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ABSTRACT

We propose a novel non-parametric technique for source localiza-
tion with passive sensor arrays. Our approach involves formula-
tion of the problem in a variational framework where regulariz-
ing sparsity constraints are incorporated to achieve superresolu-
tion and noise suppression. Compared to various source local-
ization schemes, our approach offers increased resolution, signif-
icantly reduced sidelobes, and improved robustness to limitations
in data quality and quantity. We demonstrate the effectiveness of
the method on simulated data.

1. INTRODUCTION

Source localization using sensor arrays has been an active research
area, playing a fundamental role in many applications involving
electromagnetic, acoustic, and seismic sensing. A basic source lo-
calization problem is that of direction-of-arrival (DOA) estimation,
which we focus on in this paper. Conventional beamformers for
DOA estimation have a limited resolution, and this has led to the
development and successful application of more advanced tech-
niques. Examples are Capon’s minimum variance method [1], and
a variety of superresolution methods based on eigenvalue decom-
position, such as MUSIC [2]. Such methods exploit the presence
of a small number of sources in order to focus the estimated signal
energy towards the source DOAs to achieve superresolution.

We propose a different perspective for exploiting such struc-
ture to achieve superresolution DOA estimation. We formulate
the problem in a variational framework, where we minimize a
regularized objective function for finding an estimate of the sig-
nal energy as a function of angle. The key is to use appropriate
non-quadratic regularizing functionals (such as�p-norms), which
lead to sparsity constraints (analogous to assuming a small num-
ber of sources) and superresolution. Variational methods based
on such constraints have recently found application in various do-
mains such as image restoration [3], computed tomography [4],
and radar imaging [5]. Our work extends the use of such sparse
signal reconstruction methods to DOA estimation. In the literature,
there exist some recent ideas in a similar direction to ours. In [6],
a high-resolution Cauchy-Gaussian spectral analysis method has
been proposed and its application in array signal processing has
been suggested. In [7], the link between optimization theoretic
sparse solution methods and the MUSIC algorithm has been in-
vestigated.
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We formulate an optimization problem for this task and pro-
pose a computationally efficient numerical method for its solution.
Our experimental analysis on simulated data demonstrates that the
proposed technique offers increased resolution, reduced sidelobe
levels, and robustness to noise and limitations in data quantity, as
compared to methods such as MUSIC. Furthermore, the proposed
method can readily handle coherent signal sources.

2. OBSERVATION MODEL

In this paper, we consider narrowband source signals in the far-
field impinging upon an array ofM omnidirectional sensors. Let
{θ1, ..., θNθ} be a sampling grid of all directions of arrival. Then
we can represent complex amplitudes of the signal field at thet-
th time sample by anNθ × 1 vectors(t), where thei-th element
si(t) of s(t) is non-zero only if there is a source at directionθi.
This leads to the following observation model:

y(t) = As(t) + n(t) (1)

where theM × 1 vectorsn(t) andy(t) denote the measurement
noise and the data collected at the sensors at timet, and theM ×
Nθ matrix A is composed of steering vectors corresponding to
each potential DOA. Note thatA differs from the steering matrix
representation used in many array processing methods in the sense
that it contains steering vectors forall potential DOAs, rather than
only the (unknown) source signal DOAs. Hence, in our framework
A is known and does not depend on the actual source locations.
The reason behind using such a redundant-looking representation
is our desire to formulate the problem in a sparse signal reconstruc-
tion framework. This can also be viewed as representing the ob-
servations as combination of elements from an overcomplete sig-
nal dictionary, as in adaptive signal representation methods such
as basis pursuit [8].

3. SOURCE LOCALIZATION SCHEME

3.1. Overview

As in numerous non-parametric source localization techniques, our
approach consists of forming an estimate of the signal energy as a
function of angle, which ideally contains dominant peaks at source
DOAs. We need to obtain such an estimate of the signal fields
(hence its energy) through the sensor observationsy, which is in
general an ill-posed inverse problem. The central idea in our ap-
proach is to solve this inverse problem via regularizing it by fa-
voring sparse signal fields, where energy is concentrated around a
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small number of DOAs. In particular, we finds as the minimizer
of an objective function of the following form:1

J(s) = J1(s) + αJ2(s) (2)

whereJ1(s) is an�2-norm-based data fidelity term,J2(s) reflects
the regularizing sparsity constraint we would like to impose, and
α is a scalar parameter. Choice ofJ2(s) is critical for attaining the
objectives of superresolution and noise suppression. In sparse sig-
nal reconstruction problems such as nuclear magnetic resonance
(NMR) spectroscopy [9] and astronomical imaging [10], similar
objectives have previously been achieved by using maximum en-
tropy methods. These approaches provide reconstructions with
good energy concentration (i.e. most elements are small and a
few are very large). It has been shown that similar behavior can be
obtained using minimum�1-norm reconstruction [11]. In spectral
analysis,�p-norm constraints, wherep < 2, have been shown to
result in higher resolution spectral estimates compared to the�2-
norm case (which is proportional to the periodogram) [12]. Based
on these observations, we chooseJ2(s) based on�p-norms where
p < 2. Use of other non-quadratic functions is also possible.

We present two versions of an objective functionJ(s) which
differ in the way they combine observations temporally. The first
version formulates an optimization problem at each time instant:

J(s(t)) = ‖y(t) − As(t)‖2
2 + α‖s(t)‖p

p (3)

where‖ ·‖p denotes the�p-norm. The optimization problem in (3)
produces a signal field reconstruction at a single time point. Indi-
vidual reconstructions at various time points can then be combined
to yield a signal energy estimate as a function of DOA. There
are two disadvantages of this approach. First, the computational
load of multiple optimizations is high. Second, since observations
at different times are processed separately, the resulting estimates
may not be robust to high noise levels. The second version ofJ(s)
combines the temporal data prior to processing to define a single
optimization problem:

J(s̄) =
1

T

 
TX

t=1

‖y(t) −As̄‖2
2

!
+ α‖s̄‖p

p (4)

Here we usēs to emphasize that this signal field represents an ag-
gregate estimate over time. Note that defining the problem as in (4)
makes sense only if the complex envelopes of the source signals
are non-zero-mean signals. This is the case, e.g. when the source
signals are sinusoids with some variation around the amplitudes.

3.2. Numerical Solution

We outline the solution of the optimization problem in (4). Solu-
tion of (3) is similar as we will point out at the end of this section.
In order to avoid problems due to non-differentiability of the�p-
norm around the origin whenp ≤ 1, we use the following smooth
approximation to the�p-norm in (4) [3]:

‖z‖p
p ≈

KX
i=1

(|zi|2 + ε)p/2 (5)

1Note that we suppress the time dependence here, which we will ad-
dress later in this section.

whereε ≥ 0 is a small constant,K is the length of the complex
vectorz, andzi denotes itsi-th element. For numerical purposes,
we thus use the following slightly modified cost function:

Jε(s̄) =
1

T

 
TX

t=1

‖y(t) − As̄‖2
2

!
+ α

NθX
i=1

(|s̄i|2 + ε)p/2 (6)

Note thatJε(s̄) → J(s̄) asε → 0. The minimization ofJ (̄s) or
Jε(s̄) does not yield a closed-form solution in general, so numeri-
cal optimization techniques must be used.

For solution of this optimization problem, we use the half-
quadratic regularization method of [13]. Half-quadratic regulariza-
tion converts a non-quadratic optimization problem into a series of
quadratic problems. We skip the derivations here and present the
resulting iterative algorithm:

H
�
ˆ̄s
(n)
�

ˆ̄s
(n+1)

=
1

T

 
TX

t=1

AHy(t)

!
(7)

wheren denotes the iteration number, and:

H(z) , AHA + αΛ(z) (8)

Λ(z) , diag

�
p/2

(|zi|2 + ε)1−p/2

�

where diag{·} is a diagonal matrix whosei-th diagonal element is
given by the expression inside the brackets. We run the iteration

(7) until ‖ˆ̄s(n+1)−ˆ̄s(n)‖2
2

‖ˆ̄s(n)‖2
2

< δ, whereδ > 0 is a small constant.

Compared to standard optimization tools, the above scheme yields
an efficient method matched to the structure of our optimization
problem. Convergence properties of algorithms of this type have
been analyzed, and convergence from any initialization to a local
minimum is guaranteed [4, 14]. Note that a solution to (3) could
similarly be obtained by the following iteration:

H
�
ŝ(n)(t)

�
ŝ(n+1)(t) = AHy(t). (9)

4. SIMULATION RESULTS

We consider a uniform linear array ofM = 8 sensors separated
by half awavelength of the actual narrowband source signals. We
consider two narrowband signals in the far-field impinging upon
this array. The total number of snapshots isT = 200. We use
the objective function in (4) in our experiments. We first con-
sider uncorrelated sources, and present plots of signal power ver-
sus DOA produced by various techniques. In these experiments,
we usep = 0.1 in our technique. We define the signal-to-noise
ratio (SNR) as the ratio of the signal power to the noise power at
the sensors. Figure 1 shows the case when the two sources have
a wide separation. In this case all methods considered can resolve
the two sources. However, the proposed method exhibits the best
sidelobe suppression. Next, we consider the case when the two
sources lie within a Rayleigh resolution cell. Figure 2 contains
results for various SNRs. These plots demonstrate the relatively
superior robustness of the proposed method to high levels of noise.
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Fig. 1. Spatial spectra of two sources with DOAs of50◦ and120◦

(SNR = 10 dB). Broadside corresponds to90◦.

Figure 3 illustrates source localization results where the two
sources are coherent. Note that Capon’s method and MUSIC,
which were able to resolveuncorrelated sources with this level
of separation and SNR, fail in the coherent case, whereas the pro-
posed method is still able to resolve the two sources.

The examples so far were based on single trials. Now we char-
acterize the performance of the proposed method (for localizing
uncorrelated sources) over 200 independent trials, as a function
of SNR and the number of snapshots. We consider two perfor-
mance metrics. The first one is the probability of detecting the
two sources with1◦ accuracy. The second one is the root-mean-
squared-error (in angles) in locating the sources. The two mea-
sures convey very similar information, and the experimental re-
sults are very similar, so we present only the probability of detec-
tion results here. Figure 4(a) presents results for the case when
the sources are separated by15◦. This plot shows that the pro-
posed method has a significantly better performance than Capon’s
method and MUSIC at low SNR values. Next we consider the case
when the separation is reduced to10◦. The plot in Figure 4(b)
shows a potential weakness of the proposed approach. When the
sources are too close, the proposed method may cause some bias
in localization. This bias causes the relative performance of the
proposed method to be worse than the other techniques at high
SNRs. Such shifts in peak locations have previously been noted
for �p-norm-based methods such as basis pursuit in the context of
spectral estimation [8]. Gaining a better understanding and reso-
lution of such issues is a matter of our current research. Figure 5
shows the probability of detection performance as a function of the
number of snapshots used. These plots demonstrate the robustness
of the proposed method to reduced amounts of data.

5. CURRENT WORK

Our current work involves the examination and extension of vari-
ous aspects of our approach. An important issue in our method is
the selection of the parametersp andα, which we have so far done
manually based on subjective qualitative assessment. Developing
techniques for automatic choice of these parameters is of interest.
Another issue worth investigation is the bias in source locations
that the algorithm may sometimes cause. Extensions of the tech-
nique to cases involving non-linear array configurations, near-field
sources and broadband signals are subjects of our current work.
We are also interested in developing extensions of our variational
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Fig. 2. Spatial spectra of two sources with DOAs of50◦ and60◦.
(a) SNR = 20 dB. (b) SNR = 10 dB. (c) SNR = 5 dB.

framework to take into account uncertainties in sensor locations.

6. CONCLUSIONS

We have approached the source localization problem with a sparse
signal reconstruction perspective. We have developed and demon-
strated the viability of a non-parametric superresolution source
localization method in a variational framework, using�p-norm-
based functionals as regularizing constraints. The approach ef-
fectively deals with difficulties such as sidelobes and coherency
in signals, and improves upon the source localization accuracy of
currently used methods, especially in low-SNR and limited-data
scenarios. Our framework is generalizable to more general source
localization problems than that considered in this paper.
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Fig. 3. Spatial spectra of two coherent sources with DOAs of50◦

and60◦ (SNR = 20 dB).
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Fig. 4. Probability of correct detection for two sources as a func-
tion of SNR. (a) DOAs:50◦ and65◦. (b) DOAs:50◦ and60◦.
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