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ABSTRACT

We present a source localization method based upon a sparse
representation of sensor measurements with an overcomplete basis
composed of samples from the array manifold. We enforce spar-
sity by imposing an `1-norm penalty; this can also be viewed as
an estimation problem with a Laplacian prior. Explicitly enforcing
the sparsity of the representation is motivated by a desire to obtain
a sharp estimate of the spatial spectrum which exhibits superres-
olution. To summarize multiple time samples we use the singular
value decomposition (SVD) of the data matrix. Our formulation
leads to an optimization problem, which we solve efficiently in
a second-order cone (SOC) programming framework by an inte-
rior point implementation. We demonstrate the effectiveness of the
method on simulated data by plots of spatial spectra and by com-
paring the estimator variance to the Cramer-Rao bound (CRB).
We observe that our approach has advantages over other source
localization techniques including increased resolution; improved
robustness to noise, limitations in data quantity, and correlation of
the sources; as well as not requiring an accurate initialization.

1. INTRODUCTION

Many advanced techniques for the localization of point sources
achieve superresolution by exploiting the presence of a small num-
ber of sources. For example, the key component of the MUSIC
method is the assumption of a small-dimensional signal subspace.
We follow a different approach for exploiting such structure: we
pose source localization as an overcomplete basis representation
problem, where we impose a penalty on the lack of sparsity of the
spatial spectrum. In this context, each basis vector corresponds
to an array manifold vector for a possible source location among
a sampling grid of locations. The representation of the observed
sensor data in terms of an overcomplete basis is not unique, and
additional constraints have to be imposed to regain uniqueness.
Our main goal is sparsity, so using constraints to minimize di-
rectly the number of non-zero coefficients (hence the number of
sources) would be ideal, yet computationally prohibitive. In order
to get around this challenge, we relax the problem using an idea
similar to that of basis pursuit [1], and form an optimization prob-
lem containing an `1-norm-based penalty for the spatial spectrum.
When we view this optimization problem as a maximum a poste-
riori (MAP) estimation problem, the `1 penalty corresponds to a
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Laplacian prior distribution assumption for the spectrum. These
ideas are explored in more detail in Section 2.

In Section 3, we describe the narrowband source localization
problem and turn it into a form appropriate for the overcomplete
basis methodology. We then perform a singular value decompo-
sition (SVD) of the data matrix, which provides a useful way of
handling multiple snapshots. In the SVD domain, we form our op-
timization functional for source localization, consisting of a data
fidelity term, as well as the `1-norm-based sparsity constraint. In
Section 4, we outline a numerical solution of this optimization
problem in a second-order cone (SOC) programming framework
[8] by an interior point implementation [2]. Section 5 describes an
adaptive grid refinement procedure which alleviates the effects of
the grid. In Section 6 we propose a technique for the automatic
selection of the regularization parameter involved in our method.
Our experimental analysis in Section 7 shows that the proposed
method provides better resolvability of closely-spaced sources, as
well as improved robustness to low SNR, and the presence of cor-
related sources, as compared to currently available methods. Fur-
thermore, our approach appears to have robustness to limited num-
bers of time samples, and unlike maximum likelihood (ML) meth-
ods, it does not require an accurate initialization, since the cost
function is convex, and the optimization procedure is globally con-
vergent [7].

The basic idea of using a sparse signal representation perspec-
tive for source localization was contained in our earlier work [3,4],
and in [5]. The two main contributions of this paper are the SVD-
domain formulation, and the adaptation and use of SOC optimiza-
tion. In addition, we describe a multi-resolution technique for re-
fining the spatial sampling grid, and a method for the automatic
choice of the hyperparameter involved in our approach.

2. SPARSITY AND OVERCOMPLETENESS

We now describe the basic idea of enforcing sparsity in overcom-
plete basis representations, which will be used in Section 3 for
the source localization problem. Given a signal y ∈ C

M , and
an overcomplete basis A ∈ C

M×N , N > M , we would like to
find s ∈ C

N such that y = As, and s is sparse. Define ‖s‖0
0 to

be the number of non-zero elements of s. We would like to find
min ‖s‖0

0 subject to y = As. This is a very hard combinatorial
problem. It can be shown [6, 7] 1 that under certain conditions on
A and s, the optimal value of this problem can be found exactly
by solving a related problem: min ‖s‖1 subject to y = As.

1The result in [6] assumes A is composed of two orthogonal bases.
In [7], we extend this result to any overcomplete basis, and also consider
`p-norms, p < 1.



A natural extension when we allow white Gaussian noise is

y = As + n, (1)

which can be solved by min(‖y−As‖2
2+λ‖s‖1). The parameter

λ controls the trade-off between the sparsity of the solution and the
residual. This method is called basis pursuit [1], (or LASSO in the
statistics literature). This cost functional also results from MAP
estimation with a Laplacian prior, p(si) = α

2
e−α|si|. When s

is complex, the phase is taken with uniform distribution in [0, 2π].
The Laplacian prior has heavy tails and favors a sparse representa-
tion.

3. SOURCE LOCALIZATION FRAMEWORK

The narrowband source localization problem is:

y(t) = A(θ)x(t) + n(t), t = 1, .., T (2)

The data, y(t) ∈ C
M , are the observations from M sensors, and

x(t) ∈ C
K is a vector of unknown signals transmitted from K

unknown locations θk. A(θ) = [a(θ1), ..., a(θK)] is composed
of the steering vectors a(θk). The manifold a(θ) is known as a
function of θ. The goal is to estimate θ = [θ1, ..., θK ].

Note that this problem is different from (1). First, the ma-
trix A(θ) is unknown, and second we have multiple time sam-
ples, t=1,..,T. To address the first point, we introduce a grid of pos-
sible locations, {θ̃1, ..., θ̃N}, and form A = [a(θ̃1), ..., a(θ̃N )].

Also, let si(t) =

{

xk(t), if θ̃i = θk

0, otherwise
. Then the problem takes

the form y(t) = As(t) + n(t) (3)

The important point is that A is known, and does not depend on the
unknown source locations θk, as A(θ) did. The source locations
are now encoded by the non-zero indices of s(t). In effect, we
have transformed the problem from finding a point estimate of θ,
to estimating the spatial spectrum of s(t), which has to exhibit
sharp peaks at the correct source locations.

The second issue we raised was that of dealing with multiple
time samples. In principle, one can use the overcomplete basis
methodology to solve a signal representation problem at each time
instant t. This leads to a significant computational load, and to sen-
sitivity to noise, since no advantage is taken of other time samples.
Instead, we would like to use all the sensor data in synergy. Previ-
ously, we presented two approaches to deal with this issue [3, 4],
which required certain assumptions on the source signals. We now
present an SVD-based approach, which does not impose any re-
strictions on x(t). To this end, we view the data {y(t)} as a cloud
of T points lying in a K-dimensional subspace. Instead of keeping
every time sample, we can represent the cloud using its K largest
singular vectors (corresponding to the signal subspace).

Let Y = [y(1), ...,y(T )], and define S and N similarly. Then
we have Y = AS + N. Take the singular value decomposition:
Y = UΛV′. 2 Let YSV = UΛDK = YVDK , where DK =
[IK 0]′. Here IK is a K × K identity matrix, and 0 is a K ×
(T −K) matrix of zeros.3 Also, let SSV = SVDK , and NSV =
NVDK , to obtain YSV = ASSV + NSV . Now let us consider

2This is closely related to the eigen-decomposition of the correlation
matrix of the data: R =

1
T

YY′. Its eigen-decomposition is R =

1
T

UΛV′VΛ
′
U′

=
1
T

UΛ
2
U′.

3If T < K, or if the sources are coherent, we use the number of signal
subspace singular values instead of K in forming DK .

each column (corresponding to each singular vector) of this equa-
tion separately: ySV (k) = AsSV (k) + nSV (k), k = 1, .., K.
If K > 1, then we have several subproblems and we can combine
them into a single one by stacking. Let ỹ = vec(YSV ) (i.e. stack
all the columns into a column vector ỹ). Define s̃, and ñ similarly.

Also, let Ã =

(

A

. . .
A

)

, i.e. Ã is block diagonal with K repli-

cas of A. Finally, we get ỹ = Ãs̃ + ñ which is in the form of
(1).

The vector s̃ has been constructed by stacking sSV (k) for all
the signal subspace singular vectors, k = 1, .., K. Every spatial
index i appears for each of the singular vectors. We want to im-
pose sparsity in s̃ only spatially (in terms of i), and not in terms of
the singular vector index k. So, we combine the data with respect
to the singular vector index using an `2 norm, which does not favor

sparsity: s̃
(`2)
i =

√

∑K

k=1(s
SV
i (k))2, ∀i. The sparsity of the re-

sulting N ×1 vector s̃(`2) corresponds to the sparsity of the spatial
spectrum. We can find the spatial spectrum of s̃ by minimizing

‖ỹ − Ãs̃‖2
2 + λ‖s̃(`2)‖1 (4)

Note that our formulation uses information about the num-
ber of sources K. However, we empirically observe that incor-
rect determination of the number of sources in our framework has
no catastrophic consequences (such as complete disappearance of
some of the sources as may happen with MUSIC), since we are not
relying on the structural assumptions of the orthogonality of the
signal and noise subspaces. Underestimating or overestimating K

manifests itself only in gradual degradation of performance.

4. SOLUTION BY SOC PROGRAMMING

Now that we have an objective function in (4) to minimize, we
would like to do it in an efficient manner. The objective contains a

term ‖s̃(`2)‖1 =
∑N

i=1

√

∑K

k=1(s
SV
i (k))2, which is neither lin-

ear nor quadratic. We turn to second order cone (SOC) program-
ming, which deals with the so-called second order cone constraints

of the form s : ‖s1, ..., sn−1‖2 ≤ sn, i.e.
√

∑n−1
i=1 (si)2 ≤ sn.

SOC programming is a suitable framework for optimizing func-
tions which contain SOC, convex quadratic, and linear terms. The
main reason for considering SOC programming instead of generic
nonlinear optimization is the availability of efficient interior point
algorithms for the numerical solution of the former, e.g. [2].

The generic form of a second order cone problem is:

min c
′
x

such that Ax = b, and x ∈ K

where K = R
N
+ × L1... × LNL

. Here, R
N
+ is the N -dimensional

positive orthant cone, and L1, ...,LNL
are second order cones.

First, to make the objective function linear, we rewrite (4) as

min p + λq (5)

subject to ‖ỹ − Ãs̃‖2
2 ≤ p, and ‖s̃(`2)‖1 ≤ q

The vector s̃(`2) is composed of positive real values, hence ‖s̃(`2)‖1 =
∑N

i=1 s̃
(`2)
i = 1′ s̃(`2). The symbol 1 stands for an N × 1 vec-

tor of ones. The constraint ‖s̃(`2)‖1 ≤ q can be rewritten as



√

∑K

k=1(s
SV
i (k))2 ≤ ri, for i = 1, .., N , and 1′r ≤ q, where we

use r = [r1, ..., rN ]′. Also, let zk = ySV (k) − AsSV (k). Then,
we have:

min p + λq (6)

subject to ‖(z′
1, ..., z

′
K)‖2

2 ≤ p, and ,1
′
r ≤ q,

where

√

√

√

√

K
∑

k=1

(sSV
i (k))2 ≤ ri, for i = 1, .., N

The optimization problem in (6) is in the second order cone pro-
gramming form: we have a linear objective function, and a set of
quadratic4, linear, and SOC constraints.

5. ADAPTIVE GRID REFINEMENT

So far, in our framework, the estimates of the source locations
are confined to a grid. We cannot make the grid very fine uni-
formly, since this would increase the computational complexity
significantly. We explore the idea of adaptively refining the grid
in order to achieve better accuracy. The idea is a very natural one:
instead of having a universally fine grid, we make the grid fine
only around the regions where sources are present. This requires
an approximate knowledge of the locations of the sources, which
can be obtained by using a coarse grid first. The algorithm is the
following:

1. Create a rough grid of potential source locations θ̃
(0)
i , for

i = 1, .., Nθ . Set r = 0. The grid should not be too rough,
not to introduce substantial bias. A 1◦ or 2◦ uniform sam-
pling usually suffices.

2. Form Ar = A(θ̃
(r)

), where θ̃
(r)

= [θ̃
(r)
1 , θ̃

(r)
2 , ..., θ̃

(r)
Nθ

].
Use our method from Section 3 to get the estimates of the
source locations, θ̂

(r)
j , j = 1, .., K, and set r = r + 1.

3. Get a refined grid θ̃
(r)

around the locations of the peaks,
θ̂
(r−1)
j . We specify how this is done below.

4. Return to step 2 until the grid is fine enough.

Many different ways to refine the grid can be imagined; we
choose simple equi-spaced grid refinement. Suppose we have a
locally uniform grid (piecewise uniform), and at step r the spac-
ing of the grid is δr . We pick an interval around the j-th peak of
the spectrum which includes two grid spacings to either side, i.e.
[θ̂

(r)
j − 2δr, θ̂

(r)
j + 2δr], for j = 1, .., K. In the intervals around

the peaks we select the new grid whose spacing is a fraction of the
old one, δr+1 = δr

γ
. It is possible to achieve fine grids either by

rapidly shrinking δr for a few refinement levels, or by shrinking
it slowly using more refinement levels. We find that the latter ap-
proach is more stable numerically, so we typically set γ = 3, a
small number. After a few (e.g. 5) iterations of refining the grid,
it becomes fine enough that its effects are almost transparent. This
idea has been successfully used for some of the experimental anal-
ysis we present in Section 7.

4Quadratic constraints can be readily represented in terms of SOC con-
straints. See [8] for details.
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Fig. 1. Spatial spectra for beamforming, Capon’s method, MU-
SIC, and the proposed method (L1-SVD) for uncorrelated sources,
DOAs: 65◦ and 70◦. Top: SNR = 10 dB. Bottom: SNR = 0 dB.

6. REGULARIZATION PARAMETER SELECTION

An important part of our source localization framework is the choice
of the regularization parameter λ in (4), which balances the fit of
the solution to the data versus the sparsity prior. The same ques-
tion arises in many practical inverse problems, and is still an open
problem, especially if the objective function is not quadratic. An
old idea under the name of discrepancy principle [9] is to select
λ to match the residuals of the solution obtained using λ to some
known statistics of the noise, when such are available. For exam-
ple, if the variance of the i.i.d. Gaussian noise is known, then one
can select λ such that ‖ỹ − Ãs̃‖2

2 ≈ E[‖ñ‖2
2]. Searching for a

value of λ to achieve the equality is rather difficult, and requires
solving the problem (4) multiple times for different λ’s.

Instead, we propose to look at the constrained version of the
problem in (4), which can also be efficiently solved in the second
order cone framework [7]:

min ‖s̃(`2)‖1 subject to ‖ỹ − Ãs̃‖2
2 ≤ β

2 (7)

For this problem the task of choosing the regularization parameter
β properly is considerably easier. We choose β high enough so
that the probability that ‖ñ‖2

2 ≥ β2 is small. We describe the
details in [7].

7. EXPERIMENTAL RESULTS

We consider a uniform linear array of M = 8 sensors separated
by half a wavelength of the actual narrowband source signals. Two
zero-mean narrowband signals in the far-field impinge upon this
array from distinct directions of arrival (DOA). The total number
of snapshots is T = 200. In Figure 1, we compare the spectrum
obtained using our proposed method with those of beamforming,
Capon’s method, and MUSIC. In the top plot, the SNR is 10 dB,
and the sources are closely spaced (5◦ separation). Our technique
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Fig. 2. Spectra for correlated sources, SNR = 20dB, DOAs:
63◦ and 73◦.

and MUSIC are able to resolve the two sources, whereas Capon’s
method and beamforming methods merge the two peaks. In the
bottom plot, we decrease the SNR to 0 dB, and only our technique
is still able to resolve the two sources. In Figure 2, we set the SNR
to 20 dB, but make the sources strongly correlated. MUSIC and
Capon’s method would resolve the signals at this SNR were they
not correlated, but correlation degrades their performance. Again,
only our technique is able to resolve the two sources. This illus-
trates the power of our methodology in resolving closely-spaced
sources despite low SNR or correlation between the sources.

One aspect of our technique is that it is biased for closely-
spaced sources when λ is selected appropriately for low SNR.
However other source localization methods have much difficulty
resolving closely-spaced sources, especially at low SNRs, hence
small bias can be considered as a good compromise. In Figure 3,
we plot the bias of each of the two source location estimates as
a function of the separation between the two sources, when one
source is held fixed at 42◦. The SNR is 10 dB. The values on each
curve are an average over 50 trials. The plot shows the presence of
bias for low separations, but the bias disappears when sources are
more than about 20 degrees apart.

We next compare the performance of our approach in terms of
the variance of the DOA estimates to other methods, as well as to
the Cramer-Rao bound (CRB). In order to satisfy the assumptions
of the CRB, we choose an operating point where our method is un-
biased. In Figure 4, we present plots of variance versus SNR for a
scenario including two strongly correlated sources5. The correla-
tion coefficient is 0.99. Each point in the plot is the average of 50
trials. Our approach follows the CRB more closely than the other
methods. This shows the robustness of our method to correlated
sources.
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