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Speaker Association With Signal-Level
Audiovisual Fusion

John W. Fisher, III, Member, IEEE, and Trevor Darrell, Member, IEEE

Abstract—Audio and visual signals arriving from a common
source are detected using a signal-level fusion technique. A
probabilistic multimodal generation model is introduced and used
to derive an information theoretic measure of cross-modal corre-
spondence. Nonparametric statistical density modeling techniques
can characterize the mutual information between signals from
different domains. By comparing the mutual information between
different pairs of signals, it is possible to identify which person is
speaking a given utterance and discount errant motion or audio
from other utterances or nonspeech events.

Index Terms—Audiovisual correspondence, multimodal data as-
sociation, mutual information.

I. INTRODUCTION

CONVERSATIONAL dialog systems have become practi-
cally useful in many application domains, including travel

reservations, traffic information, and database access. However
most existing conversational speech systems require tethered in-
teraction, and work primarily for a single user. Users must wear
an attached microphone or speak into a telephone handset, and
do so one at a time. This limits the range of use of dialog sys-
tems, since in many applications users might expect to freely
approach and interact with a device. Worse, they may wish to
arrive as a group, and talk among themselves while interacting
with the system. To date it has been difficult for speech recogni-
tion systems to handle such conditions, and correctly recognize
the utterances intended for the device. We are interested facili-
tating untethered and casual conversational interaction, and ad-
dress the problem of how to temporally segregate the speech of
multiple users interacting with a system.

With a single modality, properly associating speech from
multiple unknown speakers is quite difficult. However, if other
modalities are available they can often provide disambiguating
information. In particular, visual information can be valuable
for deciding whether an individual user is speaking a particular
utterance. We wish to solve a conversational audiovisual
correspondence problem: given sets of audio visual signals,
decide which audiovisual pairs are consistent and could have
come from a single speaker. We approach this problem from a
signal-processing perspective, and develop a statistical measure
of whether two signals come from a common source. We make
no assumptions about the content of the audio signal or the
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visual appearance, and use a general information-theoretic
approach. Our method works without learning a specific
lip or language model, and is therefore robust to a range of
appearances and acoustic environments.

The core of our approach is a technique for jointly modeling
audio and video variation to identify cross-modal correspon-
dences. It is driven by the simple hypothesis of whether a re-
gion of interest in an image sequence (perhaps the entire image)
is associated with a separately measured audio signal. We for-
mulate the problem within a nonparametric hypothesis testing
framework, from which information theoretic quantities natu-
rally arise as the measure of association between two high-di-
mensional signals. We show how this approach can detect which
user is speaking when several are facing a device and distracting
motion is present. This allows the segregation of users’ utter-
ances from each other’s speech, and from background noise
events.

II. RELATED WORK

Humans routinely perform tasks in which ambiguous audi-
tory and visual data are combined in order to support accu-
rate perception. In contrast, automated approaches for statistical
processing of multimodal data sources lag far behind. This is
primarily due to the fact that few methods adequately model
the complexity of the audio/visual relationship. Classical ap-
proaches to multimodal fusion at a signal processing level often
either assume a statistical relationship which is too simple (e.g.,
jointly Gaussian) or defer fusion to the decision level when
many of the joint (and useful) properties have been lost. While
such pragmatic choices may lead to simple statistical measures,
they do so at the cost of modeling capacity.

An information theoretic approach motivates fusion at the
measurement level without regard to specific parametric den-
sities. The idea of using information-theoretic principles in an
adaptive framework is not new (e.g., see [1] for an overview)
with many approaches suggested over the last 30 years. Crit-
ical distinctions in most information theoretic approaches lie in
how densities are modeled (either explicitly or implicitly), how
entropy (and by extension mutual information) is approximated
or estimated, and the types of mappings which are used (e.g.,
linear versus nonlinear). Early approaches used a Gaussian as-
sumption, e.g., Plumbley [2], [3] and Becker [4].

There has been substantial progress on feature-level integra-
tion of speech and vision. For example, Meier et al. [5], Stork
[6], and others have built visual speech reading systems that
can improve speech recognition results dramatically. Our goal
is not recognition, but to be able to detect and disambiguate
cases where audio and video signals are coming from different
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sources. Hershey and Movellan [7] addressed this problem
using the per-pixel correlation relative to the energy of an audio
track as a measure of their dependence. An inherent assumption
of this method was that the joint statistics were Gaussian. As
this is a per-pixel measure there is no straightforward way to
integrate the measure over an image region for purposes of
association without making simplifying assumptions which
will not hold in practice (e.g., pixels are independent of each
other conditioned on the speech signal). We should note that
the objective of their work was to locate the source of an audio
signal in an image sequence, association is an implicit step.
A more general approach was taken by Slaney and Covell [8]
which looked specifically at optimizing temporal alignment
between audio and video tracks using canonical correlations
which is equivalent to the maximum mutual information
projection in the jointly Gaussian case. They did not address
the problem of detecting whether two signals came from the
same person, although their method could be adapted to do so.
Nock et al. [9] consider two mutual information approaches
and one HMM based approach for assessing face and speech
consistency. The mutual information approaches compare a
histogram based estimate over vector quantized codebooks to
a Gaussian estimate over feature vectors. They report that the
Gaussian method gave superior results when using a cepstral
representation of the audio and a discrete cosine transform
representation of the video. All three methods utilize a training
corpus in order estimate a prior model, thereafter associations
and/or likelihoods are computed under the trained model. A
time-delay neural network approach was suggested in [10]
demonstrating location detection for a single visual appearance
on a small test set. Each of [8]–[10] require training data in
order to estimate model parameters. Here, and in contrast to
the previous methods, we develop a methodology for testing
audio–video association in the absence of either a prior model
and without the requirement of training data with which to
construct one.

III. SIGNAL-LEVEL AUDIOVISUAL ASSOCIATION

We propose an independent cause model to capture the rela-
tionship between generated signals in each individual modality.
Using principles from information theory and nonparametric
statistics we show how an approach for learning maximally
informative joint subspaces can find cross-modal correspon-
dences. We first show how audiovisual association problem can
be formulated as a hypothesis test and giving a relationship to
mutual information based association methods (see [11] for an
extensive treatment). Following that we present an information
theoretic analysis of a graphical model of multimodal signal
generation which gives some incite on the relationship between
data association and learning a generative audiovisual model.

Given an audio–video sequence, let us denote the sequence
of images (or a region within each image) as where
indicates (discrete) time. Similarly denote audio measurements
as . For our purposes, will be vectors of spectral measur-
ments. Treating the audio and video measurements as i.i.d. sam-
ples from the random variables and , respectively, allows

us to cast the audiovisual association problem as a simple hy-
pothesis test:

(1)

where states that the measurements are statistically inde-
pendent (i.e., their joint density is expressed as a product of
marginal densities) and states that the measurements are
statistically dependent (or equivalently associated). Perceptual
grouping problems, in which there are multiple sources of both
video and audio can be stated in a similar, albeit more compli-
cated, fashion [12], [13]. Plugging the measurements into a (nor-
malized) log-likelihood ratio statistic, using a consistent proba-
bility density estimator for , , , and taking
the expectation with respect to the joint probability density of

and yields

(2)

(3)

(4)

where is the mutual information between the
random variables and . Mutual information can be
expressed as a combination of the differential entropy terms

, , [14]. Consequently, estimating the
mutual information between signals is, in this sense, equivalent
to computing log-likelihood ratio statistic for the hypothesis
test of (1). For more complex perceptual grouping hypotheses
consisting of only pairwise relationships it has been shown
[12], [13] that the sufficient statistics involve pairwise mutual
information estimates. We elaborate on this in the empirical
section. A significant issue, and what distinguishes our ap-
proach from others, is how one models the probability density
terms of (2). Another important issue, which we address later,
arises when direct density estimation is infeasible as is the case
when measurements are of high dimension ( e.g., audio video
measurements).

Nonparametric density estimators, such as the Parzen kernel
density estimator [15], are useful for capturing complex sta-
tistical dependencies between random variables. The resulting
models can then be used to measure the degree of mutual infor-
mation in complex phenomena [16] which we apply to audio/vi-
sual data. This technique simultaneously learns projections of
images in the video sequence and projections of sequences of
periodograms taken from the audio sequence. The projections
are computed adaptively such that the video and audio projec-
tions have maximum mutual information (MI).

We now review our basic method for audiovisual fusion
and information theoretic adaptive methods. We then present
a probabilistic model for cross-modal signal generation, and
show how audiovisual correspondences can be found by
identifying components with maximal mutual information.
In an experiment comparing the audio and video of every
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combination of a group of eight users, our technique was
able to perfectly match the corresponding audio and video for
each user. These results are based purely on the instantaneous
cross-modal mutual information between the projections of the
two signals, and do not rely on any prior experience or model
of user’s speech or appearance.

IV. PROBABILISTIC MODELS OF AUDIOVISUAL FUSION

We consider multimodal scenes which can be modeled prob-
abilistically with one joint audiovisual source and distinct back-
ground interference sources for each modality. Each observation
is a combination of information from the joint source, and in-
formation from the background interferer for that channel. We
use a graphical model (Fig. 1) to represent this relationship. In
the diagrams, represents the joint source, while and rep-
resent single modality background interference. Recall that the
test of association is formulated as a measure of dependence
between the measurements and . By conjecturing a la-
tent variable structure via measurement dependence
is explained solely through the hidden cause . Our purpose
here is to analyze under which conditions and in what sense our
methodology uncovers the underlying cause of our observation
without explicitly defining or its exact relationship to and

.
Fig. 1(a) shows an independent cause model for our typical

case, where are unobserved random variables rep-
resenting the causes of our (high-dimensional) observations in
each modality . In general there may be more causes
and more measurements, but this simple case can be used to il-
lustrate our algorithm. An important aspect is that the measure-
ments have common dependence on a single cause. The joint
statistical model consistent with the graph of Fig. 1(a) is

Given the independent cause model a simple application of
Bayes’ rule (or the equivalent graphical manipulation) yields the
graph of Fig. 1(b) which is consistent with

which shows that information about contained in is con-
veyed through the joint statistics of and . The consequence
being that, in general, we cannot disambiguate the influences
that and have on the measurements. A similar graph is ob-
tained by conditioning on . Suppose, however, that decom-
positions of the measurement and exist such that the
following joint densities can be written:

where and . An example for
our specific application would be segmenting the video image
(or filtering the audio signal). In this case we get the graph of
Fig. 1(c) and from that graph we can extract the Markov chain
which contains elements related only to . Fig. 1(d) shows

Fig. 1. Graphs illustrating the various statistical models exploited by the
algorithm: (a) the independent cause model—X and X are independent of
each other conditioned on fA;B;Cg, (b) information about X contained in
X is conveyed through joint statistics of A and B, (c) the graph implied by
the existence of a separating function, and (d) two equivalent Markov chains
which can be extracted from the graphs if the separating functions can be found.

equivalent graphs of the extracted Markov chain. As a conse-
quence, there is no influence due to or .

Of course, we are still left with the formidable task of finding
a decomposition, but given the decomposition it can be shown,
using the data processing inequality [14], that the following in-
equality holds:

More importantly, these inequalities hold for any functions of
and (e.q. and ).

That is

(5)

(6)

and finally one can show (see [12]) that

(7)

The inequalities of (5) and (6) show that by maximizing the
mutual information between we necessarily increase
the mutual information between and and and . The
implication is that fusion in such a manner discovers the un-
derlying cause of the observations, that is, the joint density of

is strongly related to and in that sense captures
elements of the generative model of audio and video. Note that
this is the case without ever specifying the exact form of or its
relationship to the measurements. Additionally, the inequality
of (7) shows that by maximizing we are also maxi-
mizing a lower bound on the likelihood statistic, (3), of the as-
sociation hypothesis test. Finally, with an approximation we de-
scribe shortly, we can optimize this criterion without estimating
the separating function directly. In the event that a perfect de-
composition does not exist, it can be shown that the method will
approach a “good” solution in the Kullback–Leibler sense. From



FISHER AND DARRELL: SPEAKER ASSOCIATION WITH SIGNAL-LEVEL AUDIOVISUAL FUSION 409

the perspective of information theory, estimating separate pro-
jections of the audio–video measurements which have high mu-
tual information has intuitive appeal as such features will be pre-
dictive of each other. An additional advantage is that the form of
those statistics are not subject to the strong parametric assump-
tions (e.g., joint Gaussianity) which we wish to avoid.

V. MAXIMALLY INFORMATIVE PROJECTIONS

We now describe a method for learning maximally informa-
tive projections. The method uses a technique that maximizes
the mutual information between the projections of the audio-
visual measurements. Following [17], we use a nonparametric
model of joint density for which an analytic gradient of the mu-
tual information with respect to projection parameters is avail-
able. In principle the method may be applied to any function of
the measurements, , which is differentiable in the
parameters (e.g., as shown in [17] ). Here, we restrict ourselves
to linear functions of the measurements resulting in a significant
computational savings at a minimal cost to the representational
power. Note that while the projections are linear, the joint den-
sity is estimated nonparametrically allowing for more complex
joint dependencies than can be captured by Gaussian assump-
tions. We parameterize the projections as

(8)

(9)

where and are lexicographic samples of
images and periodograms, respectively, from an A/V sequence.
The linear projection defined by and

maps A/V samples to low dimensional features
and . Treating ’s and ’s as samples from a

random variable our goal is to choose and to maximize the
mutual information, , of the derived measurements.

Mutual information for continuous random variables can be
expressed in several ways as a combination of differential en-
tropy terms [14]

(10)

Mutual information indicates the amount of information that
one random variable conveys on average about another. The
usual difficulty of MI as a criterion for adaptation is that it is an
integral function of probability densities. Furthermore, in gen-
eral we are not given the densities themselves, but samples from
which they must be inferred. To overcome this problem, we re-
place each entropy term in (10) with a second-order Taylor-
series approximation as in [16], [18]

(11)

(12)

where is the support of one feature output, is the sup-
port of the other, is the uniform density over that support,
and is a Parzen density [15] estimated over the projected
samples. The Parzen density estimate is defined as

(13)

where is a gaussian kernel (in our case) and is the stan-
dard deviation. The Parzen density estimate has the capacity to
capture relationships with more complex structure than typical
parametric families of densities.

Note that this is essentially an integrated squared error com-
parison between the density of the projections to the uniform
density (which has maximum entropy over a finite region). An
advantage of this particular combination of second-order en-
tropy approximation and nonparametric density estimator is that
the gradient terms (appropriately combined to approximate mu-
tual information as in (12)) with respect to the projection coef-
ficients can be computed exactly by evaluating a finite number
of functions at a finite number of sample locations in the output
space as shown in [16], [18]. The update term for the individual
entropy terms in (12) (note the negative sign on the third term)
of the th feature vector at iteration as a function of the value
of the feature vector at iteration is (where denotes a
sample of either or or their concatenation depending on
which term of (12) is being computed)

(14)

(15)

(16)

where , , or depending on the en-
tropy term. Both and are vector-valued func-
tions ( -dimensional) and is the support of the output (i.e.,
a hyper-cube with volume ). The notation indicates
the th element of . Adaptation consists of the update rule
above followed by a modified least squares solution for and

until a local maximum is reached. In the experiments that
follow with 150 to 300 iterations.
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A. Capacity Control

In [17] early results were demonstrated using this method for
the video-based localization of a speaking user. However, the
technique lacked robustness as the projection coefficients were
under-determined. To improve on the method, we thus introduce
a capacity control mechanism in the form of a prior bias to small
weights. The method of [16] requires that the projection be dif-
ferentiable, which it is in this case. The specific means of ca-
pacity control that we utilize is to impose an penalty on the
projection coefficients of and . Furthermore, we impose
the criterion that if we consider the projection as a filter, it
has low output energy when convolved with images in the se-
quence (on average). This constraint is the same as that proposed
by Mahalanobis et al. [19] for designing optimized correlators
the difference being that in their case the projection output was
designed explicitly while in our case it is derived from the MI
optimization in the output space.

The adaptation criterion, which we maximize in practice, is
then a combination of the approximation to MI (11) and the
regularization terms:

(17)

where the last term derives from the output energy constraint
and is average autocorrelation function (taken over all im-
ages in the sequence). This term is more easily computed in the
frequency domain (see [19]) and is equivalent to prewhitening
the images using the inverse of the average power spectrum.
The scalar weighting terms , , , were set using a data
dependent heuristic for all experiments. Note that there is a
straightforward probabilistic interperetation of the each of
terms where relates to the hypothesis test and the
remaining terms represent Gaussian priors on the coefficients
of the projections (but not on the resulting the projections of
the measurements).

Computing can be decomposed into three stages:

1) Prewhiten the images once (using the average spectrum
of the images) followed by iterations of

2) Updating the feature values ( ’s) using (14), and
3) Solving for the projection coefficients using least squares

and the penalty.

The prewhitening interpretation has intuitive appeal for the
images as it accentuates edges in the input image. It is the
moving edges (lips, chin, etc.) which we expect to convey the
most information about the audio. Furthermore, by including
a prewhitening filter as a preproecessing step one can exclude
the final term of (17) which is what we do in practice.

The projection coefficients related to the audio signal, , are
solved in a similar fashion (simultaneously) without the initial
prewhitening step.

VI. EXPERIMENTS

Our motivating scenario for this application is a group of
users interacting with an anonymous handheld device or kiosk
using spoken commands. Given a received audio signal, we
would like to verify whether the person speaking the command

Fig. 2. Video sequence contains one speaker and monitor which is flickering:
(a) one image from the sequence, (b) pixel-wise image of standard deviations
taken over the entire sequence, (c) image of the learned projection, h , and
(d) image of h for incorrect audio.

Fig. 3. Video sequence containing one speaker (person on left) and one person
who is randomly moving their mouth/head (but not speaking): (a) one image
from the sequence, (b) pixel-wise image of standard deviations taken over the
entire sequence, (c) image of the learned projection, h , and (d) image of h
for incorrect audio.

is in the field of view of the camera on the device, and if so
to localize which person is speaking. Simple techniques which
check only for the presence of a face (or moving face) would fail
when two people were looking at their individual devices and
one spoke a command. Since interaction may be anonymous,
we presume no prior model of the voice or appearance of users
are available to perform the verification and localization.

In the first experiment1 we collected audio–video data from
eight subjects. In all cases, the video data was collected at 29.97
frames per second at a resolution of 360 240. The audio signal
was collected at 48 000 KHz, but only 10 KHz of frequency con-
tent was used. All subjects were asked to utter a specific phrase.
This typically yielded 2–2.5 s of data. Video frames were pro-
cessed as is, while the audio signal was transformed to a series

1A portion of these results appear in [20]
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Fig. 4. Grayscale magnitude of audio periodograms. Frequency increases from bottom to top, while time is from left to right. (a) Audio signal for image sequence
of Fig. 2. (b) Alternate audio signal recorded from different subject.

of periodograms. The window length of the periodogram was
2/29.97 s (i.e., spanning the width of two video frames). Upon
estimating projections the mutual information between the pro-
jected audio and video data samples is used as the measure of
consistency. All values for mutual information are in terms of
the maximum possible value, which is the value obtained (in the
limit) if the marginal densities of the two variables are uniform
while the conditional density is that of the kernel. In all cases we
assume that there is no significant head movement on the part
of the speaker during the utterance of the sentence. While this
assumption might be violated in practice one might account for
head movement using a tracking algorithm, in which case the
algorithm as described would process the images after tracking.

Fig. 2(a) shows a single video frame from one sequence of
data. In the figure there is a single speaker and a video monitor.
Throughout the sequence the video monitor exhibits significant
flicker. Fig. 2(b) shows an image of the pixel-wise standard de-
viations of the image sequence. As can be seen, the energy as-
sociated with changes due to monitor flicker is greater than that
due to the speaker. Fig. 4(a) shows the associated periodogram
sequence where the horizontal axis is time and the vertical axis
is frequency (0–10 KHz). Fig. 2(c) shows an image of the co-
efficients of the learned projection when fused with the audio
signal. As can be seen the projection highlights the region about
the speaker’s lips. Fig. 3(a) shows results from another sequence
in which there are two people. The person on the left was asked
to utter the test phrase, while the person on the right moved their
lips, but did not speak. This sequence is interesting in that a
simple face detector would not be sufficient to disambiguate the
audio and video stream. Fig. 3(b) shows the pixel variance as
before. There are significant changes about both subjects lips.
Fig. 3(c) shows an image of the learned projection coefficients
when the video is fused with the audio. Again the region about
the correct speaker’s lips is highlighted as well as some associ-
ated head motion.

While we can localize the audio source in the image sequence
by inspecting the amplitudes of the projection coefficients,
the resulting statistic also quantifies the likelihood of the
association. Consequently, we can also check for consistency
between the audio and video. Such a test is useful in the case

TABLE I
SUMMARY OF RESULTS OVER EIGHT VIDEO SEQUENCES. THE COLUMNS

INDICATE WHICH AUDIO SEQUENCE WAS USED WHILE THE ROWS INDICATE

WHICH VIDEO SEQUENCE WAS USED. IN ALL CASES THE CORRECT

AUDIO/VIDEO PAIR HAVE THE HIGHEST RELATIVE MI SCORE

that the person to which a system is visually attending is not the
person who actually spoke. Having learned a projection which
optimizes MI in the output feature space, we can then estimate
the resulting MI and using it to quantify the audio/video
consistency.

Using the sequences of Figs. 2 and 3, we compared the fusion
result when using a separately recorded audio sequence from an-
other speaker. The periodogram of the alternate audio sequence
is shown in Fig. 4(b). Figs. 2(d) and 3(d) show the resulting
when the alternate audio sequence is used. In the case that the
alternate audio was used we see that coefficients related to the
video monitor increase significantly in Fig. 4(d) while energy is
distributed throughout the image of Fig. 3(d). For Fig. 2 the es-
timate of mutual information was 0.68 relative to the maximum
possible value for the correct audio sequence. In contrast when
compared to the periodogram of Fig. 4(b), the value drops to
0.08 of maximum. For the sequence of Fig. 3, the estimate of
mutual information for the correct sequence was 0.61 relative
to maximum, while it drops to 0.27 when the alternate audio is
used. The drop in the mutual information statistic tells us di-
rectly that the mismatched audio and video are less likely to
be associated. This is further illustrated by inspecting the pro-
jection coefficients and noting that the projections of Figs. 2(d)
and 3(d) extract information from the entire image rather than
from a localized region.

Data was collected from six additional subjects for this
experiment, and each video sequence was compared to each
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Fig. 5. Top row presents four frames from a video sequence with two speakers in front of a single camera and microphone. Audiovisual consistency is measured
using a mutual information criteria. In the first two frames the left person is speaking, while in the last two the right person is speaking. The consistency measure
shown in the bottom row for each frame correctly detects who is speaking.

audio sequence. (No attempt was made to temporally align
the mismatched audio sequences at a fine scale, but they were
coarsely aligned). Table I summarizes the results. The previous
sequences correspond to subjects 1 and 2 in the table. In every
case the matching audio/video pairs exhibited the highest
mutual information after estimating the projections using the
full 2–2.5 s utterance.

In our second experiment, we test how this method can segre-
gate speech of multiple users in a single field of view in concert
with a face detection module. We show it is possible to detect
which user is speaking by comparing the association statistics
for each region. This problem has a slightly different formu-
lation than the hypothesis test of (1). Let and denote
the image sequence subregion on the left and right, respectively.
These are the sequence of pixels contained in the moving boxes
in Fig. 5. The single audio signal is denoted . The hypothesis
test is then stated as

(18)

states that the audio signal is associated with the region on
the left, while states that the audio signal is associated with
the signal on the right. Following similar analysis as (4) yields

(19)

(20)

Consquently, the difference between the estimated mutual infor-
mation quantities (or their bounds) is equivalent to the log-like-
lihood ratio of the hypothesis test. The audiovisual mutual in-

formation method is able to match the visual speech motion
with the acoustic signal, and ignore confounding motions of the
other user’s head or other motions in the scene. Fig. 5 shows the
result tracking two users speaking in turns in front of a single
camera and microphone, and detecting which is most likely to
be speaking based on the measured audiovisual consistency. In
the figure the bar graph under each image shows the individual
mutual information estimates. In each case the difference favors
the correct speaker.

VII. CONCLUSIONS AND FUTURE WORK

We have developed a technique for measuring the signal-
level correspondence between audio and video observations.
The method is based on estimating a bound on mutual infor-
mation. Addtionally we were able to put approaches to audio-
visual association based on mutual information into the con-
text of nonparametric hypthesis testing. Measuring the degree
of mutual information between signals yields a useful cue indi-
cating whether they come from a common source. This cue is
useful to know whether a microphone and camera are receiving
information from a single user, or whether signals from mul-
tiple co-located users are being confused. Nonparametric sta-
tistical density models can be used to represent complex joint
densities of projected signals, and to successfully estimate mu-
tual information.

Experiments using our approach demonstrated that the
method is able to correctly determine which audio and video
fragments come from the same speaker. Our technique is a step
toward natural and untethered interfaces, where multiple users
can interact with conversational systems without attachments
or explicit segmentation cues. In this work we specifically
explored signal-level fusion, and did not make any assumptions
about acoustic or visual models. In domains where such
assumptions are viable, or when prior models of individual
users are available, such information could be profitably used
in concert with our approach.
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