
18.325: Finite Random Matrix Theory

Volumes and Integration

Professor Alan Edelman

Handout #4, Tuesday, March 1, 2005

We discussed matrix Jacobians in Handout #3. We now use these tools to integrate over special surfaces
and compute their volume. This will turn out to be useful when we encounter random matrices. Additional
details on some this subject matter may be found in Muirhead’s excellent book[1] and the references therein
.

1 Integration Using Differential Forms

One nice property of our differential form notation is that if y = y(x) is some function from (a subset of)
R

n to R
n, then the formula for changing the volume element is built into the identity

∫

y(S)

f(y)dy1 ∧ . . . ∧ dyn =

∫

S

f(y(x))dx1 ∧ . . . ∧ dxn,

because as we saw in Handout #3, the Jacobian emerges when we write the exterior product of the dy’s in
terms of the dx’s.

We will only concern ourselves with integration of n-forms on manifolds of dimension n. In fact, most
of our manifolds will be flat (subsets of R

n), or surfaces only slightly more complicated than spheres. For
example, the Stiefel manifold Vm,n of n by p orthogonal matrices Q (QTQ = Im) which we shall introduce
shortly. Exterior products will give us the correct volume element for integration.

If the xi are Cartesian coordinates in n-dimensional Euclidean space, then (dx) ≡ dx1 ∧ dx2 ∧ . . . dxn is
the correct volume element. For simplicity, this may be written as dx1dx2 . . . dxn so as to correspond to the
Lebesgue measure. Let qi be the ith component of a unit vector q ∈ R

n. Evidently, n parameters is one too
many for specifying points on the sphere. Unless qn = 0, we may use q1 through qn−1 as local coordinates
on the sphere, and then dqn may be thought of as a linear combination of the dqi for i < n. (

∑

i qidqi = 0
because qTq = 1). However, the Cartesian volume element dq1dq2 . . .dqn−1 is not correct for integrating
functions on the sphere. It is as if we took a map of the Earth and used Latitude and Longitude as Cartesian
coordinates, and then tried to make some presumption about the size of Greenland1.

Integration:
∫

x∈S
f(x)(dx) or

∫

S
f(dx) and other related expressions will denote the “ordinary” integral over a region

S ∈ R.

Example.
∫

Rn exp(−||x||2/2)(dx) = (2π)n/2 and similarly
∫

Rn,n exp(−||x||2F /2)(dA) = (2π)n2/2. ||A||2F =
tr(ATA) =

∑

i,j a2
ij = “Frobenius norm” of A squared.

If an object has n parameters, the correct differential form for the volume element is an n-form. What
about x ∈ Sn−1, i.e., {x ∈ R

n : ||x|| = 1}?
∧

i=1 dxi = (dx)∧ = 0. We have
∑

x2
i = 1 ⇒

∑

xidxi = 0 ⇒
dxn = − 1

xn
(x1dx1 + · · ·+ xn−1dxn−1). Whatever the correct volume element for a sphere is, it is not (dx).

As an example, we revisit spherical coordinates in the next section.

1I do not think that I have ever seen a map of the Earth that uses Latitude and Longitude as Cartesian coordinates. The
most familiar map, the Mercator map, takes a stereographic projection of the Earth onto the (complex) plane, and then takes
the image of the entire plane into an infinite strip by taking the complex logarithm.
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2 Plucker Coordinates and Volume Measurement

Let F ∈ R
n,p. We might think of the columns of F as the edges of a parallelopiped. By defining Pl(F )

(“Plucker(F )”), we can obtain simple formulas for volumes.

Definition 1. Pl(F ) is the vector of p × p subdeterminants of F written in natural order.

p = 2 :







f11 f12

...
...

fn1 fn2







Pl−→







f11f22 − f21f12

...
fn−1,1fn,2 − fn,1fn−1,2







p = 3 :















f11 f12 f13

...

fn1 fn2 fn3















Pl−→























f11 f12 f13

f21 f22 f23

f31 f32 f33

...
fn−2,1 fn−2,2 fn−2,3

fn−1,1 fn−1,2 fn−1,3

fn,1 fn,2 fn,3























p general : F = (fij)1≤i≤n
1≤j≤p

Pl−→



det (fij)i=i1,...,ip

j=1,...,p





i1<...<ip

Definition 2. Let vol(F ) denote the volume of the parallelopiped {Fx : 0 ≤ xi ≤ 1}, i.e., the volume of the
parallelopiped with edges equal to the columns of F .

Theorem 1. vol(F ) =
∏p

i=1 σi = det(FTF )1/2 =
∏p

i=1 rii = ‖Pl(F )‖, where the σi are the singular values
of F , and the rii are the diagonal elements of R in F = Y R, where Y ∈ R

n,p has orthonormal columns and
R is upper triangular.

Proof. Let F = UΣV T , where U ∈ R
n,p and V ∈ R

p,p has orthonormal columns. The matrix σ denotes
a box with edge sides σi so has volume

∏

σi. The volume is invariant under rotations. The other formulas
follow trivially except perhaps the last which follows from the Cauchy-Binet theorem taking A = FT and
B = F . �

Theorem 2. (Cauchy-Binet) Let C = AB be a matrix product of any kind. Let M
( i1...ip

j1...jp

)

denote the p× p
minor

det(Mikjl
)1≤k≤p,1≤l≤p.

In other words, it is the determinant of the submatrix of M formed from rows i1, . . . , ip and columns j1, . . . , jp.

The Cauchy-Binet Theorem states that

C

(

i1, . . . , ip
k1, . . . , kp

)

=
∑

j1<j2<···<jp

A

(

i1, . . . , ip
j1, . . . , jp

)

B

(

j1, . . . , jp

k1, . . . , kp

)

.

Notice that when p = 1 this is the familiar formula for matrix multiplication. When all matrices are p × p,
then the formula states that

detC = detAdet B .

Corollary 3. Let F ∈ R
n,p have orthonormal columns, i.e., FTF = Ip. Let X ∈ R

n,p. If span(F ) =
span(X), then vol(X) = det(FTX) = Pl(F )T · Pl(X).

Theorem 4. Let F, V ∈ R
n,p be arbitrary. Then

Pl(F )T Pl(V ) = det(FTX) = | vol(F )| | vol(V )|
p
∏

i=1

cos θi ,

where θ1, . . . , θp are the principal angles between span(F ) and span(V ).
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Remark 1. If Sp is some p-dimensional surface it is convenient for F (i) to be a set of p orthonormal tangent
vectors on the surface at some point x(i) and V (i) to be any “little” parallelopiped on the surface.

If we decompose the surface into parallelopipeds we have

vol(Sp) ≈
∑

Pl(F (i))T Pl(V (i)) .

and
∫

f(x)d(surface) ≈
∑

f(x(i)) Pl(F (i))T Pl(V (i)) =
∑

f(x(i)) det((F (i))TV (i)) .

Mathematicians write the continuous limit of the above equation as

∫

f(x)d(surface) =

∫

f(x)(FTdx)∧ .

Notice that (F (x)Tdx)∧ formally computes Pl(F (x)). Indeed

(F (x)Tdx)∧ = Pl(F (x))T









...
dxi1 ∧ . . . ∧ dxip

...









i1<...<ip

.

III. Generalized dot products algebraically: Linear functions l(x) for x ∈ R
n may be written l(x) =

∑

fixi,
i.e., fTx.

The information that specifies the linear function is exactly the components of f .

Similarly, consider functions l(V ) for V ∈ R
n,p that have the form l(V ) = det(FTV ), where F ∈ R

n,p.
The reader should check how much information is needed to “know” l(V ) uniquely. (It is “less than”
all the elements of F .) In fact, if we define

Ei1i2...ip
= The n × p matrix consisting of columns i1, . . . , ip of the identity,

i.e., (E = eye(n); Ei,i2,...,ip
= E(:, [i1 . . . ip])) in pseudo-Matlab notation, then knowing l(Ei1,...,ip

)
for all i1 < . . . < ip is equivalent to knowing l everywhere. This information is precisely all p × p
subdeterminants of F , the Plucker coordinates.

IV. Generalized dot product geometrically. If F and V ∈ R
n,p we can generalize the familiar fTv =

‖f‖ ‖v‖ cosθ.

It becomes

Pl(F )T Pl(V ) = det(FTV ) = |vol(F )| |vol(V )|
p
∏

i=1

cos θi .

Here vol(M) denotes the volume of the parallelopiped that is the image of the unit cube under M (Box
with edges equal to columns of M). Everyone knows that there is an angle between any two vectors
in R

n. Less well known is that there are p principal angles between two p-dimensional hyperplanes in
R

n. The θi are principal angles between the two hyperplanes spanned by F and by V .

Easy special case: Suppose FTF = Ip and span(F ) = span(V ). In other words, the columns of F are
an orthonormal basis for the columns of V . In this case

det(FTV ) = vol(V ) .

Other formulas for vol(V ) which we mention for completeness is

vol(V ) =

p
∏

i=1

σi(V ) ,
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the product of the singular values of V . And

vol(V ) =

√

√

√

√

∑

i1<...<ip

V

(

1 . . . p
i1 . . . ip

)2

,

the sum of the p × p subdeterminants squared. In other words vol(V ) = ‖Plucker(V )‖.

1. Volume measuring function: (Volume element of Integration)

We now more explicitly consider V ∈ R
n,p as a parallelopiped generated by its columns. For general

F ∈ R
n,p, det(FTV ) may be thought of as a “skewed” volume.

We now carefully interpret
∧p

i=1(F
Tdx)i, where F ∈ R

n,p and dx = (dx1dx2 . . .dxn)T . We remind the
reader that (FTdx)i =

∑n
j=1 Fjidxj .

By
∧p

i=1(F
Tdx)i we are thinking of the linear map that takes V ∈ R

n,p to the scalar det(FTV ). In our
mind we imagine the following assumptions

• We have some p-dimensional surface Sp in R
n.

• At some point P on Sp, the columns of X ∈ R
n,p are tangent to Sp. We think of X as generating a

little parallelopiped on the surface of Sp.

• We imagine the columns of F are an orthonormal basis for the tangents to Sp at P .

• Then
∧p

i=1(F
Tdx)i = (FT dx)∧ is a function that replaces parallelopipeds on Sp with its Euclidean

volume.

Now we can do “the calculus thing.” Suppose we want to compute

I =

∫

Sp

f(x)d(surface) ,

the integral of some scalar function f on the surface Sp.

We discretize by circumscribing the surface with little parallelopipeds that we specify by using the matrix
V (i) ∈ R

n,p. The word circumscribing indicates that the p columns of V (i) are tangent (or reasonably close
to tangent) at x(i).

Let F (i) be an orthonormal basis for the tangents at x(i). Then I is discretized by

I ≈
∑

i

f(x(i)) det(F (i)T
V (i))

We then use the notation

I =

∫

Sp

f(x)

p
∧

i=1

(FTdx)i =

∫

Sp

f(x)(FT dx)∧

to indicate this continuous limit. Here f is a function of x.

The notation does not require that F be orthonormal or tangent vectors. These conditions guarantee
that you get the correct Euclidean volume. Let them go and you obtain some warped or weighted volume.
Linear combinations are allowed too.

The integral notation does require that you feed in tangent vectors if you discretize. Careful mathematics
shows that for the cases we care about, no matter how one discretizes, the limit of small parallelopipeds
gives a unique answer. (Analog of no matter how you take small rectangles to compute Riemann integrals,
in the limit there is only one unique area under a curve.)
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3 Overview of special surfaces

We are very interested in the following three mathematical objects:

1. The sphere = {x : ‖x‖ = 1} in R
n

2. The orthogonal group O(n) of orthogonal matrices Q (QTQ = I) in R
nn.

3. The Stiefel manifold of tall skinny matrices Y ∈ R
np with orthogonal columns (Y TY = Ip).

Of course the sphere and the orthogonal group are special cases of the Stiefel manifold with p = 1 and p = n
respectively.

We will derive and explain the meaning of the following volume forms on these objects

Sphere (HTdq)∧i=2,...,n where H is a so-called Householder transform

Orthogonal Group (QTdQ)∧ = (QTdQ)∧i>j

Stiefel Manifold (QTdY )∧i>j where QTY = Ip.

The concept of volume or surface area is so familiar that the reader might not see the need for a formalism
to encode this concept.

Here are some examples.

Example 1: Integration about a circle Let x =

(

x1

x2

)

.

∫

x∈R
2

‖x‖=1

f(x)(−x1dx1 + x2dx2) =

∫ 2π

0

f(cos θ, sin θ)dθ

Algebraic proof:

(

x1

x2

)

=

(

cos θ
sin θ

)

implies

−x2dx1 + x1dx2 = dθ =

(

−x2

x1

)T(
dx1

dx2

)

=

(

− sin θ
cos θ

)T ( − sin θ
cos θ

)

dθ .

Geometric Interpretation: Approximate the circle by a polygon with k sides.

∑

f(x(i))

(

−x
(i)
2

x
(i)
1

)T

(x(i) − x(i−1)) ≈
∫ 2π

0

f(cos θ, sin θ)dθ .

Note that the dot product computes ‖vi‖.
Geometric interpretation of the wrong answer: Why not

∫

x∈R
2

‖x‖=1

f(x)dx1?

This is approximated by
∑

f(x(i))

(

1
0

)T

v(i)

which is the integral of f over the “shadow” of the circle on the x-axis.

Example 2: Integration over a sphere Given q with ‖q‖ = 1, let H(q) be any n × n orthogonal matrix
with first column q. (There are many ways to do this. One way is to construct the “Householder” reflector

H(q) = I − 2 vvT

vTv , where v = e1 − q, and e1 is the first column of I.)

The sphere is an n − 1 dimensional surface in n dimensional space.

Integration over the sphere is then

∫

x∈R
n

‖x‖=1

f(x)

n
∧

i=2

(HTdx)i =

∫

x∈R
n

‖x‖=1

f(x)dS ,
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where dS is the surface “volume” on the sphere.

Consider the familiar sphere n = 3. Approximate the sphere by a polyhedron of parallelograms with k
faces. A parallelogram may be algebraically encoded by the two vectors forming edges, into a matrix V (i).
We have

∑

f(x(vi)) · det(H(q)TV ) approximates this integral.

Example 3: The orthogonal group Let O(n) denote the set of orthogonal n×n matrices. This is an n(n−1)
2

dimensional set living in R
n2

.

Tangents consist of matrices T such that QTT is anti-symmetric. We can take an orthogonal, but not
orthonormal set to consist of matrices Q(Eij − Eji) for i > j ((Eijkl

= 1) if i = k and j = l; 0 otherwise).
The matrix “FTV ” roughly amounts to taking twice the triangular part of QTdQ.

Let O(m) denote the “orthogonal group” of m × m matrices Q such that QTQ = I. We have seen
(QTdQ) =

∧

i>j qT
i dqj is the natural volume element on O(M). Also, notice that O(n) has two connected

components. When m = 2, we may take

Q =

[

c −s
s c

]

(c2 + s2 = 1)

for half of O(2). This gives

QTdQ =

(

cos θ sin θ
− sin θ cos θ

)(

− sin θdθ − cos θdθ
cos θdθ − sin θdθ

)

=

(

0 −dθ
dθ 0

)

in terms of dθ. Therefore (QTdQ)∧ = dθ.

4 The Sphere

Students who have seen any integral on the sphere before probably have worked with traditional spherical
coordinates or integrated with respect to something labeled “the surface element of the sphere.” We mention
certain problems with these notations. Before we do, we mention that the sphere is so symmetric and so
easy, that these problems never manifest themselves very seriously on the sphere, but they become more
serious on more complicated surfaces.

The first problem concerns spherical coordinates: the angles are not symmetric.

They do not interchange nicely. Often one wants to preserve the spherical symmetry by writing x = qr,
where r = ‖x‖ and q = x/‖x‖. Of course, q then has n components expressing n − 1 parameters. The
n quantities dq1, . . . , dqn are linearly dependent. Indeed differentiating qTq = 1 we obtain that qTdq =
∑n

i=1 qidqi = 0.

Writing the Jacobian from x to q, r is slightly awkward. One choice is to write the radial and angular
parts separately. Since dx = qdr + dqr,

qTdx = dr and (I − qqT )dx = rdq .

We then have that
dx = dr ∧ (rdq) = rn−1dr(dq),

where (dq) is the surface element of the sphere.

We introduce an explicit formula for the surface element of the sphere. Many readers will wonder why
this is necessary. Experience has shown that one can need only set up a notation such as dS for the surface
element of the sphere, and most integrals work out just fine. We have two reason for introducing this formula,
both pedagogical. The first is to understand wedge products on a curved space in general. The sphere is
one of the nicest curved spaces to begin working with. Our second reason, is that when we work on spaces
of orthogonal matrices, both square and rectangular, then it becomes more important to keep track of the
correct volume element. The sphere is an important stepping stone for this understanding.
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We can derive an expression for the surface element on a sphere. We introduce an orthogonal and
symmetric matrix H such that Hq = e1 and He1 = q, where e1 is the first column of the identity. Then

Hdx = e1dr + Hdq r =















dr
r(Hdq)2
r(Hdq)3

...
r(Hdq)n















.

Thus

(dx)∧ = (Hdx)∧ = rn−1dr

n
∧

i=2

(Hdq)i .

We can conclude that the surface element on the sphere is (dq) =
∧n

i=2(Hdq)i.

v(5)
1f (5)

1

x(5)

v(5)
2

v(17)
1

f (5)
2

f (17)
2

f (17)
1

v(17)
2

x(17)

Householder Reflectors

We can explicitly construct an H as described above so as to be the Householder reflector. Notice that
H serves as a rotating coordinate system. It is critical that H(:, 2 : n) is an orthogonal basis of tangents.
Choose v = e1 − q the external angle bisector and

H = I − 2
vvT

vTv
.

See Figure 1 which illustrate that H is a reflection through the internal angle bisector of q + e1.

Notice that (Hdq)1 = 0 and every other component
∑n

j=1 Hijdqj (i 6= 1) may be thought of as a tangent

on the sphere. H = HT , Hq = e1, He1 = q1, H
2 = I, and H is orthogonal.

I think many people do not really understand the meaning of (QTdQ)∧. I like to build a nice cube on

the surface of the orthogonal group first. Then we will connect the notations. First of all O(n) is an n(n−1)
2

dimensional surface in R
n2

. At any point Q, tangents have the form Q · A, where A is anti-symmetric.
The dot product of two “vectors” (matrices) X and Y is X · Y ≡ tr(XTY ) =

∑

XijYij . If Q is orthogonal
QX · QY = X · Y .

If Q = I then the matrices Aij = (Eij − Eji)/
√

2 for i < j clearly form an n(n−1)
2 dimensional cube

tangent to O(n) at I, i.e., they form an orthonormal basis for the tangent space. Similarly the n(n − 1)/2
matrices Q(Eij − Eji)/

√
2 form such a basis at Q.

One can form an F whose columns are vec(Q(Eij−Eji)) for i < j. The matrix would be n2 by n(n−1)/2.
Then FT(dqij)i<j would be the Euclidean volume element. Mathematicians like to throw away the

√
2 so

that the volume element is off by the factor 2n(n−1)/4. This does not seem to bother anyone. In non-vec
format, this is (QTdQ)∧.
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3] �

-

v = q − e1

q

e1

q + e1

plane
of

reflection

Figure 1:

Application

Surface Area of Sphere Computation

We directly use the formula (dx)∧ = rn−1dr(Hdq)∧:

(2π)
n
2 =

∫

x∈Rn

e−
1

2
‖x‖2

dx =

∫ ∞

r=0

rn−1e−
1

2
r2

dr

∫

(Hdq)∧

= 2
n−2

2 Γ
(n

2

)

∫

(Hdq)∧ or

∫

(Hdq)∧ =
2π

n
2

Γ(n
2 )

= An,

and An is the surface of the sphere of radius 1. For example,

A2 = 2π (circumference of a circle)

A3 = 4π (surface area of a sphere in 3d)

A4 = 2π2

5 The Stiefel Manifold

QR Decomposition

Let A ∈ R
n,m(m ≤ n). Taking x = ai, we see ∃H1 such that H1A has the form











x
0
...
0











. We can

then construct an H2 =











1 0 · · · 0
0
... H̃2

0











so that H2H1A =











x x
0 x
...

...
0 0











. Continuing Hm · · ·H1A =











0
. . .

0
0 · · · 0











or A = (H1 · · ·Hm)





R

O



, where R is m×m upper triangular (with positive diagonals).

let Q = the first m columns of H1 · · ·Hm. Then A = QR as desired.
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The Stiefel Manifold

The set of Q ∈ R
n,p such that QTQ = Ip is denoted Vp,n and is known as the Stiefel manifold. Considering

the Householder construction, ∃H1, · · · , Hp such that.

HpHp−1 · · ·H1Q =







1 0
. . .

0 1







so that Q = 1st p columns of H1H2 · · ·Hp−1Hp.

Corollary 5. The Stiefel manifold may be specified by (n − 1) + (n − 2) + · · · + (n − p) = pn− 1/2p(p + 1)
parameters. You may think of this as the pn arbitrary parameters in an n×p matrix reduced by the p(p+1)/2
conditions that qT

i qj = δij for i ≥ j. You might also think of this as

dim{Q} = dim{A} − dim{R}
↑ ↑
pn p(p + 1)/2

It is no coincidence that it is more economical in numerical computations to store the Householder parameters
than to compute out the Q.

This is the prescription that we would like to follow for the QR decomposition for the n by p matrix A.
If Q ∈ R

p,n is orthogonal, let H be an orthogonal p by p matrix such that HTQ is the first p columns of I.
Actually H may be constructed by applying the Householder process to Q. Notice that Q is simply the first
p columns of H .

As we proceed with the general case, notice how this generalizes the situation when p = 1. If A = QR,
then dA = QdR + dQR and HTdA = HTQdR + HTdQR. Let H = [h1, . . . , hn]. The matrix HTQdR
is an n by p upper triangular matrix. While HTdQ is (rectangularly) antisymmetric. (hT

i hj = 0 implies
hT

i dhj = −hT
jdhi)

Haar Measure and Volume of the Stiefel Manifold

It is evident that the volume element in mn dimensional space decouples into a term due to the upper
triangular component and a term due to the orthogonal matrix component. The differential form

(HTdQ) =

m
∧

j=1

n
∧

i=j+1

hT
i dhj

is a natural volume element on the Stiefel manifold.

We may define

µ(S) =

∫

S

(HTdQ).

This represent the surface area (volume) of the region S on the Stiefel manifold. This “measure” µ is known
as Haar measure when m = n. It is invariant under orthogonal rotations.

Exercise. Let Γm(a) ≡ πm(m−1)/4
∏m

i=1 Γ[a − 1
2 (i − 1)]. Show that the volume of Vm,n is

Vol (Vm,n) =
2mπmn/2

Γm(1
2n)

.

Exercise. What is this expression when n = 2? Why is this number twice what you might have thought
it would be?
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Exercise. Let A have independent elements from a standard normal distribution. Prove that Q and R
are independent, and that Q is distributed uniformly with respect to Haar measure. How are the elements on
the strictly upper triangular part of R distributed. How are the diagonal elements of R distributed? Interpret
the QR algorithm in a statistical sense. (This may be explained in further detail in class).

Readers who may never have taken a course in advanced measure theory might enjoy a loose general
description of Haar measure. If G is any group, then we can define the map on ordered pairs that sends
(g, h) to g−1h. If G is also a manifold (or some kind of Hausdorff topological space), and if this map is
continuous, we have a topological group. An additional assumption one might like is that every g ∈ G has
an open neighborhood whose closure is compact. This is a locally compact topological group. The set of
square nonsingular matrices or the set of orthogonal matrices are good examples. A measure µ(E) is some
sort of volume defined on E which may be thought of as nice (“measurable”) subsets of G. The measure
is a Haar measure if µ(gE) = µ(E), for every g ∈ G. In the example of orthogonal n by n matrices, the
condition that our measure be Haar is that

∫

Q∈S

f(Q)(QTdQ)∧ =

∫

Q∈Q−1

0
S

f(Q0Q)(QTdQ)∧.

In other words, Haar measure is symmetrical, no matter how we rotate our sets, we get the same answer.
The general theorem is that on every locally compact topological group, there exists a Haar measure µ.

6 Advanced Differential Forms

6.1 Exterior Products (The Algebra)

Let V be an n-dimensional vector space over R. For p = 0, 1, . . . , n we define the pth exterior product. For
p = 0 it is R and for p = 1 it is V . For p = 2, it consists of formal sums of the form

∑

i

ai(ui ∧ wi),

where ai ∈ R and ui, wi ∈ V . (We say “ui wedge vi.”) Additionally, we require that (au + v) ∧ w =
a(u∧w) + (v ∧w), u∧ (bv + w) = b(u∧ v) + (u∧w) and u∧ u=0. A consequence of the last relation is that
u ∧ w = −w ∧ u which we have referred to previously as the anti-commutative law. We further require that
if e1, . . . , en constitute a basis for V , then ei ∧ ej for i < j, constitute a basis for the second exterior product.

Proceeding analogously, if the ei form a basis for V we can produce formal sums
∑

γ

cγ(eγ1
∧ eγ2

∧ · · · ∧ eγp
),

where γ is the multi-index (γ1, . . . , γp), where γ1 < · · · < γp. The expression is multilinear, and the signs
change if we transpose any two elements.

The table below lists the exterior products of a vector space V = {ciei}.
p pth Exterior Product Dimension

0 V 0 = R 1
1 V 1 = V = {ciei} n

2 V 2 =
{

∑

i<j cijei ∧ ej

}

n(n − 1)/2

3 V 3 =
{

∑

i<j<k cijkei ∧ ej ∧ ek

}

n(n − 1)(n − 2)/6

...
...

...

p V p =
{

∑

i1<i2<...<ip
ci1i2...ip

ei1 ∧ ei2 ∧ . . . ∧ eip

}

(

n

p

)

...
...

...
n V n = {ce1 ∧ e2 ∧ . . . ∧ en} 1

n + 1 V n+1 = {0} 0
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In this book V = {∑ cidxi}, i.e. the 1-forms. Then V p consists of the p-forms, i.e. the rank p exterior
differential forms.

6.2 Multilinear Functions

Mathematically, the wedge notation w1 ∧ · · · ∧ wk may be identified with a real linear function on n by k
matrices. Specifically, let the matrix W = [w1 . . . wk], and consider the linear function TW (V ) ≡ det(WTV ).
A moment’s thought will convince the reader that this is a multilinear function, and if we interchange two
columns of W , we negate the function. Real combinations of such functions are in one to one correspondence
with real combinations of wedge products.

Perhaps we ought to define a slightly more general object: a rank k tensor. Let T (v1, . . . , vk) denote a
real valued multilinear function of the k vectors vi ∈ R

n. This means that if α and β are scalars, then for
each i

T (v1, . . . , αvi + βv′i, . . . , vk) = αT (v1, . . . , vi, . . . , vk) + βT (v1, . . . , v
′
i, . . . , vk).

In terms of the components, any multilinear function may be written as

T (v) =
∑

Ti1,...,ik
vi1,1 . . . , vik,k.

If we have a collection of k vectors such as v1, . . . , vk in R
n, it is notationally convenient to construct the

matrix V whose jth column is the jth vector. (V = [v1 . . . vk])

Therefore, a multilinear function may be thought of as a a “square” k-dimensional array of nk numbers,
i.e., an n× n× . . .× n array of numbers. It is clear that the set of multilinear functions form a vector space
of dimension nk, with the usual definition for linear combinations of functions:

(αT1 + βT2)(V ) = αT1(V ) + βT2(V ).

When k = 0, T is scalar. When k = 1, given any vector w ∈ R
n, we have Tw(v) = wTv. When k = 2, given

any n by n matrix A, we have TA(v1, v2) = vT
1Av2. For k > 2 elementary linear algebra notation breaks

down, but the idea remains straightforward. (Is that because we are three dimensional creatures used to
writing on two dimensional paper?)

Elementary linear algebra notations, however, is just perfect for the multilinear functions that we are
considering: Let W be an n by k matrix and define TW (V ) (here V = [v1, . . . , vk]) as det(WTV ). Notice
that we are taking the determinant of a k by k matrix.

Exercise. Prove that TW is indeed a rank k multilinear function using nothing other than familiar properties
of the determinant.

When k = n, it follows from the identity det(WTV ) = det(W ) det(V ) that TW = (det W )TI , where I
denotes the n by n identity matrix. When k > n we are taking the determinant of a matrix of dimension
greater than n, but of rank at most n. Therefore TW = 0 when k > n.

Since the tensors of the form TW are a subset of an nk dimensional vector space, we may form the vector
space generated by all possible linear combinations of the tensors TW . This space is known either as the
as the set of antisymmetric tensors or alternating tensors. This space is isomorphic to the kth exterior
product.

Antisymmetric tensors T have the property that if V has two identical columns, then T (V ) = 0, and
further if we interchange two columns of V to create a V ′, then T (V ′) = −T (V ). To prove this, note that
this statement follows from the determinant for the tensors of the form TW , and therefore this property
holds for linear combinations of such tensors.

Now we turn to the algebra of differential forms. So far, all you have seen are algebraic objects, tensors
or in particular antisymmetric tensors. By the magic of switching notation, but using no further tricks, we
will create an object that looks like a volume element for integration.

Let W be a matrix each of whose columns contains n − 1 zeros, and one value 1. We may write
W = [ei1 , . . . , eik

], where ej denotes the jth unit vector (i.e., jth column of the identity matrix.)
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As a matter of notation, we will write the tensor TW as

dxi1 ∧ dxi2 ∧ . . . ∧ dxik

and we will start to forget that this was once a tensor. The reader may verify that if any of the two ij’s
are equal, then we have the 0 tensor, and if we interchange two of the i’s say i1 and i2, then we negate the
tensor.

Exercise. Show that the tensors of the form

dxi1 ∧ dxi2 ∧ . . . ∧ dxik
,

for i1 < i2 < . . . < ik form a basis for antisymmetric tensors. Therefore, it is a vector space of dimension
(

n
k

)

.

For any matrix TW we may write the tensor in this notation as

(

∑

i

wi1dxi

)

∧
(

∑

i

wi2dxi

)

∧ . . . ∧
(

∑

i

wikdxi

)

.

It becomes very easy to algebraically expand this in terms of our basis. We simply assume that sums
distribute, and wedges alternate. In particular, when n = k, we see directly that TW = (detW )TI . This
could have been our definition of wedge products. It would have been a bit simpler, but then you might not
have seen what all this has to do with tensors.

6.3 Differential Forms

It is easy to see that every rank 0 and rank 1 multilinear function is trivially antisymmetric. A rank two
tensor: T (v1, v2) = vT

1Av2 is antisymmetric if and only if, A is an antisymmetric matrix, i.e., AT = −A. The
reader should notice that we defined rank 2 alternating tensors in terms of linear combinations of functions
derived from n by 2 matrices W , and now we are noting that all alternating tensors may be expressed as
antisymmetric matrices. Compare both definitions closely.

What about rank 3 antisymmetric tensors? Since such a tensor is a multilinear function, it may be
represented as an n×n×n cubical array of entries Tijk, 1 ≤ i, j, k ≤ n. If you can imagine holding this cube
by the two corners at the 1,1,1 entry and the n, n, n entry, then the array of numbers is invariant under a 120
degree rotation through this axis. Other symmetries (in fact reflections) of the cube preserving these two
points, negate the entries. Thus we see the generalization of transposing, and antisymmetric matrices. Just
an an antisymmetric matrix is determined by its

(

n
2

)

entries in the upper triangular part, a rank 2 tensor is

determined by the
(

n
3

)

entries in an upper tetrahedral part covering nearly one sixth of the array. This idea
generalizes as well.

We now digress onto a brief discussion of how differential forms fit into other areas of mathematics and
physics. The reader primarily interested in eigenvalues of random matrices may safely omit this section.

An exterior differential form of rank or degree k may be thought of as an antisymmetric multilinear
function at every point x ∈ R

n:

φ = φ(x) =
∑

i1<...<ik

fi1,...,ik
(x)dxi1 ∧ . . . ∧ dxik

.

Usually the coefficient functions fi1,...,ik
(x) are taken to be sufficiently differentiable or analytic for whatever

purpose one has in mind. The simplest example is a rank 0 form, which is nothing other than a function
f(x) defined on R

n. A rank 1 form may be thought of nothing other than a function from R
n to R

n. We
may associate, v(x) with v1(x)dx1 + · · · + vn(x)dxn. If f is a differentiable function, we may consider its
gradient as

∂f

∂x1
dx1 + · · · + ∂f

∂xn
dxn.

Thus the action of taking a gradient turns a 0 form into a 1 form.
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In general, if φ is a differential k form, we can form a differential k + 1 form dφ by generalizing the idea
of the gradient:

dφ =

n
∑

j=0

∑

i1<...<ik

∂fi1,...,ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

.

Let n = 3. If φ is a 0-form, i.e., a function, dφ is its gradient. As a tensor, dφ(v) computes a directional
derivative at x in the direction v. If φ is a 1-form, i.e., a vector function of R

3, sometimes called a vector
field, then dφ is an object you may recognize: it is the curl of the vector field. Lastly, if φ is the 2-form
φ = f1dx2 ∧ dx3 + f2dx3 ∧ dx1 + f3dx1 ∧ dx2, then dφ is what you might remember from your advanced
calculus days as the divergence of (f1, f2, f3)

T .

Exercise. Prove that ddφ = 0 always.

A form φ is called closed if dφ = 0, while φ is called exact if φ = dθ for some form θ. This may be
reworded: prove that if φ is exact, then φ must be closed. Under the right assumptions, the converse also
holds. (See an advanced book on calculus on manifolds.)

The idea of a differential form can be well defined on arbitrary manifolds, but this is beyond the scope of
this course. The basic idea remains the same as you see here, but it is necessary to first define coordinates
on the manifold, then define differential forms on these coordinates in a consistent manner.

6.4 Differential Forms in Physics

For readers curious how differential forms are used in physics, we express Maxwell’s equations in differential
form.

At every point x ∈ R
3 can be found an electrical field vector E(x) ∈ R

3 and a magnetic field vector
B(x) ∈ R

3. The electrical field vector describes how a charged particle will be influenced at that point by
electrical attraction and repulsion, and the magnetic field describes the influence of the magnetic field on the
same particle. If we add on x4 as the time coordinate, then E(x) and B(x) describe the fields at a particular
point in space at a particular time.

Let F denote the antisymmetric matrix









0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0









or the associated tensor F = −E1dx1 ∧ dx2 − E2dx1 ∧ dx3 − E3dx1 ∧ dx4 + B3dx2 ∧ dx3 − B2dx2 ∧ dx4 +
B1dx3 ∧ dx4.

Special relativity combines all the electrical and magnetic forces on an electron into one matrix multiply
Fu where u is the relativized velocity vector: ui = vi√

1−v2
, for i = 1, 2, 3, and u4 = 1√

1−v2
in units such that

the speed of light is 1.

Two of Maxwell’s equations may be obtained from the equation dF = 0. These equations are known as
the magnetostatic and magnetodynamic equations. Feel free to derive them for yourself, and as a check, find
someone with a T-shirt that has Maxwell’s equations written in differential form.

The other operator on differential forms is the divergence. The divergence turns k forms into k−1 forms.
It is linear and defined on φ = g(x)dxi1 ∧ . . . ∧ dxik

as

∇ · φ =
k
∑

j=1

∂g(x)

∂xij

∧

m 6=j

dxim
.

The bigwedge notation indicates the term dxi1 ∧ dxi2 ∧ . . . ∧ dxik
with the dxij

term omitted.

If we may introduce another physical quantity J(x) ∈ R
4, whose first three components are the current

density, and whose last component in the charge density at x ∈ R
4, then the other two Maxwell’s equations

are ∇ · F = J . These are the electrostatic and electrodynamic equations.
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In summary, Maxwell’s equations are

dF = 0 and ∇ · F = J .

These two equations can be combined into one Poisson like equation ∇·dA = J , where dA = F , but perhaps
we have digressed enough.

One can also integrate differential forms over appropriate manifolds generalizing the famous Stokes’ and
Green’s formulas.
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