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Abstract

The Dirichlet compound multinomial (DCM)
distribution, also called the multivariate Polya
distribution, is a model for text documents that
takes into account burstiness: the fact that if
a word occurs once in a document, it is likely
to occur repeatedly. We derive a new fam-
ily of distributions that are approximations to
DCM distributions and constitute an exponen-
tial family, unlike DCM distributions. We use
these so-called EDCM distributions to obtain
insights into the properties of DCM distribu-
tions, and then derive an algorithm for EDCM
maximum-likelihood training that is many times
faster than the corresponding method for DCM
distributions. Next, we investigate expectation-
maximization with EDCM components and de-
terministic annealing as a new clustering algo-
rithm for documents. Experiments show that the
new algorithm is competitive with the best meth-
ods in the literature, and superior from the point
of view of finding models with low perplexity.

1. Introduction

In a text document, if a word occurs once, it is likely that
the same word will occur again. This phenomenon is dis-
tinct from the obvious phenomenon that different words are
more common for different topics. For example, consider
a collection of documents that are all about the car indus-
try. Naturally, words like “automotive” are more common
than words like “aerospace,” but suppose that the words
“Toyota” and “Nissan” are equally common overall for this
topic. Nevertheless, if “Toyota” appears once, a second
appearance of “Toyota” is much more likely than a first ap-
pearance of “Nissan.”
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The phenomenon just explained is called burstiness. The
multinomial distribution is used very widely to model text
documents, but it does not account for burstiness. As an
alternative model for documents, a recent paper proposed
the so-called Dirichlet compound multinomial distribution
(DCM) (Madsen et al., 2005). The present paper inves-
tigates the DCM further. We have three main contribu-
tions. First, we provide additional insight into why the
DCM is appropriate for modeling documents. Second, we
derive a new distribution that is a close approximation to
the DCM and, unlike the DCM, is a member of the expo-
nential family of distributions. Third, we use expectation-
maximization (EM) with the new distribution to obtain
a new clustering algorithm for documents. Experiments
show that the new algorithm is competitive with the best
methods in the literature, and superior from the point of
view of finding low-perplexity models.

Previous work has argued the case for the DCM persua-
sively, and has shown that classifiers using Bayes’ rule and
the DCM are competitive with the best-known classifica-
tion methods on standard document collections (Madsen
et al., 2005). Mixtures of DCM components have been pro-
posed independently for language modeling (Yamamoto
et al., 2003). However, the DCM approach is not without
problems. First, although Dirichlet distributions constitute
an exponential family, DCM distributions do not. Expo-
nential families have many desirable properties (Banerjee
et al., 2005b, Section 4) which DCM distributions fail to
share. Second, the expression for a DCM distribution
lacks intuitiveness, so understanding its behavior qualita-
tively is difficult. Third, DCM parameters cannot be esti-
mated quickly; gradient descent in high dimensions is nec-
essary (Minka, 2003). Fast training is important not only
for modeling large document collections, but also for us-
ing DCM distributions in more complex models including
the mixture models discussed in this paper and hierarchical
models such as LDA (Blei et al., 2003).

This paper presents a new family of distributions that we
call EDCM distributions. EDCM distributions approximate
DCM distributions, while overcoming each of the three dis-
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advantages of DCM distributions just mentioned. Although
the focus here is on modeling text documents, the DCM is
applicable in many other domains also where burstiness,
sometimes called contagion, is important. We expect that
the results of this paper will be useful in these other do-
mains also, for example (Kvam & Day, 2001).

This paper is organized as follows. First, in Section 2 we
revisit the DCM distribution and explain two different gen-
erative models that both lead to it. Next, Section 3 derives
the EDCM distribution and discusses insights obtainable
from it. Section 4 applies expectation-maximization with
the EDCM to obtain a new clustering algorithm for text
documents. Section 5 describes the design of experiments
to evaluate the performance of the new algorithm, while
Section 6 presents the results of these experiments. Finally,
Section 7 concludes the paper.

2. New perspectives on the DCM

Given a documentx, let xw be the number of appearances
of word w, wherew ranges from 1 to the vocabulary size
W . The DCM distribution, also called the multivariate
Polya distribution, is

p(x) =
n!∏W

w=1 xw!

Γ(s)
Γ(s + n)

W∏
w=1

Γ(xw + αw)
Γ(αw)

(1)

where the length of the document isn =
∑W

w=1 xw and
s =

∑W
w=1 αw is the sum of the parameters.

Like a multinomial distribution, a DCM is a distribution
over all possible count vectors that sum to a fixed valuen.
When a DCM or a multinomial is used to model a collec-
tion of documents of different lengths, formally there is a
different distribution for each different length, with all dis-
tributions sharing the same parameter values. Also, with
a DCM or with a multinomial,p(x) for a documentx is
really the probability of the equivalence class of all docu-
ments that have the same word counts, that is all documents
that have the same bag-of-words representation. The cardi-
nality of this equivalence class is given by the multinomial
coefficientn!/

∏W
w=1 xw!.

The DCM arises naturally from at least two different per-
spectives, both of which are generative. The first perspec-
tive, which is the one presented by (Madsen et al., 2005),
is that a document is generated by drawing a multinomial
from a Dirichlet distribution, then drawing words from that
multinomial. Equation (1) is obtained by integrating over
all possible multinomials:p(x) =

∫
θ
p(x|θ)p(θ|α) where

p(θ|α) is a Dirichlet distribution andp(x|θ) is a multino-
mial distribution. The intuition behind this perspective is
that the Dirichlet represents a general topic, while each
multinomial is a document-specific subtopic that makes
certain words especially likely for this particular document.

For example, some articles about the car industry may be
generated from a multinomial that gives high probability to
the word “Toyota,” while others are generated from a multi-
nomial that emphasizes the word “Nissan.” The Dirichlet
that represents the entire car industry topic gives high prob-
ability to both these multinomials.

The second perspective is that a document is generated fol-
lowing a so-called urn scheme. Consider an urn filled with
colored balls, with one color for each word in the vocab-
ulary. The simplest scheme is to draw balls with replace-
ment, and to count for each color how many times a ball
of that color is drawn. This scheme yields a multinomial
distribution, where the parameters of the multinomial are
the fractions of ball colors. Note that although the drawing
process is sequential, only the total number of balls drawn
of each color is recorded.

An alternative urn scheme was first studied by Polya and
Eggenberger (Johnson et al., 1997, Chapter 40). In this
scheme, each time a ball is drawn it is replacedandone ad-
ditional ball of the same color is placed in the urn. Follow-
ing this scheme, words that have already been drawn are
more likely to be drawn again. One can make the urn pro-
cess more bursty or less bursty by decreasing or increasing
the number of balls in the urn initially, without changing
the proportions of ball colors. For example, consider an urn
with equal numbers of balls of two colors. If the urn con-
tainsk balls of each color, the chance that the second ball
drawn has the same color as the first is(k + 1)/(2k + 1).
The smallerk is, the more the urn scheme will be bursty.

Sampling following the Polya-Eggenberger urn scheme re-
sults in count vectors that follow a DCM distribution. Each
DCM parameterαw is the number of balls of colorw in the
urn initially. (Eachαw may be less than one and need not
be an integer.) The sums =

∑W
w=1 αw measures the over-

all burstiness of the distribution. Increasings decreases
burstiness and vice versa. Ass → ∞ the DCM tends to-
wards a multinomial.1

3. Approximating the DCM

In this section we derive a family of distributions that is
an exponential family and is also an approximation to the
DCM family. We call the members of the new family
EDCM distributions. We investigate their properties, and
we show how maximum likelihood parameter values can
be computed efficiently for them.

1It is not obvious that the two generative processes described
above give rise to the same distribution. Indeed, this fact is not
mentioned by the standard monograph (Johnson et al., 1997),
where the first perspective is described on pages 80–83 and the
second perspective is described separately on pages 200–211.
However, rearrangements show that Equations 35.152 on page 80
and 40.12 on page 202 are equivalent.
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Figure 1. DCM probabilities versus EDCM probabilities.
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Given any natural collection of documents, most words do
not appear in most documents, that is most counts are zero.
For computational efficiency, it should be possible to eval-
uatep(x) as a function of non-zeroxw values only. This is
the case for a DCM distribution:

p(x) =
n!∏

w:xw≥1 xw!
Γ(s)

Γ(s + n)

∏
w:xw≥1

Γ(xw + αw)
Γ(αw)

(2)
sincexw! = 1 andΓ(xw + αw)/Γ(αw) = 1 if xw = 0.

Empirically, given a DCM fitted by maximum likelihood
to a set of documents,αw � 1 for almost all wordsw.
For example, for a DCM trained on the NIPS document
collection described below (Section 5), the averageαw is
0.0636. Of the 6,871 parameters, 84% are less than 0.1 and
only 25 are above 1.0. For smallα, a useful fact is that

lim
α→0

Γ(x + α)
Γ(α)

− Γ(x)α = 0.

for x ≥ 1. ReplacingΓ(xw + αw)/Γ(αw) by Γ(xw)αw in
Equation (2) and using the fact that ifz is an integer then
Γ(z) = (z − 1)!, we obtain the EDCM distribution:

q(x) =
n!∏

w:xw≥1 xw

Γ(s)
Γ(s + n)

∏
w:xw≥1

βw. (3)

For clarity, we denote the EDCM parametersβw.

UsingΓ(x)α instead ofΓ(x + α)/Γ(α) is a highly accu-
rate approximation for smallα and small integersx. In the
NIPS collection, 92.7% of allxw values arexw = 0, 4.2%
arexw = 1, for which the approximation is exact, and only
3.1% arexw ≥ 2. In practice the probabilities given by
Equation (3) are very close to those given by Equation (1).
Figure 1 shows the probability assigned to each document
in the NIPS collection by the maximum-likelihood EDCM

distribution compared to the probability assigned by the
maximum-likelihood DCM distribution. The average dif-
ference is less than 1%.

Sinceq(x) is an approximation, the normalization constant
Z(β) = n!Γ(s)/Γ(s + n) is not exact. In principleq(x)
could be summed over all values ofx to get the exact nor-
malization constant. We believeq(x) is always a good ap-
proximation for real text data because text shows consis-
tent burstiness behavior, and zero or small counts for most
words. The results in Table 1 below indicate that the ap-
proximation has no statistically significant impact on per-
formance clustering documents.

Since the EDCM expression is relatively simple, we can
gain insights from it, and since the EDCM approximates
the DCM, insights for one distribution carry over to the
other. The EDCM can also be written

q(x) = n!
Γ(s)

Γ(s + n)

∏
w:xw≥1

βw

xw
. (4)

This form makes clear that for fixeds andn, the proba-
bility of a document is proportional to

∏
w:xw≥1 βw/xw.

This means that the first appearance of a wordw reduces
the probability of a document byβw, a word-specific fac-
tor that is almost always much less than 1.0, while the
mth appearance of any word reduces the probability by
(m − 1)/m, which tends to 1 asm increases. This be-
havior reveals how the EDCM, and hence the DCM, allow
multiple appearances of the same word to have high prob-
ability. In contrast, with a multinomial each appearance of
a word reduces the probability by the same factor.

Another point of view on Equation (4) is that it distin-
guishes between word types and word tokens. Theβw fac-
tors are word-type parameters while the1/xw factors are
word-token parameters. It has been argued recently that
modeling both word type frequencies and word token fre-
quencies is useful for capturing the statistical properties of
natural language (Goldwater et al., 2005). Unlike DCM
and EDCM models, multinomial models ignore the type-
token distinction, because given a document collection, the
parameters of the maximum-likelihood multinomial are the
same regardless of where the boundaries between docu-
ments are in the collection. On the other hand, maximum-
likelihood DCM and EDCM models are sensitive to which
words appear in which documents, i.e. to document bound-
aries and not just to total word counts.

The members of an exponential family of distributions have
the formf(x)g(β) exp[t(x) · h(β)] wheret(x) is a vector
of sufficient statistics andθ = h(β) is the vector of so-
called “natural” parameters; for details see (Banerjee et al.,
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2005b, Section 4.1). We can writeq(x) in this form as ∏
w:xw≥1

x−1
w

n!
Γ(s)

Γ(s + n)
exp[

W∑
w=1

I(xw ≥ 1) log βw].

The sufficient statistics for a documentx are
〈t1(x), · · · , tW (x)〉 where tw(x) = I(xw ≥ 1). We
can obtain maximum likelihood parameter estimates for
the EDCM by taking the derivative of the log-likelihood
function. From (4) the log-likelihood of one document is

log n! + log Γ(s)− log Γ(s + n) +
∑

w:xw≥1

log βw − log xw.

Given a collectionD of documents, where document num-
berd has lengthnd and word countsxdw, the partial deriva-
tive of the log-likelihood of the collection is

∂l(D)
∂βw

= |D|Ψ(s)−
∑

d

Ψ(s + nd) +
∑

d

I(xdw ≥ 1)
1

βw

whereΨ(z) is the digamma function, which is the deriva-
tive of log Γ(z). Setting this expression to zero and solving
for βw gives

βw =
∑

d I(xdw ≥ 1)∑
d Ψ(s + nd)− |D|Ψ(s)

. (5)

We can computes =
∑

w βw by summing each side of
Equation (5) over all words, giving

s =
∑

w

∑
d I(xdw ≥ 1)∑

d Ψ(s + nd)− |D|Ψ(s)
(6)

where the numerator is the number of times a word appears
at least once in a document. This equation involves only
a single unknown,s, so it can be solved numerically effi-
ciently by Newton’s method. Onces is known, each indi-
vidualβw can be computed directly using Equation (5).2

4. Mixtures of EDCMs

For learning a mixture model, expectation-maximization
(EM) can be summarized as follows (Banerjee et al.,
2005b). In the E step, one computes weights using Bayes’
rule, i.e. with the same equation regardless of what the dis-
tribution is. In the M step, one uses a maximum-likelihood
estimator for a weighted log-likelihood function. The equa-
tions that implement this process are as follows. For the E
step, the probabilitymid that documentd is generated by
mixture componenti is

mid = p(i|xd) =
µip(xd|θi)∑
j µjp(xd|θj)

2Equations (5) and (6) are similar to (118) and (108) in
(Minka, 2003).

whereµi is the prior probability of componenti of the mix-
ture, andθi is the parameter vector of componenti. For
the M step,µi andθi are re-estimated as follows with the
weightsmid held fixed:

µi =
M

D
and θi = arg max

θ

∑
d

mid log p(xd|θ)

whereM =
∑

d mid. For the EDCM, we can obtain the
weighted maximum-likelihood parameter vector easily:

∂

∂βw

∑
d

mid log p(xd|θ) =

MΨ(s)−
∑

d

midΨ(s + nd) +
∑

d

midI(xdw ≥ 1)
1

βw
.

As before, first we solve an equation in one unknown fors,

s =
∑

w

∑
d midI(xdw ≥ 1)∑

d midΨ(s + nd)−MΨ(s)
,

and then we compute eachβw for componenti as

βw =
∑

d midI(xdw ≥ 1)∑
d midΨ(s + nd)−MΨ(s)

.

The equations above are the foundation of clustering using
the EDCM, but as always with EM, algorithmic details are
important. First, as is usual with likelihood computations,
all probabilities are represented as logarithms to avoid un-
derflow. In addition, to avoid overflow without losing pre-
cision, weightsmid are computed as

mid =
exp(log µi + log p(xd|θi)− c)∑
j exp(log µj + log p(xd|θj)− c)

(7)

wherec = maxj{log µj + log p(xd|θj)} − 100.

Second, a deterministic annealing procedure allows EM to
find better local optima of the likelihood function (Ueda &
Nakano, 1998). This procedure has three phases. Each
phase runs EM until convergence withlog p(xd|θi) re-
placed by(1/T ) log p(xd|θi) in Equation (7), whereT is a
temperature parameter. The final parameter values in each
phase are used as initial values in the next phase. The three
phases useT = 25, T = 5, and finallyT = 1. We find
that slower annealing schedules provide no significant ad-
ditional benefit.

General justifications for the annealing procedure are given
by (Ueda & Nakano, 1998). We can add two additional
points of view here. The first point of view is that dividing
log p(xd|θi) byT is a heuristic way of calibrating the mem-
bership probabilitiesmid, i.e. of making them reflect gen-
uine membership uncertainty more realistically. Although
the EDCM has the virtue of not assuming that different ap-
pearances of the same word are independent, it still does
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assume that different words provide independent evidence
for the membership of a document in a class. This assump-
tion is not completely true, so the EDCM (also the DCM,
and the multinomial) tends to give probabilitiesp(xd|θi)
that are excessively confident, i.e. too close to zero, and
hence weightsmid that are too close to zero or one. Di-
viding log p(xd|θi) by T whereT > 1 makes all weights
further away from zero and one, i.e. more realistic.

The second point of view is that making weightsmid be
further away from zero and one slows down convergence
of the EM algorithm, which allows it to explore a larger
region of the parameter space, instead of fixating quickly
on a local optimum close to whatever the initial parameter
values are. Slower convergence has been argued to be an
important factor in good performance of a soft clustering
algorithm (Banerjee et al., 2005a, Section 7).

Given that the annealing procedure broadens exploration of
the parameter space, we use a simple initialization method
that is designed to maximize the uniformity of the weights
computed in the E step of the first iteration of EM. One
EDCM is fitted to the entire document collection, and then
the parameters of each component are set to be a differ-
ent random small perturbation of this EDCM. The initial
mixing proportions are uniform,µi = 1/k, wherek is the
number of clusters to be discovered.

5. Experimental design

The goal of the experiments described here is to investigate
whether clustering with mixtures of EDCM components
can summarize well the diversity in heterogeneous collec-
tions of documents. The experimental design choices in-
clude: (1) which algorithms to compare against? (2) which
document collections to use? (3) which performance met-
rics to use? (4) exactly which experiments to run?

For (1) we select as a baseline method EM for a mix-
ture of multinomials. We also select an especially elegant
and interesting algorithm that has been reported to perform
well recently, namely the soft-movMF method of (Banerjee
et al., 2005a, Section 5). This method is EM using compo-
nents that are von Mises-Fisher (vMF) distributions. De-
tails of our implementation of it are explained below. The
experiments of (Banerjee et al., 2005a) are careful and thor-
ough, using twelve different document collections. On all
these collections, the soft-movMF method performs better
than the three methods it is compared against. Banerjeeet
al. write

It has already been established thatk-means us-
ing Euclidean distance performs much worse
than sphericalk-means for text data (Strehl et al.,
2000), so we do not consider it here. Gener-
ative model based algorithms that use mixtures

of Bernoulli or multinomial distributions, which
have been shown to perform well for text data
sets, have also not been included in the experi-
ments. This exclusion is done as a recent em-
pirical study over 15 text data sets showed that
simple versions of vMF mixture models (withκ
constant for all clusters) outperform the multino-
mial model except for only one data set (Clas-
sic3), and the Bernoulli model was inferior for
all data sets (Zhong & Ghosh, 2003).

For this paper, wedo include EM for mixtures of multi-
nomials. Importantly, our implementation of multinomial
EM uses deterministic annealing as described in the pre-
vious section, so it performs much better than previously
reported.

Implementing the soft-movMF algorithm is straightfor-
ward following (Banerjee et al., 2005a), except that the
von Mises-Fisher distribution requires computing modified
Bessel functionsIν(·) of the first kind of high orderν.
Widely available implementations ofIν(z) yield underflow
or overflow for largeν andz. To overcome this problem,
we use an approximation oflog Iν(z) from (Abramowitz
& Stegun, 1974, Equation 9.7.7):

log Iν(z) ≈ − log
√

2πν + νη − 0.25 log α

with α = 1+(z/ν)2 andη =
√

α+log(z/ν)−log(1+
√

α).
This approximation is highly accurate and gives essentially
the same clustering results as using the exact value ofIν(z)
whenever the latter is computable. Preliminary experi-
ments suggest that the soft-movMF algorithm does not ben-
efit from annealing, so we run it without annealing.

For (2), we show detailed results for two especially inter-
esting document collections. The first is the Classic400
collection from (Banerjee et al., 2005a). This collection
is chosen because it reveals the biggest performance differ-
ences between methods among all twelve collections used
by (Banerjee et al., 2005a), and soft-movMF performs par-
ticularly well on it. The second collection contains the
OCRed text of all papers published in the 2002 and 2003
NIPS proceedings (Globerson et al., 2004). This collec-
tion has relatively long documents and subtle differences
between topics. We use only papers from 2002 and 2003
since the organization of papers into research areas was dif-
ferent in earlier and later years. Papers that seem to be in-
completely captured, i.e. that are less than 700 words long,
are eliminated. The properties of these two document col-
lections are summarized in the first columns of Table 1
below. Both collections have no feature selection and no
stemming, but have had stop words removed.

We also report summarized results for fifteen collections
used in previous work (Zhong & Ghosh, 2005). These col-
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lections seem to contain spelling mistakes and other non-
words. To reduce the impact of these, for each collection
we remove all terms that appear in just one document, or in
more than half of all documents. Since stop words have al-
ready been removed in these collections, we are likely not
removing any additional genuine words.

Question (3) asks which performance metrics to measure.
A good clustering algorithm is one that identifies groups
that seem meaningful to people. In experiments, a proxy
for this subjective criterion is whether the algorithm finds
groups that have been recognized previously as meaningful
by humans. Therefore, one performance metric quantifies
how much the clustering found by an algorithm agrees with
a prespecified clustering. Of the many such metrics, we
choose to use mutual information (MI) as used by (Baner-
jee et al., 2005a). Letmi be the number of documents said
to be in clusteri, let nj be the number of documents with
prespecified labelj, and letcij be the number of documents
in clusteri with label j. With D total documents, define
pi = mi/D, qj = nj/D, andrij = cij/D. The MI metric
is then ∑

i

∑
j

rij log
rij

piqj
.

We also want to know how well a method models the con-
tent of a document collection. To answer this question, we
measure perplexity. Intuitively, perplexity is the average
uncertainty the model assigns to each word in a document
collection. Perplexity is not well-defined for all models.
First, it requires a discrete probability mass function, not
a continuous probability density function. For this reason
we cannot talk about the perplexity of a von Mises-Fisher
model. Second, perplexity is a per-word metric. Distribu-
tions like the multinomial and the EDCM assign a proba-
bility mass to an equivalence class of documents. To get a
meaningful perplexity number, the mass assigned to a sin-
gle document must be defined. The most straightforward
approach is to divide the probability mass equally between
all documents in the equivalence class. Specifically, for a
multinomial distributionθ we definep(x|θ) =

∏
w θxw

w and
for an EDCM with parametersβ we define

p(x|β) =

(
n!∏W

w=1 xw!

)−1

n!
Γ(s)

Γ(s + n)

∏
w:xw≥1

βw

xw
.

The perplexity of a model for a document collection is then
exp (

∑
d log p(xd)/

∑
d nd). If the cardinality of the vo-

cabulary isW , a uniform multinomial model has perplex-
ity W . A model that successfully assigns higher probabil-
ity to documents in the collection than to others will have
perplexity less thanW . Since a mixture model with more
components has more free parameters, it will have lower
(or equal) perplexity than one with fewer components.

As is customary in research on clustering, the metrics used

Figure 2. Results of five clustering algorithms.
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(a) Results on the Classic400 collection.
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(b) Results on the NIPS collection.

in this paper are all evaluated on the experimental data di-
rectly. In other words, no separate test set of documents is
used. If one did use separate training and test sets, it would
be necessary to smooth or regularize the distributions found
by maximum likelihood.

Finally, question (4) above concerns exactly which experi-
ments to perform. We keep this design as simple as possi-
ble. For the Classic400 and NIPS collections, we run each
algorithm 100 times with different random initializations.
For the other fifteen collections, we run ten times with dif-
ferent random initializations. We set the numberk of clus-
ters to be found to be the same as the number of prespeci-
fied classes. We report the average MI with standard errors,
and also the average perplexity. As a rule of thumb, dif-
ferences between methods are significant at around the 5%
level if their mean± standard error ranges do not overlap.
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Table 1. Clustering results on two document collections (D: number of documents,̄nd: average document length,W : vocabulary size,
k: number of classes,p: perplexity± standard error, MI: mutual information± standard error, time measured in seconds).

DCM EDCM
name D n̄d W k p MI time p MI time
Classic 400 78.8 6205 3 853.96± 1.91 0.77197± 0.01063 49.7 877.64± 1.87 0.77203± 0.01136 2.35
NIPS 391 1332.4 6871 9 804.19± 0.24 0.84364± 0.00659 751.3 875.17± 0.15 0.83705± 0.00737 6.61

6. Experimental results

An important preliminary question is whether the EDCM
approximation leads to as good clustering results as the
DCM distribution. Table 1 indicates that the answer to this
question is yes, since the differences in mutual informa-
tion values achieved are not statistically significant. The
perplexity values shown for the two methods are different
because these values depend on the normalization constant
for each distribution. This constant is not known exactly
for the EDCM, and computed EDCM perplexity values are
overestimates. The times shown in Table 1 are for one
clustering run to convergence, for comparably optimized
Matlab code. DCM-based clustering is 21 and 114 times
slower.

Figure 2 shows the outcome of running five different clus-
tering algorithms on the Classic400 and NIPS document
collections. For each algorithm 100 points are plotted in
each panel. The dots in the top left cloud are measurements
for EM with the EDCM distribution, with annealing. The
stars in the middle cloud correspond to EM with the von
Mises-Fisher distribution, while the dots in the top right
cloud correspond to EM with the multinomial distribution,
again with annealing. The bottom left cloud of plus signs
corresponds to EM without annealing with the EDCM; the
bottom right cloud is for EM without annealing with the
multinomial.

Several conclusions are clear from Figure 2. First, the best
perplexity and the best mutual information are achieved by
EDCM-based clustering with annealing. For all EDCM
and multinomial methods, there is a strong correlation
between good perplexity and good mutual information,
within the confines of each method. This means that for
these methods optimizing perplexity, which can always be
measured, is a good way to maximize mutual information,
which cannot be measured in real applications.

As mentioned above, perplexity is not defined for continu-
ous models such as mixtures of vMF distributions. There-
fore, the horizontal axis for vMF results in each panel of
Figure 2 shows scaled negative log-likelihood, not per-
plexity. In panel (b) the correlation between better log-
likelihood and better mutual information is weak, while in
panel (a) the direction of correlation is reversed. These
correlations suggest that when clustering with a mixture

Table 2. Alternative clusterings of the Classic400 collection.

Medline
CISI

Cranfield

91 1 8
1 99

194 6

99 1
100
25 134 41

(a) EDCM clustering (b) vMF clustering

of vMF distributions, optimizing log likelihood is unfor-
tunately not a good way to optimize mutual information.

For the Classic400 collection, the average mutual infor-
mation achieved by vMF clustering is0.582 ± 0.004
(mean plus/minus standard error), almost exactly the same
as reported previously for this algorithm on this collec-
tion (Banerjee et al., 2005a). The average mutual infor-
mation achieved by EDCM clustering with annealing is
0.772± 0.011, and by multinomial clustering with anneal-
ing 0.588± 0.013, but only0.127± 0.007 without anneal-
ing. All differences are statistically significant, except be-
tween the vMF method and the multinomial with annealing
method. One may ask whether these performance dif-
ferences matter in practice. Table 2 shows the confusion
matrix of the clustering that has best log likelihood among
all 100 plotted in panel (a) of Figure 2. It is clear that
the EDCM method succeeds in separating the three true
groups, while the vMF method does not.

Table 3 shows the average perplexity and average mutual
information achieved with ten runs of each algorithm on
each of the fifteen document collections used in (Zhong &
Ghosh, 2005). For comparability, mutual information is
normalized as explained in (Zhong & Ghosh, 2005). Stan-
dard errors are not given for perplexity averages to improve
readability; they are typically around±10 or less. EDCM-
based clustering yields statistically significantly superior
perplexity for every document collection. Results as mea-
sured by mutual information are not clearcut: each algo-
rithm is the best on some collections. For both multinomial
and EDCM-based clustering, for all collections except two,
better perplexity is correlated with better mutual informa-
tion. For vMF-based clustering, better perplexity is unfor-
tunately correlated with worse mutual information just as
often as with better mutual information.
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Table 3. Perplexity (p), normalized mutual information (NMI± standard error), and correlation (r) results on fifteen document collec-
tions.

multinomial EDCM vMF
name D n̄d W k p NMI r p NMI r NMI r

NG20 19949 120.0 43585 202944 0.590± 0.004 0.73 1953 0.546± 0.005 0.75 0.249± 0.006 0.07
NG17-19 2998 164.9 15808 33857 0.375± 0.028 0.69 2594 0.150± 0.036 0.47 0.149± 0.001 0.94
classic 7089 42.9 12009 4 1370 0.699± 0.020 0.36 912 0.729± 0.028 0.82 0.315± 0.006 0.99
ohscal 11162 104.2 11465 101235 0.384± 0.010 0.93 558 0.387± 0.004 0.24 0.261± 0.008 0.31
hitech 2301 228.3 10080 62086 0.282± 0.004 -0.07 1328 0.235± 0.005 -0.15 0.283± 0.005 -0.80
reviews 4069 281.2 18482 52866 0.593± 0.028 0.67 2062 0.509± 0.007 0.09 0.508± 0.016 -0.16
sports 8580 200.8 14866 71632 0.587± 0.013 0.48 1211 0.561± 0.009 0.86 0.448± 0.014 -0.98
la1 3204 248.3 17265 62714 0.498± 0.015 0.91 1579 0.417± 0.011 0.56 0.417± 0.014 0.60
la12 6279 246.3 11231 62882 0.525± 0.014 0.69 1624 0.445± 0.006 0.44 0.385± 0.016 -0.27
la2 3075 244.2 15203 62543 0.487± 0.014 0.89 1488 0.407± 0.011 0.77 0.390± 0.014 -0.18
k1b 2340 194.3 13856 62129 0.621± 0.014 0.64 1421 0.609± 0.013 0.27 0.585± 0.014 -0.53
tr11 414 1025.4 6412 9 1088 0.444± 0.025 0.55 964 0.382± 0.012 0.61 0.591± 0.011 0.76
tr23 204 2416.2 5814 6 1068 0.142± 0.015 -0.35 927 0.189± 0.016 0.86 0.258± 0.020 0.42
tr41 878 404.9 7445 10 1337 0.624± 0.013 0.72 1043 0.520± 0.010 -0.04 0.512± 0.015 -0.06
tr45 690 937.0 8249 10 1194 0.499± 0.022 0.22 1020 0.492± 0.015 0.17 0.535± 0.013 0.00

7. Discussion

The experimental results above show that mixtures of
EDCM distributions always achieve much lower perplex-
ity than mixtures of multinomials, when modeling docu-
ment collections. The reason for this success is that EDCM
models account correctly for the fact that if a word appears
once in a document, it is likely to appear again, even if the
first appearance is unlikely. In contrast, multinomial mod-
els tend to be excessively “surprised” by later occurrences.

We expect that the perplexity improvements achieved by
mixtures of EDCMs will carry through to more complex
models such as LDA and correlated topic models (Blei
et al., 2003; Blei & Lafferty, 2005), when multinomials
are replaced by EDCMs in these. Any document model
that is built on top of multinomials either will suffer from
improper modeling of burstiness, or will have to devote ad-
ditional parameters to capturing burstiness, when this phe-
nomenon could be captured by basing the complex model
on DCM or EDCM models instead of on multinomials.
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