

Simplifying knowledge creation and
access for end-users on the SW

Abstract
In this position paper, we argue that improved
mechanisms for knowledge acquisition and access on
the semantic web (SW) will be necessary before it will
be adopted widely by end-users. In particular, we
propose an investigation surrounding improved
languages for knowledge exchange, better UI
mechanisms for interaction, and potential help from
user modeling to enable accurate, efficient, SW
knowledge modeling for everyone.

Keywords
Semantic web, user interaction, knowledge acquisition
and access, natural language interfaces, guided input

ACM Classification Keywords
H5.m. Information interfaces and presentation, H5.2
User Interfaces

Introduction
The success of Web 2.0 in turning the web into a
massive participatory medium has demonstrated how
making content contribution easier and more accessible
to the general public can revolutionize a medium,
making it pervasive and opening it up for new
applications previously unimagined. We believe that if
the Semantic Web is to enable every individual to

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 1-xxxxxxxxxxxxxxxxxx.

Max Van Kleek

MIT CSAIL

32 Vassar St.

Cambridge, MA 02139 USA

emax@csail.mit.edu

Michael Bernstein

MIT CSAIL

32 Vassar St.

Cambridge, MA 02139 USA

msbernst@mit.edu

Paul André

Electronics and Computer Science

University of Southampton, UK

pa2@ecs.soton.ac.uk

Mikko Perttunen

University of Oulu, Finland

mikko.perttunen@ee.oulu.fi

David Karger

MIT CSAIL

32 Vassar St.

Cambridge, MA 02139

karger@mit.edu

mc schraefel

Electronics and Computer Science

University of Southampton, UK

mc@ecs.soton.ac.uk

 2

participate in the creation and use of a vast ecosystem
of information and new applications hitherto
unimagined, we must attempt to make it possible for
everyone to easily and effectively contribute and use
knowledge from it. Furthermore, substantial evidence
suggests that reducing the “input and access
bottleneck” of information tools can improve a tool’s
perceived usefulness even among the most skilled
knowledge workers. This has been observed
repeatedly in several domains, including, Personal
Information Management (PIM) [1, 2], physicians'
record keeping tools [3], and in journalists’
investigative processes [5].

Today, we see knowledge acquisition and access
(KA&A) on the SW still a particularly labor-intensive
process with the current tools. We believe this stems
primarily from the following problems:

HIGH KNOWLEDGE BARRIER - Many "end-user" SW KA tools
such as [9] were designed with knowledge engineers in
mind - who are comfortable with terminology and
concepts related to representational formalisms such as
description logics. We argue that while the expressivity
of ontology languages and description logics allow
skilled information architects to construct powerful
representations for building complex systems, these
concepts are foreign and unsuitable for most end-users.

ONTOLOGICAL CONSIDERATIONS FIRST, INSTANCES SECOND -
Most existing SW tools for encoding knowledge either
assume that the user will be writing against a set of
pre-existing ontologies, or that the user will construct
the ontology herself prior to encoding instances. We
argue that putting such ontological considerations first
impedes capture by requiring substantial work on the

part of the user upfront to locate, understand, and
figure out how to transform their knowledge into
representations suitable for the set of existing
ontologies they wish to use, or, alternatively to design
appropriate ontologies from scratch abstractly prior to
encoding knowledge. Both activities are challenging
today on the SW even for experienced knowledge
engineers.

THE NEED TO BE FULLY EXPLICIT - In addition to grounding
all knowledge in ontologies, these tools assume the
user will explicitly and completely specify all knowledge
in the SW as unambiguous, logically consistent
statements.

In this paper, we argue that the next generation of SW
KA&A tools should make primary considerations
surrounding barriers to use – seeking out solutions that
include more users, and reduce time and effort required
to access and create knowledge. In particular, we
propose a three-fold attack to this problem: first,
considering new languages for expressing knowledge
that are more natural and accessible to more people;
second, exploring interface-level user interaction
mechanisms for accelerating knowledge exchange
between humans and SW KBs, and finally, investigating
modeling mechanisms to provide make knowledge
exchange more efficient, such as by reducing the
amount of explicit information that needs to be
exchanged with every interaction. We briefly go into
each of these dimensions next.

 3

Dimensions of knowledge capture:
Language, Interface, and Modeling

End-user tools for letting users create content for the
SW have roughly taken one of two approaches. The
more common has been the “graphical knowledge
workspace” approach (such as [9,10]) which consist of
GUI-rich environments for the construction of SW
schemata (ontologies) and instances. The other
approach has focused on transforming user-generated
textual or other linguistic representations of knowledge
into forms suitable for the SW.

In this paper, we focus on this latter approach for
several reasons. First, text is already used for the
communication of knowledge everywhere, and is easy
for humans to store, create, and manipulate, whereas
many people have never seen (and would possibly be
intimidated by) graphical ontology and instance editors.
Second, language is often used to convey extremely
heterogeneous information, and is therefore designed
to be versatile and efficient simultaneously, unlike
database data-entry UIs, which are typically optimized
for either versatility (i.e., graphical instance
construction) or for facilitating encoding of many
regular instances of the same type (i.e., data entry
forms). Finally, as described in the remainder of this
section, focusing on text lets us examine a whole
continuum of languages varying in natural-ness,
flexibility, and machine interpretability, which we
proceed to try to start to do next. (For a more complete
argument of text vs GUI approaches to conveying
knowledge, see [11].)

1. Languages for communicating knowledge: Balancing
interpretability, flexibility, and naturalness
Previous efforts surrounding using languages for
conveying knowledge to the SW have taken a wide
variety of approaches. On one hand, artificial
structured languages have been created that make it
easier for people to read and write RDF verbatim, such
as Notation3 (N3). N3 is easily machine-interpretable,
but requires an understanding of RDF, ontologies, and
exacting precision to write. On the other hand, many
efforts have surrounded extracting knowledge directly
from unconstrained human natural language. This
approach saves users from having to know anything
about RDF or the target ontologies, but is still very
error-prone due the inherent complexity of natural
languages.

Between these two extremes, many have proposed a
middle ground -- simplified languages designed to
resemble natural languages, but which are generally
easier for machines to interpret [4,8]. This has created
an enormous design space, which has shown great
promise but (as yet) no structured systematic
exploration. We argue that in order to proceed, we
should identify characteristics similar and different in
each of these languages, and begin towards an
investigation of how particular language features
correlate with end user perception, flexibility, and ease
of interpretability.

To this end, we have begun our own small exploration
using a set of simple structured data languages for
humans, called pidgin languages. Rather than invent
anything radically new, we began by re-implementing
several of the ideas suggested by previous artificial
languages as well as by adding “small tweaks” to

 4

languages such as N3. See Table 1 for a few examples.
From these pidgins, we identified a few design features
we believe are the most important:

• General/ontology-specific – whether the
language contains domain specific
representations (e.g., events, contacts) or
generic entities and relations

• Resolution of names for entities and properties
– the ability for the user to refer to entities
using short/familiar names instead of only by
URI.

• Literal type deduction – the ability to
automatically determine the types of literal
values without extra work by the user, e.g., to
parse relative dates, coerce numeric values

• End-user extensibility– letting the user extend
the language to new forms

• Nesting of expressions – allowing for the
embedding of one statement within the clause
of another

• Reorder-ability/Optional clauses – supporting
reordering/optional clauses

• (Lack of) Mandatory delimiters – not requiring
the user to adhere to strict syntactic rules

• (Lack of) Syntactic ambiguity – whether the
strings in the language can have multiple valid
interpretations

Although we lack empirical statistics regarding the
relative importance of these (suggestions on how to
capture such statistics are welcome), based on informal
feedback from users and a trial deployment of
Jourknow [11], we have identified that a number of
these features seem to be essential if not highly
convenient for most users. In particular, supporting
familiar references to entities and properties, and literal
type deduction should be considered mandatory. We
noticed that there is often a delicate tradeoff between
naturalness and unambiguous interpretability. For
example, syntactic delimiters were seen in general to
be somewhat onerous (e.g. requiring quotation marks
around literal expressions); however, relaxing the
syntactic requirements too far often resulted in an
explosion in syntactic ambiguity – which is perceived to
be far worse.

A study by colleagues [6] demonstrated that being
flexible regarding word/phrase order in expressions
might be important as well; their study revealed that
nearly 50% of expressions entered by users in their
sloppy-programming [7] based language were out of
order in some way, despite immediate graphical
assistive feedback.

2. User interface mechanisms for assisting input
Since most artificial languages have rules (grammars)
that restrict valid statements to very limited subsets of
natural language, users are likely to stray often outside
the rules of the language without additional guidance.
Furthermore, many of the desirable capabilities (e.g.,
named entity resolution) require the language
interpreter to cope with ambiguity, i.e., to determine
intended interpretation. In either case, forcing the user
to have to correct expressions post-hoc could greatly

 5

hinder the experience. For these reasons, we perceive
designing user interface mechanisms that, at capture
time, guide the expression of statements and allow
users to quickly and easily resolve ambiguities as they
arise as being critical to the exploration process.

In particular we see the following roles of assistive UIs
for artificial languages:

• Staying within the language

• Interactive entity/property disambiguation

• Input acceleration - (predictive auto-complete)

• Feedback - (displaying the interpreted result as
confirmation of successful capture)

• Enforcing consistency - (preferring expressions
similar to those made in the past)

We have implemented simple predictive auto-complete
entry boxes for various pidgins in Jourknow, and have
found that it is a familiar metaphor for most users
today due to the semblance to the simple auto-
complete mechanisms present in many web browsers.

3. “You know what I mean” Applying user modeling to
aid disambiguation
Humans use contextual and historical information
fluidly in conversation to help disambiguate each
others’ utterances and entity references. Using this as
inspiration, we have begun investigating ways that KA
could be made smoother by taking into account past
interactions and aspects of the user’s context, such as
location, activity, and time during interpretation. In

particular, we are first looking at ways of improving the
entity and interpretation disambiguation mechanisms
mentioned previously to provide better defaults/ and
rankings that are most likely to correctly prioritize the
user’s intended meaning. In one technique, we have
tried ranked entities by similarity of the user’s active
situation (constituting his or her context and activities
as perceived through [12] at the time of knowledge
contribution) to the user’s situations times of imparting
knowledge in the past. The intuition behind this
ranking heuristic is that references to real-world
entities (e.g. people, places and things) tend to be
relevant to particular situations and less to others; for
example, “John” at work is likely to refer to a different
person than in another context. We are currently
evaluating this heuristic and determining which aspects
of situation are most useful for entity disambiguation.

Conclusion
Although significant challenges remain before
knowledge creation and access on the SW becomes
simple enough to be as routine for everyone as
accessing the web, we believe that such a goal is both
within reason and essential for the web’s evolution. We
hope that by providing one possible research agenda
towards fulfilling this goal and starting to pursue it
ourselves, we have and will continue to contribute to its
eventual achievement.

Acknowledgements
We would like to thank Ora Lassila, Deepali Khushraj
and Jamey Hicks at Nokia Research Center Cambridge.
This research is sponsored by the Nokia-MIT alliance,
and is a Web Science Research Initiative (WSRI)
collaboration.

 6

 description example

tame pidgin hand-written grammars for common domains, with
semi-open SW-KB defined lexicon, and support for
nested expressions. Not user-extensible or re-orderable.

Meet with Jane phone 617-123-4567 tomorrow at
diesel cafe about SWUI submission

clay pidgin User-defined N3 macro language using "means"
templates written by the user. Support for nesting. No
re-ordering clauses.

Template: "meet when with whom about what"
means [a :Meeting; vcal:start "when";
xcal:attendees "whom"; xcal:description
"what"].

Example: meet 3pm with jane smith about swui.

n3+res
pidgin

N3 with entity and property and value resolution. Uses
a colon or dash to delimit multi-word properties from
their values, and semicolons to delimit clauses.

swuimtg a Meeting; starts at: 3pm tomorrow;
with jane; location Diesel Cafe.

sloppy pidgin "sloppy parsed" to allow out-of-order matching and
recursive nesting of typed templates

jane 3pm diesel cafe

References
[1] Bedersen, B. Interfaces for Staying in the Flow.
ACM Ubiquity, 5. 28 (Sept. 2004).

[2] Bellotti, V., Duchenaut, N., Howard, M., and Smith,
I. Taking email to task: the design and evaluation of a
task management centered email tool. In Proc. CHI
2003, ACM Press (2003), 345-352.

[3] Berg, M. Rationalizing Medical Work: Decision
Support Techniques and Medical Practices. MIT Press,
Cambridge, MA, 1997.

[4] Bernstein, A., and Kaufmann, E. GINO – Guided
Input Natural Language Ontology Editor. In Proc. ISWC
2006, LNCS 4273, Springer 2006, 144-157.

[5] Blandford, A., and Green, T., Group and Time
Management Tools: What You Get is Not What You
Need. Personal Ubiquitous Computing. 5, 4 (Jan. 2001),
213-230.

[6] Chou, Vikki. Inkey: Internet keyword commands
with user feedback. M.Eng Thesis, MIT, Feb 2008.

[7] Little, G. and Miller, R. C. Translating keyword
commands into executable code. In Proc. UIST '06.
ACM, New York, NY, 135-144.

[8] Livingston, K., and Riesbeck, C., Knowledge
Acquisition from Simplified Text. Livingston, K. and
Riesbeck, In Proc. IUI '07. ACM, New York, NY, 198-
205.

[9] The Protégé Ontology Editor and Knowledge
Acquisition System. http://protege.stanford.edu.

[10] SMORE. http://www.mindswap.org/2005/SMORE/.

[11] Van Kleek, M., Bernstein, M., Karger, D., schraefel,
m., GUI- Phooey!: The case for text input. In Proc. of
UIST ’07. ACM, New York, NY, 193-202.

[12] Van Kleek, M., Shrobe, H. A Practical Activity
Capture Framework for Personal, Lifetime User
Modeling. In Proc. UM’07, LNCS 4511, Springer 2007.

Table 1. The Pidgin family, simple languages for expressing knowledge and their properties, introduced in [11].

