in each of these major areas. First, there has

been substantial progress by Nicholas Hanssens, a member of the AIRE group, to

solve the Metaglue-Galaxy integration problem. He describes his solution in his

thesis [20]. The SLS group, in conjunction with the Vision Interface Project (VIP),

has very recently designed a prototype Galaxy Multi-Modal Server that tracks hand

gestures with a camera, and ties it into the dialog model for resolving deictic ref-

erences. Finally, discussions of potential solutions to the HCI issues surround the

development of a dialog visualization application which tracks the progress of con-

2For a more detailed definition of mixed-initiative computing and various approaches that have
been investigated, see [21]
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versations and permits users to easily view how their utterances are being construed

by the system.

5.3 Protecting User Privacy

This paper proposes that networked, perceptive intelligent environments could soon

fill all public spaces in the modern workplace. With such a proposal, it would be

negligent to overlook the possible dramatic social implications that such a system

could have. Specifically, having machines capable of perception, and constantly col-

lecting and processing observations presents a huge potential violation of personal

privacy, as well as possibly the security of the workgroup at large.

5.3.1 Designing for Privacy in Ubiquitous Computing Systems

One of the primary open questions of much debate in ubiquitous computing re-

search surrounds how to preserve and respect personal privacy. One of the greatest

difficulties with solving this debate surrounds defining privacy itself, despite nearly

everyone having an intuitive idea of what it is. Through repeated attempts, it has

started to become apparent that any single attempt at defining privacy would sooner

or later fall obsolete. In their seminal paper, “Design for Privacy in Ubiquitous Com-

puting Environments”, Victoria Bellotti and Abigail Sellen of Xerox EuroPARC de-

fines privacy as a personalized notion influenced by one’s culture and environment:

Any definition of privacy cannot be static. With the introduction of new

technology, patterns of use and social norms develop around it and what

is deemed “acceptable” behavior is subject to change. Naturally evolv-

ing social practices may interact with organizational policies for correct

usage (...) in addition, people are more prepared to accept potentially

invasive technology if they consider that its benefits outweigh potential

risks. In recognition of these facts, we take privacy to be a personal no-

tion defined in response to culturally determined expectations and what
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one perceives about one’s environment [2].

This view of privacy proposes that it is a subjective notion dependent on individ-

ual preferences and situational context. Furthermore, it proposes that if the overall

utility of a system is high, the established social norms may slowly accept it. Bel-

lotti and Sellen have thus made it apparent that designing ubiquitous computing

systems to protect individual privacy is highly a subjective process that depends on

the setting, who is affected, and what the system does for users.

The Bellotti and Sellen studies were conducted in their HCI research labora-

tory at EuroPARC surrounding a video-based awareness and communications tool

known as RAVE. The social environment of EuroPARC was similar to that of most

small, close-knit research labs, where members place considerable trust with one

another within their immediate organization. Bellotti and Sellen studied how they

could design their system within this social setting to preserve and enhance this

trust, and to ensure that their system did not break down the social norms of their

workplace.

In the process of trying to reconcile RAVE with their laboratory’s social disappro-

bation of capturing and recording video, Bellotti and Sellen devised design criteria

for making ubiquitous computing systems that capture user data more socially ac-

ceptable. This is done by empowering the systems users by giving them immediate,

clear, feedback and control over the capturing, construction, accessibility, and the

intended purpose of data collection [2].

Unlike social, political, or cultural solutions to solving the problem of personal

privacy, Bellotti and Sellen’s solution is a simpler, technical and HCI design-focused

approach that is easier to implement and evaluate. Furthermore, their case study

with RAVE greatly resembles and may be directly applied to Ki/o awareness moni-

toring systems such as O2Flow and SPA.
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5.3.2 Privacy in captured video data

Greater control over video streams in video links may be achieved through tech-

niques in computer vision and video processing. Simple techniques might involve

users dynamically controlling visual and temporal resolution of captured awareness

data, by modifying the frame rate and frame resolution. Providing constant feed-

back of the degree of visibility is essential, and can be done by always providing a

mirror or self-view of video.

New, recent advances in computer vision provide exciting new possibilities for

allowing users to control their visibility. By training a system with a model of the

user’s face using principal component analysis under “socially correct”, normal, or

typical conditions, the system can later perform eigenspace filtering to morph live

captured images back to their more “socially correct” counterparts. Example would

be if a user wants to convey his or her presence without being properly groomed,

the eigenspace filter can reconstruct the image while preserving other properties of

the user’s face and presence [12].

Machine vision can also enable the enforcement of certain social norms such

as reciprocal visibility, such as only transmitting video if the other party is, like-

wise, visible. Other aspects of user control enabled by vision include being able

to allow the user to control how much of the user’s background and surrounding

environment is preserved or removed. The Reflection of Presence videoconferenc-

ing system has demonstrated a way to entirely segment meeting participants from

their respective office backgrounds, and to co-locate them against a shared, virtual

background.

Although ensuring absolute security against the abuse of personal user data cap-

tured in ubiquitous computing settings may still be technically impossible today,

techniques such as these are encouraging indicators of how users may be able to

exercise a fine degree of control over the information they divulge in any ubiquitous

computing setting.
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5.3.3 Big Brother versus the Transparent Society

In many ways, intelligent kiosks observing and recording people from every corner

of the workplace bears great resemblance to the viewscreens depicted in George Or-

well’s novel 1984, which the totalitarian dictator Big Brother used to observe and

control every aspect of the citizens’ lives [37]. Orwell’s 1984 presented a useful de-

piction the perils of how surveillance technologies could be abused under hostile or

malicious intent. However, at the same time, the novel has so dramatically shaped

the public perception of surveillance-or sensing-related technologies that a certain

degree of paranoia, even panic, has become widespread.

David Brin, a more recently popular science fiction writer, has sought to help

dispel the notion that surveillance and sensing-related technologies such as ubiq-

uitous computing imply a loss of civil liberties and personal freedom. In his book,

The Transparent Society: Will Technology Force Us to Choose Between Privacy and

Freedom?, Brin describes how surveillance could bring about an open society, where

cameras and surveillance technology would allow everyday citizens and public au-

thorities alike to keep a watchful eye on each other, to ensure that every person

does not infringe on each other’s rights. He contrasts this scenario to what is al-

ready happening in several cities in the US and the United Kingdom, where, to

reduce crime, cameras have been installed at every street corner, but are monitored

constantly by a force of constabulary who are invisible to the public, and who could

potentially abuse the power they are given. Brin’s version, meanwhile, thrusts any

body of authority out into the open, where they can be monitored to ensure their

actions benefit the needs of the people [3].

By representing a positive outcome from what (he considers) the inevitable ad-

vancement of surveillance-related technologies, his viewpoint will hopefully liber-

ate and encourage research towards designing systems that help, rather than hinder,

protecting every person’s civil rights.

98



5.4 User Modeling

Chapter 4 introduced the User Context Management layer of the Ki/o architecture,

visible in Figure 4-1. Much of this layer is intended to be devoted to services that

help make applications context-sensitive and personalized to the user. This sec-

tion will describe possible approaches and services that this layer may eventually

contain.

5.4.1 User Profiles

In order for an application to automatically provide personalized services to a user,

a Ki/o kiosk must somehow identify the user, and obtain his or her preferences.3

User identification

Today, the first problem, user identification, can be solved a number of ways. The

most common technique is to force the user to either provide a username and a

password, or to present an RFid tag or smart card.

One of the research objectives of Ki/o for the near future is to incorporate an

identification method that is transparent and unobtrusive so that it does not require

any input from the user whatsoever. At the same time, this identification mechanism

should make visible, and permit the user to modify, their exposure level, or how

much identify information is being divulged and to whom.

The goal of unobtrusive identification is quickly becoming a reality as face recog-

nition and other biometric identification techniques improve. Plans for a simple face

recognizer and voiceprint identifier for the kiosk are currently being devised. For

the latter goal, one scheme has so far been implemented. If a user is carrying a H21

handheld IE equipped with a Cricket indoor location system, the handheld can be

made to provide the kiosk with relevant information about the user automatically

3Some research has surrounded early-customization of web pages through anonymous web ac-
cess logs. See [30]for more information.
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as the user approaches it. At the same time, since the handheld is under the user’s

control, it is left to users to directly set their exposure level.

Task Modeling

Any data that a system knows about a person could potentially be used by an adap-

tive user application to personalize and improve the user interface for the person.

This data as a whole constitutes the user’s user profile4.

Determining what this data consists of, how it is captured, and how, precisely,

applications could improve the user experience are currently active areas of re-

search in the Intelligent User Interface (IUI) community. An example of such re-

search include algorithms that attempt to extract and learn users’ preferences based

on observations about how a user manipulate an application’s GUI. These algo-

rithms may attempt to then deduce their task, and attempt to predict, automate or

complete their task for them automatically [13].

The PLANLET plan-based representation for Metaglue is the Ki/o project’s first

step in developing tools for representing current user’s task state and potential next

task [27].

4also sometimes referred to as a digital persona
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Chapter 6

Conclusion

Today, tiny microcontrollers are seemingly disappearing into nearly everything we

touch, from kitchen toasters down to individual light switches. But even as peo-

ple are becoming more reliant on computers for their day-to-day tasks, computers

systems are continuing to become ever more complex. While computer technology

has great potential to automate mundane tasks and to otherwise enhance people’s

lives, current trends in the design of applications and systems force everyday users

to fight ever-changing, uphill battles to understand and effectively use each new

revision of their computer-related technologies.

Ubiquitous computing research as first portrayed by Mark Weiser hopes to im-

prove people’s lives by allowing people to focus on what they want to accomplish,

rather than on the technological tools themselves. One way to achieve this goal

is to make computers the party to bridge the human-computer knowledge gap, by

understanding users as people within their natural human habitats. Intelligent En-

vironments form a first step in this direction, and research surrounding how to

make these systems able to accurately sense, perceive, interact, and communicate

with users is the focus of ubiquitous computing research today.

The Ki/o project is a response to studies indicating the role of random, infor-

mal encounters in spurring collaborations among the highly specialized knowledge

workers of the modern workplace. Today, office layouts are choosing mobile, open

arrangements that emphasize transitional spaces with the hopes that these will en-
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courage random encounters that lead to informal collaborations. However, when

random encounters do happen in these spaces, most of these spaces are not yet

equipped with any means by which knowledge workers can access their valuable

digital information or communications resources. Ki/o provides a way by which

people can access these resources, thereby saving users from having to constantly

carry mobile devices with them.

The work described in this paper represents an initial attempt at a complete

design for an intelligent environment for such public spaces, encompassing both

hardware and software components. Chapter 3 discussed a number of physical de-

sign considerations and provided glimpses at several simple physical installations.

The agent-based software framework, described in chapter 4, provides a multitude

of system services needed to build and run Ki/o applications. The software has al-

ready proven to be quite flexible and capable for building the initial prototype kiosk

deployed in the laboratory. Unfortunately, a more formal evaluation of the frame-

work is difficult at this early stage, because so few applications and kiosks have

been completed. The future work chapter outlines the immediate future directions

for this project and illustrates that, indeed, this investigation has only just begun.

Hopefully, the rapid evolution of this project will yield exciting new developments

and further research questions for several years to come.
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