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Abstract

Topic models, such as latent Dirichlet allocation (LDA), have been an ef-
fective tool for the statistical analysis of document collections and other
discrete data. The LDA model assumes that the words of each document
arise from a mixture oftopics, each of which is a distribution over the vo-
cabulary. A limitation of LDA is the inability to model topic correlation
even though, for example, a document about sports is more likely to also
be about health than international finance. This limitation stems from the
use of the Dirichlet distribution to model the variability among the topic
proportions. In this paper we develop the correlated topic model (CTM),
where the topic proportions exhibit correlation via the logistic normal
distribution [1]. We derive a mean-field variational inference algorithm
for approximate posterior inference in this model, which is complicated
by the fact that the logistic normal is not conjugate to the multinomial.
The CTM gives a better fit than LDA on a collection of OCRed articles
from the journalScience. Furthermore, the CTM provides a natural way
of visualizing and exploring this and other unstructured data sets.

1 Introduction

The availability and use of unstructured historical collections of documents is rapidly grow-
ing. As one example, JSTOR (www.jstor.org ) is a not-for-profit organization that main-
tains a large online scholarly journal archive obtained by running an optical character recog-
nition (OCR) engine over the original printed journals. JSTOR indexes the resulting text
and provides online access to the scanned images of the original content through keyword
search. This provides an extremely useful service to the scholarly community, with the
collection comprising nearly three million published articles in a variety of fields.

The sheer volume of this unstructured and noisy archive naturally suggests opportunities for
the effective use of statistical modeling. For instance, a scholar in a narrow subdiscipline,
searching for a particular research article, would certainly be interested to learn that the
topic of that article is highly correlated with another topic that the researcher may not have
known about and that is not explicitly contained in the article. Alerted to the existence of
this new related topic, the researcher could browse the collection in a topic-guided manner
to begin to investigate connections to a previously unrecognized body of work. Since the
archive comprises millions of articles spanning centuries of scholarly work, automated
analysis is essential.

Several statistical models have recently been developed for automatically extracting the



topical structure of large document collections. In technical terms, a topic model is a
generative probabilistic model that uses a small number of distributions over a vocabulary
to describe a document collection. When fit from data, these distributions often correspond
to intuitive notions of topicality. In this work, we build upon the latent Dirichlet allocation
(LDA) [3] model. LDA assumes that the words of each document arise from a mixture
of topics. The topics are shared by all documents in the collection; the topic proportions
are document-specific and randomly drawn from a Dirichlet distribution. LDA allows each
document to exhibit multiple topics with different proportions, and it can thus capture the
heterogeneity in grouped data which exhibit multiple latent patterns. Recent work has
used LDA as a module in more complicated document models [8, 10, 6], and in a variety of
settings such as image processing [11], collaborative filtering [7], disability survey data [4],
population genetics [9], and the modeling of sequential data and user profiles [5].

Our goal in this paper is to address a limitation of the topic models proposed to date: they
fail to directly model correlation between topics. In many—indeed most—text corpora, it
is natural to expect that subsets of the underlying latent topics will be highly correlated. In
a corpus of scientific articles, for instance, an article about genetics may be likely to also
be about health and disease, but unlikely to also be about x-ray astronomy. For the LDA
model, this limitation stems from the independence assumptions implicit in the Dirichlet
distribution on the topic proportions. Under a Dirichlet, the components of the proportions
vector are nearly independent; this leads to the strong and unrealistic modeling assumption
that the presence of one topic is not correlated with the presence of another.

In this paper we present thecorrelated topic model(CTM). The CTM uses an alterna-
tive, more flexible distribution for the topic proportions that allows for covariance structure
among the components. This gives a more realistic model of latent topic structure where
the presence of one latent topic may be correlated with the presence of another. In the
following sections we develop the technical aspects of this model, and then demonstrate its
potential for the applications envisioned above. We fit the model to a portion of the JSTOR
archive of the journalScience. We demonstrate that the model gives a better fit than LDA,
as measured by the accuracy of the predictive distributions over held out documents. Fur-
thermore, we demonstrate qualitatively that the correlated topic model provides a natural
way of visualizing and exploring such an unstructured collection of textual data.

2 The Correlated Topic Model

The key to the correlated topic model we propose is the logistic normal distribution [1]. The
logistic normal is a distribution on the simplex that allows for a general pattern of variability
between the components by transforming a multivariate normal random variable. Consider
thenatural parameterizationof aK-dimensional multinomial distribution:

p(z | η) = exp{ηT z − a(η)}. (1)

The random variableZ can take onK values; it is represented by aK-vector with one
component equal to one to denote a value in{1, . . . ,K}. The cumulant generating function
is:

a(η) = log
(∑K

i=1 exp{ηi}
)

. (2)

The mapping between the mean parameterization (i.e., the simplex) and the natural param-
eterization is:

ηi = log θi/θK . (3)
Notice that this is not the minimal exponential family representation of the multinomial
because multiple values ofη can yield the same mean parameter.

The logistic normal distribution assumes thatη is normally distributed and then mapped
to the simplex with the inverse of Eq. 3, that is,f(ηi) = exp ηi/

∑
j exp ηj . It describes
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Figure 1: Top: Graphical model representation of the correlated topic model. The logistic
normal distribution, used to model the latent topic proportions of a document, can represent
correlations between topics that are impossible to capture using a single Dirichlet. Bottom:
Example densities of the logistic normal on the 2-simplex. From left: diagonal covariance
and nonzero-mean, negative correlation between components 1 and 2, positive correlation
between components 1 and 2.

correlations between components of the simplicial random variable through the covariance
matrix of the normal distribution. The logistic normal was originally studied in the context
of analyzing observed compositional data such as the proportions of minerals in geological
samples. In this work, we extend its use to a hierarchical model where it describes the
latentcomposition of topics associated with each document.

Let {µ,Σ} be aK-dimensional mean and covariance matrix, and let topicsβ1:K be K
multinomials over a fixed word vocabulary. The correlated topic model assumes that an
N -word document arises from the following generative process:

1. Drawη | {µ,Σ} ∼ N (µ,Σ).
2. Forn ∈ {1, . . . , N}:

(a) Draw topic assignmentZn | η from Mult(f(η)).
(b) Draw wordWn | {zn, β1:K} from Mult(βzn

).

This process is identical to the generative process of LDA except that the topic proportions
are drawn from a logistic normal rather than a Dirichlet. The model is shown as a directed
graphical model in Figure 1.

The CTM is more expressive than LDA. The strong independence assumption imposed
by the Dirichlet in LDA is not realistic when analyzing document collections, where one
may find strong correlations between topics. The covariance matrix of the logistic normal
in the CTM is introduced to model such correlations. In Section 3, we illustrate how the
higher order structure given by the covariance can be used as an exploratory tool for better
understanding and navigating a large corpus of documents. Moreover, modeling correlation
can lead to better predictive distributions. In some settings, such as collaborative filtering,
the goal is to predict unseen items conditional on a set of observations. An LDA model
will predict words based on the latent topics that the observations suggest, but the CTM
has the ability to predict items associated withadditionaltopics that are correlated with the
conditionally probable topics.



2.1 Posterior inference and parameter estimation

Posterior inference is the central challenge to using the CTM. The posterior distribution of
the latent variables conditional on a document,p(η, z1:N |w1:N ), is intractable to compute;
once conditioned on some observations, the topic assignmentsz1:N and log proportions
η are dependent. We make use of mean-field variational methods to efficiently obtain an
approximation of this posterior distribution.

In brief, the strategy employed by mean-field variational methods is to form a factorized
distribution of the latent variables, parameterized by free variables which are called the vari-
ational parameters. These parameters are fit so that the Kullback-Leibler (KL) divergence
between the approximate and true posterior is small. For many problems this optimization
problem is computationally manageable, while standard methods, such as Markov Chain
Monte Carlo, are impractical. The tradeoff is that variational methods do not come with
the same theoretical guarantees as simulation methods. See [12] for a modern review of
variational methods for statistical inference.

In graphical models composed of conjugate-exponential family pairs and mixtures, the
variational inference algorithm can be automatically derived from general principles [2,
13]. In the CTM, however, the logistic normal isnot conjugate to the multinomial. We
will therefore derive a variational inference algorithm by taking into account the special
structure and distributions used by our model.

We begin by using Jensen’s inequality to bound the log probability of a document:

log p(w1:N |µ,Σ, β) ≥ (4)

Eq [log p(η |µ,Σ)] +
∑N

n=1 Eq [log p(zn | η)] + Eq [log p(wn | zn, β)] + H (q) ,

where the expectation is taken with respect to a variational distribution of the latent vari-
ables, and H(q) denotes the entropy of that distribution. We use a factorized distribution:

q(η1:K , z1:N |λ1:K , ν2
1:K , φ1:N ) =

∏K
i=1 q(ηi |λi, ν

2
i )

∏N
n=1 q(zn |φn). (5)

The variational distributions of the discrete variablesz1:N are specified by theK-
dimensional multinomial parametersφ1:N . The variational distribution of the continuous
variablesη1:K areK independent univariate Gaussians{λi, νi}. Since the variational pa-
rameters are fit using asingleobserved documentw1:N , there is no advantage in introduc-
ing a non-diagonal variational covariance matrix.

The nonconjugacy of the logistic normal leads to difficulty in computing the expected log
probability of a topic assignment:

Eq [log p(zn | η)] = Eq

[
ηT zn

]
− Eq

[
log(

∑K
i=1 exp{ηi})

]
. (6)

To preserve the upper bound on the log probability, we lower bound the negative log nor-
malizer with a Taylor expansion:

Eq

[
log

(∑K
i=1 exp{ηi}

)]
≤ ζ−1(

∑K
i=1 Eq [exp{ηi}])− 1 + log(ζ), (7)

where we have introduced a new variational parameterζ. The expectation Eq [exp{ηi}] is
the mean of a log normal distribution with mean and variance obtained from the variational
parameters{λi, ν

2
i }: Eq [exp{ηi}] = exp{λi + ν2

i /2} for i ∈ {1, . . . ,K}.
Given a model{β1:K , µ,Σ} and a documentw1:N , the variational inference algorithm op-
timizes Eq. 4 with respect to the variational parameters{λ1:K , ν1:K , φ1:N , ζ}. We use
coordinate ascent, repeatedly optimizing with respect to each parameter while holding the
others fixed. In variational inference for LDA, each coordinate can be optimized analyti-
cally. However, iterative methods are required for the CTM when optimizing forλi andν2

i .
The details are given in Appendix A.
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Figure 2: A portion of the topic graph learned from 15,744 OCR articles fromScience.
Each node represents a topic, and is labeled with the five most probable words from its
distribution; edges are labeled with the correlation between topics.

Given a collection of documents, we carry out parameter estimation in the correlated topic
model by attempting to maximize the likelihood of a corpus of documents as a function
of the topicsβ1:K and the multivariate Gaussian(µ,Σ). We use variational expectation-
maximization (EM), where we maximize the bound on the log probability of a collection
given by summing Eq. 4 over the documents.

In the E-step, we maximize the bound with respect to the variational parameters by per-
forming variational inference for each document. In the M-step, we maximize the bound
with respect to the model parameters. This is maximum likelihood estimation of the top-
ics and multivariate Gaussian using expected sufficient statistics, where the expectation
is taken with respect to the variational distributions computed in the E-step. The E-step
and M-step are repeated until the bound on the likelihood converges. In the experiments
reported below, we run variational inference until the relative change in the probability
bound of Eq. 4 is less than 0.0001%, and run variational EM until the relative change in the
likelihood bound is less than 0.001%.

3 Examples and Empirical Results: ModelingScience

In order to test and illustrate the correlated topic model, we estimated a 100-topic CTM
on 15,744Sciencearticles spanning 1971 to 1998. We constructed a graph of the la-
tent topics and the connections among them by examining the most probable words from
each topic and the between-topic correlations. Part of this graph is illustrated in Fig-
ure 2. In this subgraph, there are three densely connected collections of topics: material
science, geology, and cell biology. Furthermore, an estimated CTM can be used to ex-
plore otherwise unstructured observed documents. In Figure 4, we list articles which are
assigned to the cognitive science topic and articles which are assigned to both the cog-
nitive science and visual neuroscience topics. The interested reader is invited to visit
http://www.cs.cmu.edu/˜lemur/science/ to interactively explore this model, in-
cluding the topics, their connections, and the articles that exhibit them.

We compared the CTM to LDA by fitting a smaller collection of articles to models of
varying numbers of topics. This collection contains the 1,452 documents from 1960; we
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Figure 3: (L) The average held-out probability; CTM supports more topics than LDA. See
figure at right for the standard error of the difference. (R) The log odds ratio of the held-out
probability. Positive numbers indicate a better fit by the correlated topic model.

used a vocabulary of 5,612 words after pruning common function words and terms which
occur once in the collection. We split the data into ten groups; for each group we computed
the log probability of the held-out data given a model estimated from the remaining groups.
A better model of the document collection will assign higher probability to the held out
group. To avoid comparing bounds, we used importance sampling to compute the log
probability of a document where the fitted variational distribution is the proposal.

Figure 3 illustrates the average held out log probability for each model and the average
difference between them. The CTM provides a better fit than LDA and supports more
topics; the likelihood for LDA peaks near 30 topics while the likelihood for the CTM peaks
close to 90 topics. The means and standard errors of thedifferencein log-likelihood of the
models is shown at right; this indicates that the CTM always gives a better fit.

Another quantitative evaluation of the relative strengths of LDA and the CTM is how well
the models predict the remaining words after observing a portion of the document. Sup-
pose we observe wordsw1:P from a document and are interested in which model provides
a better predictive distributionp(w |w1:P ) of the remaining words. To compare these dis-
tributions, we useperplexity, which can be thought of as the effective number of equally
likely words according to the model. Mathematically, the perplexity of a word distribu-
tion is defined as the inverse of the geometric per-word average of the probability of the
observations. Note that lower numbers denote more predictive power.

The plot in Figure 4 compares LDA and the CTM in terms of predictive perplexity. When
only a small number of words have been observed, the uncertainty about the remaining
words under the CTM is much less than under LDA—the perplexity is reduced by nearly
200 words, or roughly 10%. The reason is that after seeing a few words in one topic, the
CTM uses topic correlation to infer that words in a related topic may also be probable.
In contrast, LDA cannot predict the remaining words as well until a large portion of the
document as been observed so that all of its topics are represented.
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Figure 4: (Left) Exploring a collection through its topics. (Right) Predictive perplexity for
partially observed held-out documents from the 1960Sciencecorpus.
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A Variational Inference

We describe a coordinate ascent optimization algorithm for the likelihood bound in Eq. 4
with respect to the variational parameters.

The first term of Eq. 4 is:

Eq [log p(η |µ,Σ)] = (1/2) log |Σ−1| − (K/2) log 2π− (1/2)Eq

[
(η − µ)T Σ−1(η − µ)

]
,

(8)
where

Eq

[
(η − µ)T Σ−1(η − µ)

]
= ν2T diag(Σ−1) + (λ− µ)T Σ−1(λ− µ). (9)

The second term of Eq. 4, using the additional bound in Eq. 7, is:

Eq [log p(zn | η)] =
∑K

i=1 λiφn,i − ζ−1
(∑K

i=1 exp{λi + ν2
i /2}

)
+ 1− log ζ. (10)

The third term of Eq. 4 is:

Eq [log p(wn | zn, β)] =
∑K

i=1 φn,i log βi,wn
. (11)

Finally, the fourth term is the entropy of the variational distribution:∑K
i=1

1
2 (log ν2

i + log 2π + 1)−
∑N

n=1

∑k
i=1 φn,i log φn,i. (12)

We maximize the bound in Eq. 4 with respect to the variational parametersλ1:K , ν1:K ,
φ1:N , andζ. We use a coordinate ascent algorithm, iteratively maximizing the bound with
respect to each parameter.

First, we maximize Eq. 4 with respect toζ, using the second bound in Eq. 7. The derivative
with respect toζ is:

f ′(ζ) = N
(
ζ−2

(∑K
i=1 exp{λi + ν2

i /2}
)
− ζ−1

)
, (13)

which has a maximum at:
ζ̂ =

∑K
i=1 exp{λi + ν2

i /2}. (14)

Second, we maximize with respect toφn. This yields a maximum at:

φ̂n,i ∝ exp{λi}βi,wn , i ∈ {1, . . . ,K}. (15)

Third, we maximize with respect toλi. Eq. 4 is not amenable to analytic maximization.
We use the conjugate gradient algorithm with derivative

dL/dλ = −Σ−1(λ− µ) +
∑N

n=1 φn,1:K − (N/ζ) exp{λ + ν2/2} (16)

Finally, we maximize with respect toν2
i . Again, there is no analytic solution. We use

Newton’s method for each coordinate, constrained such thatνi > 0:

dL/dν2
i = −Σ−1

ii /2−N/2ζ exp{λ + ν2
i /2}+ 1/(2ν2

i ). (17)

Iterating between these optimizations defines a coordinate ascent algorithm on Eq. 4.


