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Abstract— There are two main algorithmic approaches to
sparse signal recovery: geometric and combinatorial. The
geometric approach utilizes geometric properties of the mea-
surement matrix Φ. A notable example is the Restricted
Isometry Property, which states that the mappingΦ preserves
the Euclidean norm of sparse signals; it is known that random
dense matrices satisfy this constraint with high probability.
On the other hand, the combinatorial approach utilizes sparse
matrices, interpreted as adjacency matrices of sparse (possibly
random) graphs, and uses combinatorial techniques to recover
an approximation to the signal.

In this paper we present a unification of these two ap-
proaches. To this end, we extend the notion of Restricted Isom-
etry Property from the Euclidean ℓ2 norm to the Manhattan
ℓ1 norm. Then we show that this new ℓ1-based property is
essentially equivalent to the combinatorial notion ofexpansion
of the sparse graph underlying the measurement matrix. At
the same time we show that the new property suffices to
guarantee correctness of both geometric and combinatorial
recovery algorithms.

As a result, we obtain new measurement matrix construc-
tions and algorithms for signal recovery which, compared to
previous algorithms, are superior in either the number of
measurements or computational efficiency of decoders.

I. I NTRODUCTION

With the rise in high-speed data transmission and the
exponential increase in data storage, it is imperative thatwe
develop effective data compression techniques, techniques
which accomodate both the volume and speed of data
streams. A new approach to compressingn-dimensional
vectors (or signals) begins with linear observations or mea-
surements. For a signalx, its compressed representation is
equal toΦx, whereΦ is a carefully chosenm × n matrix,
m ≪ n, often chosen at random from some distribution. We

Berinde is with the Department of Electrical Engineering andComputer
Science, MIT. Email:texel@mit.edu

Gilbert is with the Department of Mathematics, The Universityof
Michigan at Ann Arbor. Email:annacg@umich.edu

Indyk is with the Computer Science and Artificial Intelligence Labora-
tory, MIT. Email: indyk@theory.lcs.mit.edu

Karloff is with AT&T Labs - Research. Email:
howard@research.att.com

Strauss is with the Department of Mathematics and the Department of
Electrical Engineering and Computer Science, The University of Michigan
at Ann Arbor. Email:martinjs@umich.edu

ACG is an Alfred P. Sloan Research Fellow and has been supported
in part by NSF DMS 0354600. MJS has been supported in part by NSF
DMS 0354600 and NSF DMS 0510203. ACG and MJS have been partially
supported by DARPA ONR N66001-06-1-2011. RB and PI are supported in
part by David and Lucille Packard Fellowship. PI is partially supported by
MADALGO (Center for Massive Data Algorithmics, funded by theDanish
National Research Association) and NSF grant CCF-0728645.

call the vectorΦx the measurement vectoror a sketchof x.
Although the dimension ofΦx is much smaller than that of
x, it retains many of the essential properties ofx.

There are several reasons why linear compression or
sketching is of interest. First, we can easily maintain a linear
sketchΦx under linear updates to the signalx. For example,
after incrementing thei-th coordinatexi, we simply update
the sketch asΦ(x+ei) = Φx+Φei. Similarly, we also easily
obtain a sketch of a sum of two signals given the sketches
for individual signalsx andy, sinceΦ(x + y) = Φx +Φy.
Both properties are useful in several computational areas,
notably computing over data streams [AMS99], [Mut03],
[Ind07], network measurement [EV03], query optimization
and answering in databases [AMS99].

Another scenario where linear compression is of key
importance iscompressed sensing[CRT06], [Don06a], a
rapidly developing area in digital signal processing. In this
setting, x is a physical signal one wishes to sense (e.g.,
an image obtained from a digital camera) and the linear-
ity of the observations stems from a physical observation
process. Rather than first observing a signal in its entirety
and then compressing it, it may be less costly to sense
the compressed version directly via a physical process.
A camera “senses” the vector by computing a dot prod-
uct with a number of pre-specified measurement vectors.
See [TLW+06], [DDT+08] for a prototype camera built
using this framework. Other applications of linear sketching
include database privacy [DMT07].

Although the sketch is considerably smaller than the
original vector, we can still recover a large amount of
information aboutx. See the surveys [Mut03], [Ind07] on
streaming and sublinear algorithms for a broad overview
of the area. In this paper, we focus on retrieving asparse
approximationx∗ of x. A vector is calledk-sparse if it
has at mostk non-zero elements in the canonical basis (or,
more generally,k non-zero coefficients in some basisB).
The goal of the sparse approximation is to find a vectorx∗
such that theℓp approximation error‖x − x∗‖p is at most
C > 0 times the smallest possibleℓq approximation error
‖x − x′‖q, wherex′ ranges over allk-sparse vectors. Note
that the error‖x − x′‖q is minimized whenx′ consists of
the k largest (in magnitude) coefficients ofx.

There are many algorithms for recovering sparse approx-
imations (or their variants) of signals from their sketches.
The early work on this topic includes thealgebraicapproach
of [Man92](cf. [GGI+02a]). Most of the known algorithms,



however, can be roughly classified as eithercombinatorial
or geometric.

Combinatorial approach. In the combinatorial approach,
the measurement matrixΦ is sparse and often binary.
Typically, it is obtained from an adjacency matrix of a
sparse bipartite random graph. The recovery algorithm
proceeds by iteratively identifying and eliminating “large”
coefficients1 of the vectorx. The identification uses non-
adaptive binary search techniques. Examples of combinato-
rial sketching and recovery algorithms include [GGI+02b],
[CCFC02], [CM04], [GKMS03], [DWB05], [SBB06b],
[SBB06a], [CM06], [GSTV06], [GSTV07], [Ind08], [XH07]
and others.

The typical advantages of the combinatorial approach
include fast recovery (often sub-linear in the signal length n
if k ≪ n), as well as fast and incremental (under coordinate
updates) computation of the sketch vectorΦx. In addition, it
is possible to construct efficient (albeit suboptimal) measure-
ment matricesexplicitly, at least for simple type of signals.
For example, it is known [Ind08], [XH07] how to explicitly
construct matrices withk2(log log n)O(1)

measurements, for
signalsx that are exactlyk-sparse. The main disadvantage
of the approach is the suboptimal sketch length.

Geometric approach. This approach was first proposed
in the papers [CRT06], [Don06a] and has been extensively
investigated since then (see [Gro06] for a bibliography). In
this setting, the matrixΦ is dense, with at least a constant
fraction of non-zero entries. Typically, each row of the
matrix is independently selected from a sub-exponentialn-
dimensional distribution, such as Gaussian or Bernoulli. The
key property of the matrixΦ which yields efficient recovery
algorithms is theRestricted Isometry Property[CRT06],
which requires that for anyk-sparse vectorx we have
‖Φx‖2 = (1± δ)‖x‖2. If a matrix Φ satisfies this property,
then the recovery process can be accomplished by finding a
vectorx∗ using the following linear program:

min ‖x∗‖1 subject toΦx∗ = Φx. (P1)

The advantages of the geometric approach include a
small number of measurements (O(k log(n/2k)) for Gaus-
sian matrices andO(k logO(1) n) for Fourier matrices) and
resiliency to measurement errors2. The main disadvantage is
the running time of the recovery procedure, which involves
solving a linear program withn variables andn + m
constraints. The computation of the sketchΦx can be done
efficiently for some matrices (e.g., Fourier); however, an

1In the non-sketching world, such methods algorithms are often
called “weak greedy algorithms”, and have been studied thoroughly by
Temlyakov [Tem02]

2Historically, the geometric approach resulted also in the first deter-
ministic or uniform recovery algorithms, where a fixed matrixΦ was
guaranteed to work forall signalsx. In contrast, the early combinatorial
sketching algorithms only guaranteed1 − 1/n probability of correctness
for eachsignalx. However, the papers [GSTV06], [GSTV07] showed that
combinatorial algorithms can achieve deterministic or uniform guarantees
as well.

efficient sketch update is not possible. In addition, the prob-
lem of finding an explicit construction of efficient matrices
satisfying the RIP property is open [Tao07]; the best known
explicit construction [DeV07] yieldsΩ(k2) measurements.

Connections. There has been some recent progress in
obtaining the advantages of both approaches by decoupling
the algorithmic and combinatorial aspects of the problem.
Specifically, the papers [NV07], [DM08], [NT08] show that
one can usegreedymethods for data compressed usingdense
matrices satisfying the RIP property. Similarly [GLR08],
using the results of [KT07], show that sketches from
(somewhat) sparse matrices can be recovered using linear
programming.

The best results (up toO(·) constants) obtained prior to
this work are shown in Figure 13. We ignore some aspects
of the algorithms, such as explicitness or universality of the
measurement matrices. Furthermore, we present only the
algorithms that work for arbitrary vectorsx, while many
other results are known for the case where the vectorx itself
is exactlyk-sparse; e.g., see [TG05], [DWB05], [SBB06b],
[Don06a], [XH07]. The columns describe:

- citation,
- whether the recovery algorithms hold with high proba-

bility for A ll signals or for Each signal,
- sketch length,
- time to computeΦx given x,
- time to updateΦx after incrementing one of the coor-

dinates ofx,
- time4 to recover an approximation ofx given Φx,
- approximation guarantee, and
- whether the algorithm is robust to noisy measurements.

In the approximation error column,ℓp ≤ Cℓq means that
the algorithm returns a vectorx∗ such that‖x − x∗‖p ≤
C minx′ ‖x−x′‖q, wherex′ ranges over allk-sparse vectors.
In [CDD06], the authors show that an approximation guaran-
tee of the form “ℓ2 ≤ C

k1/2 ℓ1” implies a “ℓ1 ≤ (1+O(C))ℓ1”
guarantee, and that it is impossible to achieve “ℓ2 ≤ Cℓ2”
deterministically (or for all signals simultaneously) unless
the number of measurements isΩ(n). The parametersC >
1, c ≥ 2 and a > 0 denote absolute constants, possibly
different in each row. We assume thatk < n/2.

In addition, in Figure 2 we present very recent results
discovered during the course of our research. Some of the
running times of the algorithms depend on the “precision
parameter”D, which is always bounded from the above by

3Some of the papers, notably [CM04], are focused on a somewhat
different formulation of the problem. However, it is known that the
guarantees presented in the table hold for those algorithms as well. See
Lecture 4 in [Ind07] for a more detailed discussion.

4In the decoding time column LP=LP(n, m, T ) denotes the time needed
to solve a linear program defined by anm × n matrix Φ which supports
matrix-vector multiplication in timeT . Heuristic arguments indicate that
LP(n, m, T ) ≈ √

nT if the interior-point method is employed. In addition,
the paper [NV07] does not discuss the running time of the algorithm. Our
bound is obtained by multiplying the number of algorithm iterations (i.e.,
k) by the number of entries in the matrixΦ (i.e., nk logc n). See [NT08]
for an in-depth discussion of the running times of OMP-based procedures.



Paper A/E Sketch length Encode time Column sparsity/ Decode time Approx. error Noise
Update time

[CCFC02], [CM06] E k logc n n logc n logc n k logc n ℓ2 ≤ Cℓ2
E k log n n log n log n n log n ℓ2 ≤ Cℓ2

[CM04] E k logc n n logc n logc n k logc n ℓ1 ≤ Cℓ1
E k log n n log n log n n log n ℓ1 ≤ Cℓ1

[CRT06] A k log(n/k) nk log(n/k) k log(n/k) LP ℓ2 ≤ C

k1/2 ℓ1 Y

A k logc n n log n k logc n LP ℓ2 ≤ C

k1/2 ℓ1 Y

[GSTV06] A k logc n n logc n logc n k logc n ℓ1 ≤ C log nℓ1 Y

[GSTV07] A k logc n n logc n logc n k2 logc n ℓ2 ≤ C

k1/2 ℓ1

[NV07] A k log(n/k) nk log(n/k) k log(n/k) nk2 logc n ℓ2 ≤ C(log n)1/2

k1/2 ℓ1 Y

A k logc n n log n k logc n nk2 logc n ℓ2 ≤ C(log n)1/2

k1/2 ℓ1 Y

[GLR08] A k(log n)c log log log n kn1−a n1−a LP ℓ2 ≤ C

k1/2 ℓ1
(k “large”)

This paper A k log(n/k) n log(n/k) log(n/k) LP ℓ1 ≤ Cℓ1 Y

Fig. 1. Summary of the best prior results.

Paper A/E Sketch length Encode time Update time Decode time Approx. error Noise
[DM08] A k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log D ℓ2 ≤ C

k1/2 ℓ1 Y

[NT08] A k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log D ℓ2 ≤ C

k1/2 ℓ1 Y

A k logc n n log n k logc n n log n log D ℓ2 ≤ C

k1/2 ℓ1 Y

[IR08] A k log(n/k) n log(n/k) log(n/k) n log(n/k) ℓ1 ≤ Cℓ1 Y

Fig. 2. Recent work.

‖x‖2 if the coordinates ofx are integers.

A. Our results

In this paper we give a sequence of results which indicate
that the combinatorial and geometric approaches are, in a
rigorous sense, different manifestations of a common un-
derlying phenomenon. This enables us to achieve a unifying
perspective on both approaches, as well as obtaining several
new concrete algorithmic results.

We consider matrices which arebinary and sparse; i.e.,
they have only a small numberd of ones in each column,
and all the other entries are equal to zero. It has been shown
recently [Cha08] that such matrices cannot satisfy the RIP
property with parametersk andδ, unless the number of rows
is Ω(k2). Our first result is that, nevertheless, such matrices
satisfy a different form of the RIP property, that we call the
RIP-p property, where theℓ2 norm is replaced by theℓp

norm. Formally, the matrixΦ satisfiesRIPp,k,δ property if
for any k-sparse vectorx we have‖Φx‖p = (1 ± δ)‖x‖p.
In particular, we show that this property holds for1 ≤ p ≤
1 + O(1)/ log n if the matrix Φ is an adjacency matrix of
a high-qualityunbalanced expander graph. Thus we have a
large class of natural such measurement matrices. We also
exhibit an RIP-2 matrix that is not an RIP-1 matrix, so that,

with [Cha08], we conclude that these two conditions are
incomparable—neither one is stronger than the other.

Theorem 1:Consider anym × n matrix Φ that is the
adjacency matrix of an(k, ǫ)-unbalanced expanderG =
(A,B,E), |A| = n, |B| = m, with left degreed, such that
1/ǫ, d are smaller thann. Then the scaled matrixΦ/d1/p

satisfies theRIPp,k,δ property, for1 ≤ p ≤ 1+1/ log n and
δ = Cǫ for some absolute constantC > 1.

The fact that the unbalanced expanders yield matrices
with RIP-p property is not an accident. In particular, we
show in Section II that any binary matrixΦ in which each
column hasd ones5 and which satisfies RIP-1 property
with proper parameters, must be an adjacency matrix of a
good unbalanced expander. That is, an RIP-p matrix and
the adjacency matrix of an unbalanced expander are essen-
tially equivalent. Therefore, RIP-1 provides an interesting
“analytic” formulation of expansion for unbalanced graphs.
Also, without significantly improved explicit constructions

5In fact, the latter assumption can be removed without loss of generality.
The reason is that, from the RIP-1 property alone, it follows that each
column must have roughly the same number of ones. The slight unbalance
in the number of ones does not affect our results much; however,it does
complicate the notation somewhat. As a result, we decided to keep this
assumption throughout the paper.



of unbalanced expanders with parameters that match the
probabilistic bounds (a longstanding open problem), we do
not expect significant improvements in the explicit construc-
tions of RIP-1 matrices.

Theorem 2:Consider anym × n binary matrixΦ such
that each column has exactlyd ones. If for some scaling
factor S > 0 the matrixSΦ satisfies theRIP1,k,δ property,
then the matrixΦ is an adjacency matrix of an(k, ǫ)-
unbalanced expander, for

ǫ =
(
1 − 1

1 + δ

)
/(2 −

√
2).

In the next step in Section III, we show that the RIP-1
property of a binary matrix (or, equivalently, the expansion
property) alone suffices to guarantee that the linear program
P1 recovers a good sparse approximation. In particular, we
show the following

Theorem 3:Let Φ be anm×n matrix of an unbalanced
(2k, ǫ)-expander. Letα(ǫ) = (2ǫ)/(1 − 2ǫ). Consider any
two vectorsx, x∗, such thatΦx = Φx∗, and‖x∗‖1 ≤ ‖x‖1.
Then

‖x − x∗‖1 ≤ 2/(1 − 2α(ǫ)) · ‖x − xk‖1.

wherexk is the optimalk-term representation forx.
We also provide a noise-resilient version of the theorem; see
Section III for details.

By combining Theorem 3 with the best known proba-
bilistic constructions of expanders (Section II) we obtaina
scheme for sparse approximation recovery with parameters
as in Figure 1. The scheme achieves the best known bounds
for several parameters: the scheme is deterministic (one
matrix works for all vectorsx), the number of measurements
is O(k log(n/k)), the update time isO(log(n/k)) and the
encoding time isO(n log(n/k)). In particular, this provides
the first known scheme which achieves the best known
measurement and encoding time boundssimultaneously. In
contrast, the Gaussian and Fourier matrices are known to
achieve only one optimal bound at a time. The fast encoding
time also speeds up the LP decoding, given that the linear
program is typically solved using the interior-point method,
which repeatedly performs matrix-vector multiplications. In
addition to theoretical guarantees, random sparse matrices
offer an attractive empirical performance. We show in Sec-
tion IV that the empirical behavior of binary sparse matrices
with LP decoding is consistent with the analytic performance
of Gaussian random matrices.

In the full version of this paper [BGI+08], we show that
adjacency matrices of unbalanced expanders can be aug-
mented to facilitate sub-linear time combinatorial recovery.
This fact has been implicit in the earlier work [GSTV07],
[Ind08]; we verify that indeed the expansion property is
the sufficient condition guaranteeing correctness of those
algorithms. As a result, we obtain an explicit construction
of matrices withO(k2(log log n)O(1)

) rows that are amenable
to a sublinear decoding algorithm for all vectors (similar
to that in [GSTV07]). Previous explicit constructions for

sublinear time algorithms either hadΩ(k2) rows [CM06]
or had O(k2(log log n)O(1)

) rows [Ind08], [XH07] but were
restricted tok-sparse signals or their slight generalizations.
An additional (and somewhat unexpected) consequence is
that the algorithm of [Ind08] is simple, effectively mimick-
ing the well-known “parallel bit-flip” algorithm for decoding
low-density parity-check codes.

Theorem 4:Let ǫ > 0 be a fixed constant, andp =
1 + 1/ log n. Considerx ∈ R

n and a sparsity parameterk.
There is a measurement matrixΨ, which we can construct
explicitly or randomly, and an algorithm HHS(p) that, given
measurementsv = Ψx of x, returns an approximation̂x of
x with O(k/ǫ) nonzero entries. The approximation satisfies

‖x − x̂‖p ≤ ǫk1/p−1‖x − xk‖1.

wherexk is the optimalk-term representation forx. Let R
denote the size of the measurements for either an explicit
or random construction. Then the HHS(p) algorithm runs in
time poly(R).

Figure 3 summarizes the connections among all of our
results. We show the relationship between the combinatorial
and geometric approaches to sparse signal recovery

RIP−2 RIP−1

Linear
programming

Weak
greedy

CombinatorialGeometric

Fig. 3. The above diagram captures the relations between thecombinatorial
and geometric approaches and the two main classes of decoding algorithms.
Connections established in prior work are shown with dashedlines. Our
work connects both approaches, with the ultimate goal of obtaining the
“best of both worlds.”

II. U NBALANCED EXPANDERS AND RIP MATRICES

A. Unbalanced expanders

In this section we show that RIP-p matrices forp ≈ 1
can be constructed using high-quality expanders. The formal
definition of the latter is as follows.

Definition 5: A (k, ǫ)-unbalanced expanderis a bipartite
simple graphG = (A,B,E) with left degreed such that
for any X ⊂ A with |X| ≤ k, the set of neighborsN(X)
of X has size|N(X)| ≥ (1 − ǫ)d|X|.

In constructing such graphs, our goal is to make|B|, d,
and ǫ as small as possible, while makingk as close to|B|
as possible.

The following well-known proposition can be shown
using the probabilistic method.



Proposition 6: For any n/2 ≥ k ≥ 1, ǫ > 0,
there exists a(k, ǫ)-unbalanced expander with left de-
gree d = O(log(n/k)/ǫ and right set sizeO(kd/ǫ) =
O(k log(n/k)/ǫ2).

Proposition 7: For anyn ≥ k ≥ 1 and ǫ > 0, one can
explicitly construct a(k, ǫ)-unbalanced expander with left
degreed = 2O(log(log(n)/ǫ)))3 , left set sizen and right set
sizem = kd/ǫO(1).

Proof: The construction is given in [CRVW02], The-
orem 7.3. Note that the theorem refers to notion oflossless
conductors, which is equivalent to unbalanced expanders,
modulo representing all relevant parameters (set sizes, de-
gree, etc.) in the log-scale. After an additionalO(nd)-time
postprocessing, we can ensure that the graph is simple; i.e.,
it contains no duplicate edges.

B. Construction of RIP matrices

Definition 8: An m × n matrix Φ is said to satisfy
RIPp,k,δ if, for any k-sparse vectorx, we have

‖x‖p ≤ ‖Φx‖p ≤ (1 + δ) ‖x‖p

Observe that the definitions ofRIP1,k,δ andRIP2,k,δ ma-
trices are incomparable. In what follows below, we present
sparse binary matrices withO(k log(n/k)) rows that are
RIP1,k,δ; it has been shown recently [Cha08] that sparse bi-
nary matrices cannot be RIP2,k,δ unless the number of rows
is Ω(k2). In the other direction, consider an appropriately
scaled random Gaussian matrixG of R ≈ k log(n) rows.
Such a matrix is known to be RIP2,k,δ. To see that this matrix
is not RIP1,k,δ, consider the signalx consisting of all zeros
except a single 1 and the signaly consisting of all zeros
exceptk terms with coefficient1/k. Then‖x‖1 = ‖y‖1 but
‖Gx‖1 ≈

√
k‖Gy‖1.

Theorem 1 Consider anym × n matrix Φ that is the
adjacency matrix of an(k, ǫ)-unbalanced expanderG =
(A,B,E) with left degreed, such that1/ǫ, d are smaller
thann. Then the scaled matrixΦ/d1/p satisfies theRIPp,k,δ

property, for 1 ≤ p ≤ 1 + 1/ log n and δ = Cǫ for some
absolute constantC > 1.

Proof: Let x ∈ R
n be ak-sparse vector. Without loss of

generality, we assume that the coordinates ofx are ordered
such that|x1| ≥ . . . ≥ |xn|.

The proof proceeds in two stages. In the first part, we
show that the theorem holds for the case ofp = 1. In the
second part, we extend the theorem to the case wherep is
slightly larger than1.

The case ofp = 1. We order the edgeset = (it, jt), t =
1 . . . dn of G in a lexicographic manner. It is helpful to
imagine that the edgese1, e2 . . . of E are being added to
the (initially empty) graph. An edgeet = (it, jt) causes a
collision if there exists an earlier edgees = (is, js), s < t,
such thatjt = js. We defineE′ to be the set of edges which
do not cause collisions, andE′′ = E − E′.

Lemma 9:We have
∑

(i,j)∈E′′

|xi| ≤ ǫd ‖x‖1

Proof: For eacht = 1 . . . dn, we use an indicator
variablert ∈ {0, 1}, such thatrt = 1 iff et ∈ E′′. Define a
vectorz ∈ R

dn such thatzt = |xit
|. Observe that

∑

(i,j)∈E′′

|xi| =
∑

et=(it,jt)∈E

rt|xit
| = r · z

To upper bound the latter quantity, observe that the vectors
satisfy the following constraints:

• The vectorz is non-negative.
• The coordinates ofz are monotonically non-increasing.
• For each prefix set Pi = {1 . . . di}, i ≤ k, we

have‖r|Pi
‖1 ≤ ǫdi - this follows from the expansion

properties of the graphG.
• r|P1

= 0, since the graph is simple.

It is now immediate that for anyr, z satisfying the above
constraints, we haver ·z ≤ ‖z‖1ǫ. Since‖z‖1 = d‖x‖1, the
lemma follows.

Lemma 9 immediately implies that‖Φx‖1 ≥ d ‖x‖1 (1−
2ǫ). Since for anyx we have‖Φx‖1 ≤ d ‖x‖1, it follows
that Φ/d satisfies theRIP1,k,2ǫ property.

The case ofp ≤ 1 + 1/ log n. See the full version of this
paper [BGI+08].

The above theorem shows that one can construct RIP-p
matrices forp ≈ 1 from good unbalanced expanders. In
following, we show that this is not an accident: any binary
matrix Φ in which satisfies RIP-1 property with proper
parameters, and with each column having exactlyd ones,
must be an adjacency matrix of a good unbalanced expander.
This reason behind this is that if some set of vertices does
not expand too well, then there are many collisions between
the edges going out of that set. If the signs of the coordinates
“following” those edges are different, the coordinates will
cancel each other out, and thus theℓ1 norm of a vector will
not be preserved.

The assumption that each column has exactlyd ones is
not crucial, since the RIP-1 property itself implies that the
number of ones in each column can differ by at most factor
of 1 + δ. All proofs in this paper are resilient to this slight
unbalance. However, we decided to keep this assumption for
the ease of notation.

Theorem 2 Consider anym×n binary matrixΦ such that
each column has exactlyd ones. If for some scaling factor
S > 0 the matrixSΦ satisfies theRIP1,s,δ property, then
the matrixΦ is an adjacency matrix of an(s, ǫ)-unbalanced
expander, for

ǫ =
(
1 − 1

1 + δ

)
/
(
2 −

√
2
)
.

Note that for small values ofδ > 0, we have



(
1 − 1

1 + δ

)
/(2 −

√
2) ≈ δ/(2 −

√
2)

Proof: Let G = (A,B,E) be the graph with adjacency
matrix Φ. Assume that there existsX ⊂ A, |X| = k′ ≤ k
such that|N(X)| < dk′(1 − ǫ). We will construct twon-
dimensional vectorsy, z such that‖y‖1 = ‖z‖1 = k′, but
‖Φz‖1 / ‖Φy‖1 ≤ 1 − ǫ(2 −

√
2), which is a contradiction.

The vectory is simply the characteristic vector of the set
X. Clearly, we have‖y‖1 = k′ and‖Φy‖1 = dk.

The vectorz is defined via a random process. Fori ∈ X,
defineri to be i.i.d. random variables uniformly distributed
over {−1, 1}. We definezi = ri if i ∈ X, and zi = 0
otherwise. Note that‖z‖1 = ‖y‖1 = k′.

Let C ⊂ N(X) be the “collision set”, i.e., the set of all
j ∈ N(X) such that the numberuj of the edges fromj to
X is at least2. Let |C| = l. By the definition of the set
C we have

∑
j uj ≥ 2l. Moreover, from the assumption it

follows that
∑

j uj ≥ 2ǫdk′.
Let v = Φz. We split v into vC and vCc . Clearly,

‖vCc‖1 = k′d −
∑

j uj . It suffices to show that‖vC‖1 is
significantly smaller than

∑
j uj for somez.

Claim 10: The expected value of‖vC‖2
2 is equal to∑

j uj .
Proof: For eachj ∈ C, the coordinatevj is a sum of

uj independent random variables uniformly distributed over
{−1, 1}. The claim follows by elementary analysis.

By Claim 10 we know that thereexists z such that
‖vC‖2 ≤

√∑
j uj ≤

P

j uj√
2l

. This implies that‖vC‖1 ≤
√

l ‖vC‖2 ≤
P

j uj√
2

. Therefore

‖v‖1 ≤ ‖vC‖1 + ‖vCc‖1

≤
∑

j uj√
2

+ dk′ −
∑

j

uj

= dk′ − (1 − 1/
√

2)
∑

j

uj

≤ dk′ − (1 − 1/
√

2) · 2ǫdk′

= dk′[1 − ǫ(2 −
√

2)]

III. LP DECODING

In this section we show that ifA is an adjacency matrix
of an expander graph, then the LP decoding procedure can
be used for recovering sparse approximations.

Let Φ be anm × n adjacency matrix of an unbalanced
(2k, ǫ)-expanderG with left degreed. Let α(ǫ) = (2ǫ)/(1−
2ǫ). We also defineE(X : Y ) = E ∩ (X ×Y ) to be the set
of edges between the setsX andY .

A. L1 Uncertainty Principle

In this section we show that any vector from the kernel of
a an adjacency matrixΦ of an expander graph is “smooth”;
i.e., theℓ1 norm of the vector cannot be concentrated on a

small subset of its coordinates. An analogous result for RIP-
2 matrices and with respect to theℓ2 norm has been used
before (e.g., in [KT07]) to show guarantees for LP-based
recovery procedures.

Lemma 11:Consider anyy ∈ R
n such thatΦy = 0, and

let S be any set ofk coordinates ofy. Then we have

‖yS‖1 ≤ α(ǫ)‖y‖1.
Proof: Without loss of generality, we can assume that

S consists of the largest (in magnitude) coefficients ofy. We
partition coordinates into setsS0, S1, S2, . . . St, such that (i)
the coordinates in the setSl are not larger (in magnitude)
than the coordinates in the setSl−1, l ≥ 1, and (ii) all sets
butSt have sizek. Therefore,S0 = S. LetΦ′ be a submatrix
of Φ containing rows fromN(S).

From the equivalence of expansion and RIP-1 property
we know that‖Φ′yS‖1 = ‖ΦyS‖1 ≥ d(1 − 2ǫ)‖yS‖1. At
the same time, we know that‖Φ′y‖1 = 0. Therefore

0 = ‖Φ′y‖1

≥ ‖Φ′yS‖1 −
∑

l≥1

∑

(i,j)∈E,i∈Sl,j∈N(S)

|yi|

≥ d(1 − 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : N(S))| min
i∈Sl−1

|yi|

≥ d(1 − 2ǫ)‖yS‖1 −
1

k

∑

l≥1

|E(Sl : N(S))| · ‖ySl−1
‖1

From the expansion properties ofG it follows that, for
l ≥ 1, we have|N(S ∪ Sl)| ≥ d(1 − ǫ)|S ∪ Sl|. It follows
that at mostdǫ2k edges can cross fromSl to N(S), and
therefore

0 ≥ d(1 − 2ǫ)‖yS‖1 −
1

k

∑

l≥1

|E(Sl : N(S))| · ‖ySl−1
‖1

≥ d(1 − 2ǫ)‖yS‖1 − dǫ2
∑

l≥1

‖ySl−1
‖1/k

≥ d(1 − 2ǫ)‖yS‖1 − 2dǫ‖y‖1

It follows that d(1 − 2ǫ)‖yS‖1 ≤ 2dǫ‖y‖1, and thus
‖yS‖1 ≤ (2ǫ)/(1 − 2ǫ)‖y‖1.

B. LP recovery

The following theorem provides recovery guarantees for
the programP1, by settingu = x andv = x∗.

Theorem 3 Consider any two vectorsu, v, such that for
y = v − u we haveΦy = 0, and ‖v‖1 ≤ ‖u‖1. Let S be
the set ofk largest (in magnitude) coefficients ofu, then

‖v − u‖1 ≤ 2/(1 − 2α(ǫ)) · ‖u − uS‖1

Proof: We have

‖u‖1 ≥ ‖v‖1 = ‖(u + y)S‖1 + ‖(u + y)Sc‖1

≥ ‖uS‖1 − ‖yS‖1 + ‖ySc‖1 − ‖uSc‖1

= ‖u‖1 − 2‖uSc‖1 + ‖y‖1 − 2‖yS‖1

≥ ‖u‖1 − 2‖uSc‖1 + (1 − 2α(ǫ))‖y‖1
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Fig. 4. Probability of correct signal recovery of a randomk-sparse signal
x ∈ {−1, 0, 1}n (left) andx ∈ {0, 1}n (right) as a function ofk = ρm
andm = δn, for n = 200. The probabilities were estimated by partitioning
the domain into40 × 40 data points and performing 50 independent trials
for each data point, using random sparse matrices withd = 8. The thick
curve demarcates a phase transition in the ability of LP decoding to find
the sparsest solution toGx∗ = Gx for G a Gaussian random matrix (see
[DT06]). The empirical behavior for binary sparse matrices isconsistent
with the analytic behavior for Gaussian random matrices.

where we used Lemma 11 in the last line. It follows that

2‖uSc‖1 ≥ (1 − 2α(ǫ))‖y‖1

Theorem 12:Consider any two vectorsu, v, such that for
y = v − u we have‖Φy‖1 = β ≥ 0, and‖v‖1 ≤ ‖u‖1. Let
S be the set ofk largest (in magnitude) coefficients ofu.
Then

‖v − uS‖1 ≤ 2/(1 − 2α(ǫ)) · ‖uSc‖1 +
2β

d(1 − 2ǫ)(1 − 2α)

Proof: Analogous to the proof of Theorem 3.

IV. EXPERIMENTAL RESULTS

Our theoretical analysis shows that, up to constant factors,
our scheme achieves the best known bounds for sparse
approximate recovery. In order to determine the exact values

of those constant factors, we show in Figure 4 the empirical
probability of correct recovery of a randomk-sparse signal
of dimension n = 200 as a function ofk = ρm and
m = δn. As one can verify, the empiricalO(·) constants
involved are quite low. The thick curve shows the analytic
computation of the phase transition between the survival of
typical l-faces of the cross-polytope (left) and the polytope
(right) under projection byG a Gaussian random matrix.
This line is equivalent to a phase transition in the ability of
LP decoding to find the sparsest solution toGx∗ = Gx, and,
in effect, is representative of the performance of Gaussian
matrices in this framework (see [Don06b] and [DT06] for
more details). Gaussian measurement matrices withm =
δn rows andn columns can recover signals with sparsity
k = ρm below the thick curve and cannot recover signals
with sparsity k above the curve. This figure thus shows
that the empirical behavior of binary sparse matrices with
LP decoding is consistent with the analytic performance
of Gaussian random matrices. Furthermore, the empirical
values of the asymptotic constants seem to agree. See [BI08]
for further experimental data.

V. CONCLUSION

We show in this paper that the geometric and the com-
binatorial approaches to sparse signal recovery are differ-
ent manifestations of a common underyling phenomenon.
Thus, we are able to show a unified perspective on both
approaches—the key unifiying elements are the adjacency
matrices of unbalanced expanders.

In most of the recent applications ofcompressed sensing,
a physical device instantiates the measurement ofx and, as
such, these applications need measurement matrices which
are conducive to physical measurement processes. This
paper shows that there is another, quite different, large,
natural class of measurement matrices, combined with the
same (or similar) recovery algorithms for sparse signal
approximation. These measurement matrices may or may not
be conducive to physical measurement processes but they are
quite amenable to computational or digital signal measure-
ment. Our work suggests a number of applications in digital
or computational “sensing” such as efficient numerical linear
algebra and network coding.

The preliminary experimental analysis exhibits interesting
high-dimensional geometric phenomena as well. Our results
suggest that the projection of polytopes under Gaussian
random matrices is similar to that of projection by sparse
random matrices, despite the fact that Gaussian random
matrices are quite different from sparse ones.
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