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Abstract

The problem of extracting the relevant aspects of data was previously addressed through
the information bottleneck (IB) method, through (soft) clustering one variable while pre-
serving information about another - relevance - variable. The current work extends these
ideas to obtain continuous representations that preserve relevant information, rather than
discrete clusters, for the special case of multivariate Gaussian variables. While the general
continuous IB problem is difficult to solve, we provide an analytic solution for the opti-
mal representation and tradeoff between compression and relevance for the this important
case. The obtained optimal representation is a noisy linear projection to eigenvectors of the
normalized regression matrix Σx|yΣ−1

x
, which is also the basis obtained in Canonical Cor-

relation Analysis. However, in Gaussian IB, the compression tradeoff parameter uniquely
determines the dimension, as well as the scale of each eigenvector, through a cascade of
structural phase transitions. This introduces a novel interpretation where solutions of dif-
ferent ranks lie on a continuum parametrized by the compression level. Our analysis also
provides a complete analytic expression of the preserved information as a function of the
compression (the “information-curve”), in terms of the eigenvalue spectrum of the data.
As in the discrete case, the information curve is concave and smooth, though it is made of
different analytic segments for each optimal dimension. Finally, we show how the algorith-
mic theory developed in the IB framework provides an iterative algorithm for obtaining
the optimal Gaussian projections.
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1. Introduction

Extracting relevant aspects of complex data is a fundamental task in machine learning and
statistics. The problem is often that the data contains many structures, which make it
difficult to define which of them are relevant and which are not in an unsupervised manner.
For example, speech signals may be characterized by their volume level, pitch, or content;
pictures can be ranked by their luminosity level, color saturation or importance with regard
to some task.

This problem was addressed in a principled manner by the information bottleneck (IB)
approach (Tishby et al., 1999). Given the joint distribution of a “source” variable X and
another “relevance” variable Y , IB operates to compress X, while preserving information
about Y . The variable Y thus implicitly defines what is relevant in X and what is not.
Formally, this is cast as the following variational problem

min
p(t|x)

L : L ≡ I(X; T ) − βI(T ; Y ) (1)

where T represents the compressed representation of X via the conditional distributions
p(t|x), while the information that T maintains on Y is captured by the distribution p(y|t).
This formulation is general and does not depend on the type of the X, Y distribution.
The positive parameter β determines the tradeoff between compression and preserved rel-
evant information, as the Lagrange multiplier for the constrained optimization problem
minp(t|x) I(X; T ) − β (I(T ; Y ) − const). Since T is a function of X it is independent of Y

given X, thus the three variables can be written as the Markov chain Y −X −T . From the
information inequality we thus have I(X; T ) − βI(T ; Y ) ≥ (1 − β)I(T ; Y ), and therefore
for all values of β ≤ 1, the optimal solution of the minimization problem is degenerated
I(T ; X) = I(T ; Y ) = 0. As we will show below, the range of degenerated solutions is even
larger for Gaussian variables and depends on the eigen spectrum of the variables covariance
matrices.

The rationale behind the IB principle can be viewed as model-free “looking inside the
black-box” system analysis approach. Given the input-output (X, Y ) “black-box” statis-
tics, IB aims to construct efficient representations of X, denoted by the variable T , that
can account for the observed statistics of Y . IB achieves this using a single tradeoff param-
eter to represent the tradeoff between the complexity of the representation of X, measured
by I(X; T ), and the accuracy of this representation, measured by I(T ; Y ). The choice of
mutual information for the characterization of complexity and accuracy stems from Shan-
non’s theory, where information minimization corresponds to optimal compression in Rate
Distortion Theory, and its maximization corresponds to optimal information transmission
in Noisy Channel Coding.

From a machine learning perspective, IB may be interpreted as regularized generative
modeling. Under certain conditions I(T ; Y ) can be interpreted as an empirical likelihood of a
special mixture model, and I(T ; X) as penalizing complex models (Slonim and Weiss, 2002).
While this interpretation can lead to interesting analogies , it is important to emphasize the
differences. First, IB views I(X; T ) not as a regularization term, but rather corresponds to
the distortion constraint in the original system. As a result, this constraint is useful even
when the joint distribution is known exactly, because the goal of IB is to obtain compact
representations rather than to estimate density. Interestingly, I(T ; X) also characterizes
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the complexity of the representation T as the expected number of bits needed to specify
the t for a given x. In that role it can be viewed as an expected “cost” of the internal
representation, as in MDL. As is well acknowledged now source coding with distortion and
channel coding with cost are dual problems (see for example Shannon, 1959, Pradhan et al.,
2003). In that information theoretic sense, IB is self dual, where the resulting source and
channel are perfectly matched (as in Gastpar and Vetterli, 2003).

The information bottleneck approach has been applied so far mainly to categorical
variables, with a discrete T that represents (soft) clusters of X. It has been proved useful for
a range of applications from documents clustering (Slonim and Tishby, 2000) through neural
code analysis (Dimitrov and Miller, 2001) to gene expression analysis (Friedman et al.,
2001, Sinkkonen and Kaski, 2001) (for a more detailed review of IB clustering algorithms
see Slonim (2003)). However, its general information theoretic formulation is not restricted,
both in terms of the nature of the variables X and Y , as well as of the compression variable
T . It can be naturally extended to nominal, categorical, and continuous variables, as well
as to dimension reduction rather than clustering techniques. The goal of this paper is
apply the IB for the special, but very important, case of Gaussian processes which has
become one of the most important generative classes in machine learning. In addition, this
is the first concrete application of IB to dimension reduction with continuous compressed
representation, and as such exhibit interesting dimension related phase transitions.

The general solution of IB for continuous T yields the same set of self-consistent equa-
tions obtained already in (Tishby et al., 1999), but solving these equations for the dis-
tributions p(t|x), p(t) and p(y|t) without any further assumptions is a difficult challenge,
as it yields non-linear coupled eigenvalue problems. As in many other cases, however, we
show here that the problem turns out to be analytically tractable when X and Y are joint
multivariate Gaussian variables. In this case, rather than using the fixed point equations
and the generalized Blahut-Arimoto algorithm as proposed in (Tishby et al., 1999), one
can explicitly optimize the target function with respect to the mapping p(t|x) and obtain a
closed form solution of the optimal dimensionality reduction.

The optimal compression in the Gaussian Information Bottleneck (GIB) is defined in
terms of the compression-relevance tradeoff (also known as the “Information Curve”, or
“Accuracy-Complexity” tradeoff), determined by varying the parameter β. The optimal
solution turns out to be a noisy linear projection to a subspace whose dimensionality is
determined by the parameter β. The subspaces are spanned by the basis vectors obtained
as in the well known Canonical Correlation Analysis (CCA) (Hotelling, 1935), but the exact
nature of the projection is determined in a unique way via the parameter β. Specifically,
as β increases, additional dimensions are added to the projection variable T , through a
series of critical points (structural phase transitions), while at the same time the relative
magnitude of each basis vector is rescaled. This process continues until all the relevant
information about Y is captured in T . This demonstrates how the IB principle can provide
a continuous measure of model complexity in information theoretic terms.

The idea of maximization of relevant information was also taken in the Imax framework
of Becker and Hinton (Becker and Hinton, 1992, Becker, 1996), which followed Linsker’s
idea of information maximization (Linsker, 1988, 1992). In the Imax setting, there are
two one-layer feed forward networks with inputs Xa, Xb and outputs neurons Ya, Yb; the
output neuron Ya serves to define relevance to the output of the neighboring network Yb.
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Formally, the goal is to tune the incoming weights of the output neurons, such that their
mutual information I(Ya; Yb) is maximized. An important difference between Imax and the
IB setting, is that in the Imax setting, I(Ya; Yb) is invariant to scaling and translation of
the Y ’s since the compression achieved in the mapping Xa → Ya is not modeled explicitly.
In contrast, the IB framework aims to characterize the dependence of the solution on the
explicit compression term I(T ; X), which is a scale sensitive measure when the transfor-
mation is noisy. This view of compressed representation T of the inputs X is useful when
dealing with neural systems that are stochastic in nature and limited in their responses
amplitudes and are thus constrained to finite I(T ; X).

The current paper starts by defining the problem of relevant information extraction for
Gaussian variables. Section 3 gives the main result of the paper: an analytical characteri-
zation of the optimal projections, which is then developed in Section 4. Section 5 develops
an analytical expression for the GIB compression-relevance tradeoff - the information curve.
Section 6 shows how the general IB algorithm can be adapted to the Gaussian case, yield-
ing an iterative algorithm for finding the optimal projections. The relations to canonical
correlation analysis and coding with side-information are discussed in Section 9.

2. Gaussian Information Bottleneck

We now formalize the problem of Information Bottleneck for Gaussian variables. Let (X, Y )
be two jointly multivariate Gaussian variables of dimensions nx, ny and denote by Σx,Σy

the covariance matrices of X,Y and by Σxy their cross-covariance matrix 1. The goal of GIB
is to compress the variable X via a stochastic transformation into another variable T ∈ Rnx ,
while preserving information about Y . The dimension of T is not explicitly limited in our
formalism, since we will show that the effective dimension is determined by the value of β.

It is shown in Globerson and Tishby (2004) that the optimum for this problem is ob-
tained by a variable T which is also jointly Gaussian with X. The formal proof uses the
entropy power inequality as in Berger and Zamir (1999), and is rather technical, but an
intuitive explanation is that since X and Y are Gaussians, the only statistical dependencies
that connect them are bi-linear. Therefore, a linear projection of X is sufficient to capture
all the information that X has on Y . The Entropy-power inequality is used to show that
a linear projection of X, which is also Gaussian in this case, indeed attains this maximum
information.

Since every two centered random variables X and T with jointly Gaussian distribution
can be presented through the linear transformation T = AX + ξ, where ξ ∼ N(0, Σξ) is an-
other Gaussian that is independent of X, we formalize the problem using this representation
of T , as the following minimization,

min
A,Σξ

L ≡ I(X; T ) − βI(T ; Y ) (2)

over the noisy linear transformations of A, Σξ

T = AX + ξ; ξ ∼ N(0, Σξ) . (3)

1. For simplicity we assume that X and Y have zero means and Σx, Σy are full rank. Otherwise X and Y

can be centered and reduced to the proper dimensionality.

4



Gaussian Information Bottleneck

Thus T is normally distributed T ∼ N(0, Σt) with Σt = AΣxAT + Σξ.

Interestingly, the term ξ can also be viewed as an additive noise term, as commonly done
in models of learning in neural networks. Under this view, ξ serves as a regularization term
whose covariance determines the scales of the problem. While the goal of GIB is to find
the optimal projection parameters A, Σξ jointly, we show below that the problem factorizes
such that the optimal projection A does not depend on the noise, which does not carry any
information about Y .

3. The Optimal Projection

The first main result of this paper is the characterization of the optimal A,Σξ as a function
of β

Theorem 3.1 The optimal projection T = AX+ξ for a given tradeoff parameter β is given
by Σξ = Ix and

A =



















[

0T ; . . . ;0T
]

0 ≤ β ≤ βc
1

[

α1v
T
1 ,0T ; . . . ;0T

]

βc
1 ≤ β ≤ βc

2
[

α1v
T
1 ; α2v

T
2 ;0T ; . . . ;0T

]

βc
2 ≤ β ≤ βc

3
...



















(4)

where {vT
1 ,vT

2 , . . . ,vT
nx
} are left eigenvectors of Σx|yΣ

−1
x sorted by their corresponding as-

cending eigenvalues λ1, λ2, . . . , λnx, βc
i = 1

1−λi
are critical β values, αi are coefficients

defined by αi ≡
√

β(1−λi)−1
λiri

, ri ≡ vT
i Σxvi, 0T is an nx dimensional row vector of zeros,

and semicolons separate rows in the matrix A.

This theorem asserts that the optimal projection consists of eigenvectors of Σx|yΣ
−1
x ,

combined in an interesting manner: For β values that are smaller than the smallest critical
point βc

1, compression is more important than any information preservation and the optimal
solution is the degenerated one A ≡ 0. As β is increased, it goes through a series of critical
points βc

i, at each of which another eigenvector of Σx|yΣ
−1
x is added to A. Even though the

rank of A increases at each of these transition points, A changes continuously as a function
of β since at each critical point βc

i the coefficient αi vanishes. Thus β parameterizes a sort
of “continuous rank” of the projection.

To illustrate the form of the solution, we plot the landscape of the target function L
together with the solution in a simple problem where X ∈ R2 and Y ∈ R. In this case A has
a single non-zero row, thus A can be thought of as a row vector of length 2, that projects
X to a scalar A : X → R, T ∈ R. Figure 1 shows the target function L as a function of
the (vector of length 2) projection A. In this example, the largest eigenvalue is λ1 = 0.95,
yielding βc

1 = 20. Therefore, for β = 15 (Figure 1A) the zero solution is optimal, but
for β = 100 > βc (Figure 1B) the corresponding eigenvector is a feasible solution, and the
target function manifold contains two mirror minima. As β increases from 1 to ∞, these
two minima, starting as a single unified minimum at zero, split at βc, and then diverge
apart to ∞.

We now turn to prove theorem 3.1.
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Figure 1: The surface of the target function L calculated numerically as a function of the
optimization parameters in two illustrative examples with a scalar projection
A : R2 → R. Each row plots the target surface L both in 2D (left) and 3D (right)
as a function of the (two dimensional) projections A. A. For β = 15, the optimal
solution is the degenerated solution A ≡ 0. B. For β = 100, a non degenerate
solution is optimal, together with its mirror solution. The Σx|yΣ

−1
x - eigenvector

of smallest eigenvalue, with a norm computed according to theorem 3.1 is super-
imposed, showing that it obtains the global minimum of L. Parameters’ values
Σxy = [0.1 0.2], Σx = I2, Σξ = 0.3I2×2.
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4. Deriving the Optimal Projection

We first rewrite the target function as

L = I(X; T ) − βI(T ; Y ) = h(T ) − h(T |X) − βh(T ) + βh(T |Y ) (5)

where h is the (differential) entropy of a continuous variable

h(X) ≡ −
∫

X

f(x) log f(x) dx .

Recall that the entropy of a d dimensional Gaussian variable is

h(X) =
1

2
log
(

(2πe)d|Σx|
)

where |x| denotes the determinant of x, and Σx is the covariance of X. We therefore turn
to calculate the relevant covariance matrices. From the definition of T we have Σtx = AΣx,
Σty = AΣxy and Σt = AΣxAT + Σξ. Now, the conditional covariance matrix Σx|y can be
used to calculate the covariance of the conditional variable T |Y , using the Schur complement
formula (see e.g., Magnus and Neudecker, 1988)

Σt|y = Σt − ΣtyΣ
−1
y Σyt = AΣx|yA

T + Σξ

The target function can now be rewritten as

L = log(|Σt|) − log(|Σt|x|) − β log(|Σt|) + β log(|Σt|y|) (6)

= (1 − β) log(|AΣxAT + Σξ|) − log(|Σξ|) + β log(|AΣx|yA
T + Σξ|)

Although L is a function of both the noise Σξ and the projection A, Lemma A.1 in
Appendix A shows that for every pair (A, Σξ), there is another projection Ã such that the

pair (Ã, I) obtains the same value of L. This is obtained by setting Ã =
√

D−1V A where
Σξ = V DV T , which yields L(Ã, I) = L(A, Σξ)

2. This allows us to simplify the calculations
by replacing the noise covariance matrix Σξ with the identity matrix Id.

To identify the minimum of L we differentiate L w.r.t. to the projection A using the
algebraic identity δ

δA
log(|ACAT |) = (ACAT )−12AC which holds for any symmetric matrix

C.
δL
δA

= (1 − β)(AΣxAT + Id)
−12AΣx + β(AΣx|yA

T + Id)
−12AΣx|y (7)

Equating this derivative to zero and rearranging, we obtain necessary conditions for an
internal minimum of L, which we explore in the next two sections.

4.1 Scalar projections

For clearer presentation of the general derivation, we begin with a sketch of the proof by
focusing on the case where T is a scalar, that is, the optimal projection matrix A is a now
a single row vector. In this case, both AΣxAT and AΣx|yA

T are scalars, and we can write

(

β − 1

β

)

(

AΣx|yA
T + 1

AΣxAT + 1

)

A = A
[

Σx|yΣ
−1
x

]

. (8)

2. Although this holds only for full rank Σξ, it does not limit the generality of the discussion since low rank
matrices yield infinite values of L and are therefore suboptimal.
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Figure 2: A. The regions of (β,λ) pairs that lead to the zero (red) and eigenvector (blue)
solutions. B. The norm ||A||2 as a function of β and λ over the feasible region.

This equation is therefore an eigenvalue problem in which the eigenvalues depend on A. It
has two types of solutions depending on the value of β. First, A may be identically zero.

Otherwise, A must be the eigenvector of Σx|yΣ
−1
x , with an eigenvalue λ = β−1

β

AΣx|yAT +1

AΣxAT +1
To characterize the values of β for which the optimal solution does not degenerate,

we find when the eigenvector solution is optimal. Denote the norm of Σx w.r.t. A by
r = AΣxAT

||A||2
. When A is an eigenvector of Σx|yΣ

−1
x , Lemma B.1 shows that r is positive and

that AΣx|yΣ
−1
x ΣxAT = λr||A||2. Rewriting the eigenvalue and isolating ||A||2, we have

0 < ||A||2 =
β(1 − λ) − 1

rλ
. (9)

This inequality provides a constraint on β and λ that is required for a non-degenerated type
of solution

λ ≤ β − 1

β
or β ≥ (1 − λ)−1 , (10)

thus defining a critical value βc(λ) = (1 − λ)−1. For β ≤ βc(λ), the weight of compression
is so strong that the solution degenerates to zero and no information is carried about X or
Y . For β ≥ βc(λ) the weight of information preservation is large enough, and the optimal
solution for A is an eigenvector of Σx|yΣ

−1
x . The feasible regions for non degenerated

solutions and the norm ||A||2 as a function of β and λ are depicted in Figure 2.
For some β values, several eigenvectors can satisfy the condition for non degenerated

solutions of equation (10). Appendix C shows that the optimum is achieved by the eigen-
vector of Σx|yΣ

−1
x with the smallest eigenvalue. Note that this is also the eigenvector of

ΣxyΣ
−1
y ΣyxΣ−1

x with the largest eigenvalue. We conclude that for scalar projections

A(β) =

{

√

β(1−λ)−1
rλ

v1 0 < λ ≤ β−1
β

0 β−1
β

≤ λ ≤ 1
(11)

where v1 is the eigenvector of Σx|yΣ
−1
x with the smallest eigenvalue.
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4.2 The high-dimensional case

We now return to the proof of the general, high dimensional case, which follows the same
lines as the scalar projection case. Setting the gradient in equation (7) to zero and reordering
we obtain

β − 1

β

[

(AΣx|yA
T + Id)(AΣxAT + Id)

−1
]

A = A
[

Σx|yΣ
−1
x

]

. (12)

Equation (12) shows that the multiplication of Σx|yΣ
−1
x by A must reside in the span of

the rows of A. This means that A should be spanned by up to nt eigenvectors of Σx|yΣ
−1
x .

We can therefore represent the projection A as a mixture A = WV where the rows of V

are left normalized eigenvectors of Σx|yΣ
−1
x and W is a mixing matrix that weights these

eigenvectors. The form of the mixing matrix W , that characterizes the norms of these
eigenvectors, is described in the following lemma, which is proved in Appendix D.

Lemma 4.1 The optimum of the cost function is obtained with a diagonal mixing matrix
W of the form

W = diag





√

β(1 − λ1) − 1

λ1r1
; . . . ;

√

β(1 − λk) − 1

λkrk
; 0; . . . ; 0



 (13)

where {λ1, . . . , λk} are k ≤ nx eigenvalues of Σx|yΣ
−1
x with critical β values βc

1, . . . , β
c
k ≤

β. ri ≡ vT
i Σxvi as in theorem 3.1.

The proof is presented in appendix D.

We have thus characterized the set of all minima of L, and turn to identify which of
them achieve the global minima.

Corollary 4.2

The global minimum of L is obtained with all λi that satisfy λi < β−1
β

The proof is presented in appendix D.

Taken together, these observations prove that for a given value of β, the optimal pro-
jection is obtained by taking all the eigenvectors whose eigenvalues λi satisfy β ≥ 1

1−λi
,

and setting their norm according to A = WV with W determined as in Lemma 4.1. This
completes the proof of Theorem 3.1.

5. The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff between information
preservation (accuracy of relevant predictions) and compression. Interestingly, much of the
structure of the problem is reflected in the information curve, namely, the maximal value
of relevant preserved information (accuracy), I(T ; Y ), as function of the complexity of the
representation of X, measured by I(T ; X). This curve is related to the rate-distortion
function in lossy source coding, as well as to the achievability limit in source coding with
side-information (Wyner, 1975, Cover and Thomas, 1991). It was shown to be concave un-
der general conditions (Gilad-Bachrach et al., 2003), but its precise functional form depends
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on the joint distribution and can reveal properties of the hidden structure of the variables.
Analytic forms for the information curve are known only for very special cases, such as
Bernoulli variables and some intriguing self-similar distributions. The analytic character-
ization of the Gaussian IB problem allows us to obtain a closed form expression for the
information curve in terms of the relevant eigenvalues.

0 5 10 15 20 25
0

I(T;X)

I(
T

;Y
)

Σ log(λ
i
)

β−1 = 1−λ
1

Figure 3: GIB information curve obtained with four eigenvalues λi = 0.1,0.5,0.7,0.9. The
information at the critical points are designated by circles. For infinite β, curve
is saturated at the log of the determinant

∑

log λi. For comparison, information
curves calculated with smaller number of eigenvectors are also depicted (all curves
calculated for β < 1000). The slope of the un-normalized curve at each point is
the corresponding β−1. The tangent at zero, with slope β−1 = 1 − λ1, is super
imposed on the information curve.

To this end, we substitute the optimal projection A(β) into I(T ; X) and I(T ; Y ) and
rewrite them as a function of β

Iβ(T ; X) =
1

2
log
(

|AΣxAT + Id|
)

(14)

=
1

2
log
(

|(β(I − D) − I)D−1|
)

=
1

2

n(β)
∑

i=1

log

(

(β − 1)
1−λi

λi

)

Iβ(T ; Y ) = I(T ; X) − 1

2

n(β)
∑

i=1

log β(1−λi) ,

where D is a diagonal matrix whose entries are the eigenvalues of Σx|yΣ
−1
x as in appendix D,

and n(β) is the maximal index i such that β ≥ 1
1−λi

. Isolating β as a function of Iβ(T ; X)

10
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in the correct range of nβ and then Iβ(T ; Y ) as a function of Iβ(T ; X) we have

I(T ; Y ) = I(T ; X) − nI

2
log

(

nI
∏

i=1

(1−λi)
1

nI + e
2I(T ;X)

nI

nI
∏

i=1

λi

1
nI

)

(15)

where the products are over the first nI = nβ(I(T ;X)) eigenvalues, since these obey the

critical β condition, with cnI
≤ I(T ; X) ≤ cnI+1 and cnI

=
∑nI−1

i=1 log
λnI

λi

1−λi

1−λnI

.

The GIB curve, illustrated in Figure 3, is continuous and smooth, but is built of several
segments: as I(T ; X) increases additional eigenvectors are used in the projection. The
derivative of the curve, which is equal to β−1, can be easily shown to be continuous and
decreasing, therefore the information curve is concave everywhere, in agreement with the
general concavity of information curve in the discrete case (Wyner, 1975, Gilad-Bachrach
et al., 2003). Unlike the discrete case where concavity proofs rely on the ability to use a
large number of clusters, concavity is guaranteed here also for segments of the curve, where
the number of eigenvectors are limited a-priori.

At each value of I(T ; X) the curve is bounded by a tangent with a slope β−1(I(T ; X)).
Generally in IB, the data processing inequality yields an upper bound on the slope at the
origin, β−1(0) < 1, in GIB we obtain a tighter bound: β−1(0) < 1 − λ1. The asymptotic
slope of the curve is always zero, as β → ∞, reflecting the law of diminishing return: adding
more bits to the description of X does not provide higher accuracy about T . This relation
between the spectral properties of the covariance matrices raises interesting questions for
special cases where the spectrum can be better characterized, such as random-walks and
self-similar processes.

6. An iterative algorithm

The GIB solution is a set of scaled eigenvectors, and as such can be calculated using standard
techniques. For example gradient ascent methods were suggested for learning CCA (Becker,
1996, Borga et al., 1997). An alternative approach is to use the general iterative algorithm
for IB problems (Tishby et al., 1999). This algorithm that can be extended to continuous
variables and representations, but its practical application for arbitrary distributions leads
to a non-linear generalized eigenvalue problem whose general solution can be difficult. It
is therefore interesting to explore the form that the iterative algorithm assumes once it is
applied to Gaussian variables. Moreover, it may be possible to later extend this approach to
more general parametric distributions, such as general exponential forms, for which linear
eigenvector methods may no longer be adequate.

The general conditions for the IB stationary points were presented by Tishby et al. (1999)
and can be written for a continuous variable x by the following self consistent equations for
the unknown distributions p(t|x), p(y|t) and p(t):

p(t) =

∫

X

dx p(x)p(t|x) (16)

p(y|t) =
1

p(t)

∫

X

dx p(x, y)p(t|x)

p(t|x) =
p(t)

Z(β)
e−βDKL[p(y|x)||p(y|t)]

11
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where Z(β) is a normalization factor (partition function) and is independent of x. It is
important to realize that those conditions assume nothing about the representation variable
T and should be satisfied by any fixed point of the IB Lagrangian. When X, Y and T

have finite cardinality, those equations can be iterated directly in a Blahut-Arimoto like
algorithm,

p(tk+1|x) =
p(tk)

Zk+1(x, β)
e−βDKL[p(y|x)||p(y|tk)] (17)

p(tk+1) =

∫

X

dx p(x)p(tk+1|x)

p(y|tk+1) =
1

p(tk+1)

∫

X

dx p(x, y)p(tk+1|x) .

where each iteration results in a distribution over the variables Tk, X and Y . The second
and third equations calculate p(tk+1) and p(y|tk+1) using standard marginalization, and the
Markov property Y − X − Tk. These iterations were shown to converge to the optimal T

by Tishby et al. (1999).
For the general continuous T such an iterative algorithm is clearly not feasible. We show

here, how the fact that we are confined to Gaussian distributions, can be used to turn those
equations into an efficient parameter updating algorithm. We conjecture that algorithms
for parameters optimizations can be defined also for parametric distribution other than
Gaussians, such as other exponential distributions that can be efficiently represented with
a small number of parameters.

In the case of Gaussian p(x, y), when p(tk|x) is Gaussian for some k, so are p(tk), p(y|tk)
and p(tk+1|x). In other words, the set of Gaussians p(t|x) is invariant under the above
iterations. To see why this is true, notice that p(y|tk) is Gaussian since Tk is jointly Gaussian
with X. Also, p(tk+1|x) is Gaussian since DKL[p(y|x)||p(y|tk)] between two Gaussians
contains only second order moments in y and t and thus its exponential is Gaussian. This
is in agreement with the general fact that the optima (which are fixed points of 17) are
Gaussian (Globerson and Tishby, 2004). This invariance allows us to turn the IB algorithm
that iterates over distributions, into an algorithm that iterates over the parameters of the
distributions, being the relevant degrees of freedom in the problem.

Denote the variable T at time k by Tk = AkX + ξk, where ξk ∼ N (0, Σξk
). The

parameters A and Σ at time k + 1 can be obtained by substituting Tk in the iterative IB
equations. As shown in Appendix E, this yields the following update equations

Σξk+1
=

(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
(18)

Ak+1 = βΣξk+1
Σ−1

tk|y
Ak

(

I − Σy|xΣ−1
x

)

where Σtk|y, Σtk are the covariance matrices calculated for the variable Tk.
This algorithm can be interpreted as repeated projection of Ak on the matrix I − Σy|xΣ−1

x

(whose eigenvectors we seek) followed by scaling with βΣξk+1
Σ−1

tk|y
. It thus has similar form

to the power method for calculating the dominant eigenvectors of the matrix Σy|xΣ−1
x (Dem-

mel, 1997, Golub and Loan, 1989). However, unlike the naive power method, where only
the single dominant eigenvector is preserved, the GIB iterative algorithm maintains several

12
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Figure 4: The norm of projection on the four eigenvectors of Σx|yΣ
−1
x , as evolves along the

operation of the iterative algorithm. Each line corresponds to the length of the
projection of one row of A on the closest eigenvector. The projection on the other
eigenvectors also vanishes (not shown). β was set to a value that leads to two
non vanishing eigenvectors. The algorithm was repeated 10 times with different
random initialization points, showing that it converges within 20 steps to the
correct values αi.

different eigenvectors, and their number is determined by the continuous parameter β and
emerges from the iterations: All eigenvectors whose eigenvalues are smaller than the criti-
cal β vanish to zero, while the rest are properly scaled. This is similar to an extension of
the naive power method known as Orthogonal Iteration, in which the projected vectors are
renormalized to maintain several non vanishing vectors (Jennings and Stewart, 1975).

Figure 4 demonstrates the operation of the iterative algorithm for a four dimensional X

and Y . The tradeoff parameter β was set to a value that leads to two vanishing eigenvectors.
The norm of the other two eigenvectors converges to the correct values, which are given in
Theorem 3.1.

The iterative algorithm can also be interpreted as a regression of X on T via Y . This
can be seen by writing the update equation for Ak+1 as

Ak+1 = Σξk+1
Σ−1

tk|y

(

ΣytkΣ−1
y

) (

ΣyxΣ−1
x

)

. (19)

Since ΣyxΣ−1
x describes the optimal linear regressor of X on Y , the operation of Ak+1 on

X can be described by the following diagram

X
ΣyxΣ−1

x−−−−−→ µy|x

Σytk
Σ−1

y−−−−−→ µtk|µy|x

Σξk+1
Σ−1

tk|y−−−−−−−→ Tk+1 (20)

where the last step scales and normalizes T .

13
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7. Relation To Other Works

7.1 Canonical correlation analysis and Imax

The GIB projection derived above uses weighted eigenvectors of the matrix Σx|yΣ
−1
x =

I − ΣxyΣ
−1
y ΣyxΣ−1

x . Such eigenvectors are also used in Canonical correlations Analysis
(CCA) (Hotelling, 1935, Thompson, 1984, Borga, 2001), a method of descriptive statistics
that finds linear relations between two variables. Given two variables X, Y , CCA finds a set
of basis vectors for each variable, such that the correlation coefficient between the projection
of the variables on the basis vectors is maximized. In other words, it finds the bases in which
the correlation matrix is diagonal and the correlations on the diagonal are maximized. The
bases are the eigenvectors of the matrices Σ−1

y ΣyxΣ−1
x Σxy and Σ−1

x ΣxyΣ
−1
y Σyx, and the

square roots of their corresponding eigenvalues are the canonical correlation coefficients.
CCA was also shown to be a special case of continuous Imax (Becker and Hinton, 1992,
Becker, 1996), when the Imax networks are limited to linear projections.

Although GIB and CCA involve the spectral analysis of the same matrices, they have
some inherent differences. First of all, GIB characterizes not only the eigenvectors but also
their norm, in a way that that depends on the trade-off parameter β. Since CCA depends
on the correlation coefficient between the compressed (projected) versions of X and Y ,
which is a normalized measure of correlation, it is invariant to a rescaling of the projection
vectors. In contrast, for any value of β, GIB will choose one particular rescaling given by
theorem 3.1.

While CCA is symmetric (in the sense that both X and Y are projected), IB is non
symmetric and only the X variable is compressed. It is therefore interesting that both GIB
and CCA use the same eigenvectors for the projection of X.

7.2 Multiterminal information theory

The Information Bottleneck formalism was recently shown (Gilad-Bachrach et al., 2003) to
be closely related to the problem of source coding with side information (Wyner, 1975). In
the latter, two discrete variables X, Y are encoded separately at rates Rx, Ry, and the aim
is to use them to perfectly reconstruct Y . The bounds on the achievable rates in this case
were found in (Wyner, 1975) and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at finite rates is no longer
possible. Thus, mutual information for continuous variables is no longer interpretable in
terms of the actual number of encoding bits, but rather serves as an optimal measure of
information between variables. The IB formalism, although coinciding with coding theo-
rems in the discrete case, is more general in the sense that it reflects the tradeoff between
compression and information preservation, and is not concerned with exact reconstruction.

Lossy reconstruction can be considered by introducing distortion measures as done for
source coding of Gaussians with side information by Wyner (1978) and by Berger and Zamir
(1999) (see also Pradhan, 1998), but these focus on the region of achievable rates under
constrained distortion and are not relevant for the question of finding the representations
which capture the information between the variables. Among these, the formalism closest to
ours is that of Berger and Zamir (1999) where the distortion in reconstructing X is assumed
to be small (high-resolution scenario). However, their results refer to encoding rates and as
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such go to infinity as the distortion goes to zero. They also analyze the problem for scalar
Gaussian variables, but the one-dimensional setting does not reveal the interesting spectral
properties and phase transitions which appear only in the multidimensional case discussed
here.

7.3 Gaussian IB with side information

When handling real world data, the relevance variable Y often contains multiple structures
that are correlated to X, although many of them are actually irrelevant. The information
bottleneck with side information (IBSI) (Chechik and Tishby, 2002) alleviates this problem
using side information in the form of an irrelevance variable Y − about which information
is removed. IBSI thus aims to minimize

L = I(X; T ) − β
(

I(T ; Y +) − γI(T ; Y −)
)

(21)

This formulation can also be extended to the Gaussian case, in a manner similar to the
original GIB functional. Looking at its derivative w.r.t. to the projection A yields

δL
δA

= ( 1 − β + βγ )(AΣxAT + Id)
−12AΣx

+ β (AΣx|y+AT + Id)
−12AΣx|y+

− βγ (AΣx|y−AT + Id)
−12AΣx|y− .

While GIB relates to an eigenvalue problem of the form λA = AΣx|yΣ
−1
x , GIB with side in-

formation (GIBSI) requires to solve of a matrix equation of the form λ′A+λ+AΣx|y+Σ−1
x =

λ−AΣx|y−Σ−1
x , which is similar in form to a generalized eigenvalue problem. However, unlike

standard generalized eigenvalue problems, but as in the GIB case analyzed in this paper,
the eigenvalues themselves depend on the projection A.

8. Practical implications

The GIB approach can be viewed as a method for finding the best linear projection of
X, under a constraint on I(T ; X). Another straightforward way to limit the complexity
of the projection is to specify its dimension in advance. Such an approach leaves open
the question of the relative weighting of the resulting eigenvectors. This is the approach
taken in classical CCA, where the number of eigenvectors is determined according to a
statistical significance test, and their weights are then set to

√
1 − λi. This expression is

the correlation coefficient between the ith CCA projections on X and Y , and reflects the
amount of correlation captured by the ith projection. The GIB weighting scheme is different,
since it is derived to preserve maximum information under the compression constraint. To
illustrate the difference, consider the case where β = 1

1−λ3
, so that only two eigenvectors

are used by GIB. The CCA scaling in this case is
√

1 − λ1, and
√

1 − λ2. The GIB weights

are (up to a constant) α1 =
√

λ3−λ1
λ1r1

, α2 =
√

λ3−λ2
λ2r2

,, which emphasizes large gaps in the

eigenspectrum, and can be very different from the CCA scaling.
This difference between CCA scaling and GIB scaling may have implications on two

aspects of learning in practical applications. First, in applications involving compression of
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Gaussian signals due to limitation on available band-width. This is the case in the growing
field of sensor networks in which sensors are often very limited in their communication
bandwidth due to energy constraints. In these networks, sensors communicate with other
sensors and transmit information about their local measurements. For example, sensors can
be used to monitor chemicals’ concentrations, temperature or light conditions. Since only
few bits can be transmitted, the information has to be compressed in a relevant way, and
the relative scaling of the different eigenvectors becomes important (as in transform coding
Goyal, 2001). As shown above, GIB describes the optimal transformation of the raw data
into information conserving representation.

The second aspect where GIB becomes useful is in interpretation of data. Today, canon-
ical correlation analysis is widely used for finding relations between multi-variate continuous
variables, in particular in domains which are inherently high dimensional such as meteorol-
ogy (von Storch and Zwiers, 1999) chemometrics (Antti et al., 2002) and functional MRI
of brains (Friman et al., 2003). Since GIB weights the eigenvectors of the normalized cross
correlation matrix in a different way than CCA, it may lead to very different interpretation
of the relative importance of factors in these studies.

9. Discussion

We applied the information bottleneck method to continuous jointly Gaussian variables
X and Y , with a continuous representation of the compressed variable T . We derived
an analytic optimal solution as well as a new general algorithm for this problem (GIB)
which is based solely on the spectral properties of the covariance matrices in the problem.
The solutions for GIB are characterized in terms of the trade-off parameter β between
compression and preserved relevant information, and consist of eigenvectors of the matrix
Σx|yΣ

−1
x , continuously adding up vectors as more complex models are allowed. We provide

an analytic characterization of the optimal tradeoff between the representation complexity
and accuracy - the “information curve” - which relates the spectrum to relevant information
in an intriguing manner. Besides its clean analytic structure, GIB offers a way for analyzing
empirical multivariate data when only its correlation matrices can be estimated. In that
case it extends and provides new information theoretic insight to the classical Canonical
Correlation Analysis.

The most intriguing aspect of GIB is in the way the dimensionality of the representation
changes with increasing complexity and accuracy, through the continuous value of the trade-
off parameter β. While both mutual information values vary continuously on the smooth
information curve, the dimensionality of the optimal projection T increases discontinuously
through a cascade of structural (second order) phase transitions, and the optimal curve
moves from one analytic segment to another. While this transition cascade is similar to the
bifurcations observed in the application of IB to clustering through deterministic annealing,
this is the first time such dimensional transitions are shown to exist in this context. The
ability to deal with all possible dimensions in a single algorithm is a novel advantage of this
approach compared to similar linear statistical techniques as CCA and other regression and
association methods.

Interestingly, we show how the general IB algorithm which iterates over distributions,
can be transformed to an algorithm that performs iterations over the distributions’ parame-
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ters. This algorithm, similar to multi-eigenvector power methods, converges to a solution in
which the number of eigenvectors is determined by the parameter β, in a way that emerges
from the iterations rather than defined a-priori.

For multinomial variables, the IB framework can be shown to be related in some limiting
cases to maximum-likelihood estimation in a latent variable model (Slonim and Weiss, 2002).
It would be interesting to see whether the GIB-CCA equivalence can be extended and give
a more general understanding of the relation between IB and statistical latent variable
models.

While the restriction to a Gaussian joint distribution deviates from the more general
distribution independent approach of IB, it provides a precise example to the way represen-
tations with different dimensions can appear in the more general case. We believe that this
type of dimensionality-transitions appears for more general distributions, as can be revealed
in some cases by applying the Laplace method of integration (a Gaussian approximation)
to the integrals in the general IB algorithm for continuous T .

The more general exponential forms, can be considered as a kernelized version of IB
(see Mika et al., 2000) and appear in other minimum-information methods (such as SDR,
Globerson and Tishby, 2003). these are of particular interest here, as they behave like
Gaussian distributions in the joint kernel space. The Kernel Fisher-matrix in this case will
take the role of the original cross covariance matrix of the variables in GIB.

Another interesting extension of our work is to networks of Gaussian processes. A
general framework for that problem was developed in Friedman et al. (2001) and applied
for discrete variables. In this framework the mutual information is replaced by multi-
information, and the dependencies of the compressed and relevance variables is specified
through two Graphical models. It is interesting to explore the effects of dimensionality
changes in this more general framework, to study how they induce topological transitions
in the related graphical models, as some edges of the graphs become important only beyond
corresponding critical values of the tradeoff parameter β.
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Appendix A. Invariance to the noise covariance matrix

Lemma A.1 For every pair (A, Σξ) of a projection A and a full rank covariance matrix
Σξ, there exist a matrix Ã such that L(Ã, Id) = L(A, Σξ), where Id is the nt × nt identity
matrix.

Proof: Denote by V the matrix which diagonalizes Σξ, namely Σξ = V DV T , and by c the

determinant c ≡ |
√

D−1V | = |
√

D−1V T |. Setting Ã ≡
√

D−1V A we have

L(Ã, I) = (1−β) log(|ÃΣxÃT +Id|) − log(|Id|) + β log(|ÃΣx|yÃ
T +Id|) (22)

= (1−β) log(c|AΣxAT +Σξ|c) − log(c|Σξ|c) + β log(c|AΣx|yA
T +Σξ|c)

= (1−β) log(|AΣxAT +Σξ|) − log(|Σξ|) + β log(|AΣx|yA
T +Σξ|)

= L(A, Σξ)

where the first equality stems from the fact that the determinant of a matrix product is the
product of the determinants.

Appendix B. Properties of eigenvalues of Σx|yΣ
−1
x and Σx

Lemma B.1 Denote the set of left normalized eigenvectors of Σx|yΣ
−1
x by vi (||vi|| = 1)

and their corresponding eigenvalues by λi. Then

1. All the eigenvalues are real and satisfy 0 ≤ λi ≤ 1

2. ∃ri > 0 s.t. vT
i Σxvj = δijri.

3. vT
i Σx|yvj = δijλiri.

The proof is standard (see e.g Golub and Loan, 1989) and is brought here for completeness.

Proof:

1. The matrices Σx|yΣ
−1
x and ΣxyΣ

−1
y ΣyxΣ−1

x are positive semi definite (PSD), and their
eigenvalues are therefore positive. Since Σx|yΣ

−1
x = I −ΣxyΣ

−1
y ΣyxΣ−1

x , the eigenval-
ues of Σx|yΣ

−1
x are bounded between 0 and 1.

2. Denote by V the matrix whose rows are vT
i . The matrix V Σ

1
2
x is the eigenvector

matrix of Σ
− 1

2
x Σx|yΣ

− 1
2

x since

(

V Σ
1
2
x

)

Σ
− 1

2
x Σx|yΣ

− 1
2

x = V Σx|yΣ
− 1

2
x =

(

V Σx|yΣ
−1
x

)

Σ
1
2
x =

DV Σ
1
2
x . From the fact that Σ

− 1
2

x Σx|yΣ
− 1

2
x is symmetric, V Σ

1
2
x is orthogonal, and thus

V ΣxV T is diagonal.

3. Follows from 2: vT
i Σx|yΣ

−1
x Σxvj = λiv

T
i Σxvj = λiδijri.
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Appendix C. Optimal eigenvector

For some β values, several eigenvectors can satisfy the conditions for non degenerated so-
lutions (equation 10). To identify the optimal eigenvector, we substitute the value of ||A||2
from equation (9) AΣx|yA

T = rλ||A||2 and AΣxAT = r||A||2 into the target function L of
equation (6), and obtain

L = (1 − β) log

(

(1 − λ)(β − 1)

λ

)

+ β log (β(1 − λ)) (23)

Since β ≥ 1, this is monotonically increasing in λ and is minimized by the eigen-
vector of Σx|yΣ

−1
x with the smallest eigenvalue. Note that this is also the eigenvector of

ΣxyΣ
−1
y ΣyxΣ−1

x with the largest eigenvalue.

Appendix D. Optimal mixing matrix

Lemma D.1 The optimum of the cost function is obtained with a diagonal mixing matrix
W of the form

W = diag





√

β(1 − λ1) − 1

λ1r1
; . . . ;

√

β(1 − λk) − 1

λkrk

; 0; . . . ; 0



 (24)

where {λ1, . . . , λk} are k ≤ nx eigenvalues of Σx|yΣ
−1
x with critical β values βc

1, . . . , β
c
k ≤

β. ri ≡ vT
i Σxvi as in theorem 3.1.

Proof: We write V Σx|yΣ
−1
x = DV where D is a diagonal matrix whose elements are

the corresponding eigenvalues, and denote by R the diagonal matrix whose ith element is
ri. When k = nx, we substitute A = WV into equation (12), and eliminate V from both
sides to obtain

β − 1

β

[

(WDRW T + Id)(WRW T + Id)
−1
]

W = WD (25)

Use the fact that W is full rank to multiply by W−1 from the left and by W−1(WRW T +
Id)W from the right

β − 1

β
(DRW T W + Id) = D(RW T W + Id) (26)

Rearranging, we have,

W T W = [β(I − D) − I](DR)−1 (27)

which is a diagonal matrix.

While this does not uniquely characterize W , we note that using properties of the
eigenvalues from lemma B.1, we obtain

|AΣxAT + Id| = |WV ΣxV T W T + Id| = |WRW T + Id| .
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Note that WRW T has left eigenvectors W T with corresponding eigenvalues obtained from
the diagonal matrix W T WR. Thus if we substitute A into the target function in equation
(6), a similar calculation yields

L = (1 − β)
n
∑

i=1

log
(

||wT
i ||2ri + 1

)

+ β

n
∑

i=1

log
(

||wT
i ||2riλi + 1

)

(28)

where ||wT
i ||2 is the ith element of the diagonal of W T W . This shows that L depends only

on the norm of the columns of W , and all matrices W that satisfy (27) yield the same
target function. We can therefore choose to take W to be the diagonal matrix which is the
(matrix) square root of (27)

W =
√

[β(I − D) − I](DR)−1 (29)

which completes the proof of the full rank (k = nx) case.
In the low rank (k < nx) case W does not mix all the eigenvectors, but only k of them.

To prove the lemma for this case, we first show that any such low rank matrix is equivalent
(in terms of the target function value) to a low rank matrix that has only k non zero rows.
We then conclude that the non zero rows should follow the form described in the above
lemma.

Consider a nx × nx matrix W of rank k < nx, but without any zero rows. Let U be the
set of left eigenvectors of WW T (that is, WW T = UΛUT ). Then, since WW T is Hermitian,
its eigenvectors are orthonormal, thus (UW )(WU)T = Λ and W ′ = UW is a matrix with k

non zero rows and nx − k zero lines. Furthermore, W ′ obtains the same value of the target
function, since

L = (1−β) log(|W ′RW ′T + Σ2
ξ |) + β log(|W ′DRW ′T + Σ2

ξ |) (30)

= (1−β) log(|UWRW T UT+ UUT Σ2
ξ |) + β log(|UWDRW T UT+ UUT Σ2

ξ |)
= (1−β) log(|U ||WRW T+Σ2

ξ ||UT |) + β log(|U ||UWDRW T UT+ Σ2
ξ ||UT |)

= (1−β) log(|WRW T+ Σ2
ξ |) + β log(|WDRW T T + Σ2

ξ |)
where we have used the fact that U is orthonormal and hence |U | = 1. To complete the
proof note that the non zero rows of W ′ also have nx − k zero columns and thus define a
square matrix of rank k, for which the proof of the full rank case apply, but this time by
projecting to a dimension k instead of nx.

This provides a characterization of all local minima. To find which is the global mini-
mum, we prove the following corollary.

Corollary D.2

The global minimum of L is obtained with all λi that satisfy λi < β−1
β

Proof: Substituting the optimal W of equation (29) into equation (28) yields

L =
k
∑

i=1

(β − 1) log λi + log(1 − λi) + f(β). (31)

Since 0 ≤ λ ≤ 1 and β ≥ 1
1−λ

, L is minimized by taking all the eigenvalues that satisfy

β > 1
(1−λi)

.
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Appendix E. Deriving the iterative algorithm

To derive the iterative algorithm in section 6, we assume that the distribution p(tk|x)
corresponds to the Gaussian variable Tk = AkX + ξk. We show below that p(tk+1|x)
corresponds to Tk+1 = Ak+1X + ξk+1 with ξk+1 ∼ N(0, Σξk+1

) and

Σξk+1
=

(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
(32)

Ak+1 = βΣξk+1
Σ−1

tk|y
Ak

(

I − Σy|xΣ−1
x

)

We first substitute the Gaussian p(tk|x) ∼ N(Akx, Σξk
) into the equations of (17), and

treat the second and third equations. The second equation p(tk) =
∫

x
p(x)p(tk|x)dx, is a

marginal of the Gaussian Tk = AkX + ξk, and yields a Gaussian p(tk) with zero mean and
covariance

Σtk = AkΣxAT
k + Σξk

(33)

The third equation, p(y|tk) = 1
p(tk)

∫

x
p(x, y)p(tk|x)dx defines a Gaussian with mean and

covariance matrix given by:

µy|tk = µy + ΣytkΣ−1
tk

(tk − µtk) = ΣytkΣ−1
tk

tk ≡ Bktk (34)

Σy|tk = Σy − ΣytkΣ−1
tk

Σtky = Σy − AkΣxyΣ
−1
tk

ΣyxAT
k

where we have used the fact that µy = µtk = 0, and define the matrix Bk ≡ ΣytkΣ−1
tk

as the
regressor of tk on y. Finally, we return to the first equation of (17), that defines p(tk+1|x)
as

p(tk+1|x) =
p(tk)

Z(x, β)
e−βDKL[p(y|x)||p(y|tk)] (35)

We now show that p(tk+1|x) is Gaussian and compute its mean and covariance matrix.

The KL divergence between the two Gaussian distributions, in the exponent of equation
(35) is known to be

2DKL[p(y|x)||p(y|tk)] = log
|Σy|tk |
|Σy|x|

+ Tr(Σ−1
y|tk

Σy|x) (36)

+ (µy|x − µy|tk)T Σ−1
y|tk

(µy|x − µy|tk)

The only factor which explicitly depends on the value of t in the above expression is µy|tk
derived in equation (34), is linear in t. The KL divergence can thus be rewritten as

DKL[p(y|x)||p(y|tk)] = c(x) +
1

2
(µy|x − Bktk)

T Σ−1
y|tk

(µy|x − Bktk)

Adding the fact that p(tk) is Gaussian we can write the log of equation (35) as a quadratic
form in t

log p(tk+1|x) = Z(x) + (tk+1 − µtk+1|x)T Σξk+1
(tk+1 − µtk+1|x)
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where

Σξk+1
=

(

βBT
k Σ−1

y|tk
Bk + Σ−1

tk

)−1
(37)

µtk+1|x = Ak+1x

Ak+1 = βΣξk+1
BT

k Σ−1
y|tk

ΣyxΣ−1
x x

This shows that p(tk+1|x) is a Gaussian Tk+1 = Ak+1x + ξk+1, with ξ ∼ N(0, Σξk+1
).

To simplify the form of Ak+1, Σξk+1
, we use the two following matrix inversion lemmas 3,

which hold for any matrices E, F, G, H of appropriate sizes when E, H are invertible.

(E − FH−1G)−1 = E−1 + E−1F (H − GE−1F )−1GE−1 (38)

(E − FH−1G)−1FH−1 = E−1F (H − GE−1F )−1

Using E ≡ Σtk , F ≡ Σytk , H ≡ Σy, G ≡ Σytk , Bk = ΣytkΣ−1
tk

in the first lemma we obtain

Σ−1
tk|y

= Σ−1
tk

+ BT
k Σ−1

y|tk
Bk .

Replacing this into the expression for Σξk+1
in equation (37) we obtain

Σξk+1
=
(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
(39)

Finally, using again E ≡ Σtk , F ≡ Σtky, H ≡ Σy, G ≡ Σytk in the second matrix lemma,
we have Σ−1

tk|y
ΣtkyΣ

−1
y = Σ−1

tk
ΣtkyΣ

−1
y|tk

, which turns the expression for Ak+1 in equation (37)
into

Ak+1 = βΣξk+1
Σ−1

tk|y
ΣtkyΣ

−1
y ΣyxΣ−1

x (40)

= βΣξk+1
Σ−1

tk|y
AkΣxyΣ

−1
y ΣyxΣ−1

x

= βΣξk+1
Σ−1

tk|y
Ak(I − Σx|yΣ

−1
x ) ,

which completes the derivation of the algorithm as described in (17).
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