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ABSTRACT

We address the task of source localization using a novel non-parametric
data-adaptive approach based on regularized linear inverse prob-
lems with sparsity constraints. The class of penalty functions that
we use for regularization favors sparsity of the reconstructions,
thus producing superb resolution of the sources. We present a
computationally efficient technique to carry out the numerical op-
timization of the resulting cost function. In comparison to con-
ventional source localization methods, the proposed approach pro-
vides numerous improvements, including increased resolution, re-
duced sidelobes, and better robustness properties to noise, limited
snapshots, and coherence of the sources. The method is devel-
oped for the general source localization scenario, encompassing
nearfield and farfield, narrowband and broadband, and non-linear
array geometry cases. Simulation results manifest the capabilities
of the approach.

1. INTRODUCTION

Source localization using sensor arrays has been an active research
area, playing a fundamental role in many applications involving
electromagnetic, acoustic, and seismic sensing. Conventional beam-
formers have a limited resolution, and this has led to the develop-
ment and successful application of more advanced techniques. Ex-
amples are Capon’s minimum variance method [1], and a variety
of superresolution methods based on eigenvalue decomposition,
such as MUSIC [2]. Such methods exploit the presence of a small
number of sources in order to focus the estimated signal energy
towards the source locations to achieve superresolution.

We propose a different approach which exploits such sparse
structure to a greater degree to achieve superresolution in source
localization. We turn to the linear inverse problem framework for
the relative ease with which prior information about the unknown
quantity (signal energy as a function of location) can be incor-
porated into the model. To free the forward operator (the array
steering matrix) from depending on the source locations, an over-
complete representation is used, which plays an important role in
achieving sparsity. The key to the method is to use a non-quadratic
sparsity-enforcing term such as an `p-quasi-norm in the cost func-
tion in conjunction with a least squares data-fidelity term. The
source position estimate is obtained by forming the energy spec-
trum of the solution, and locating its peaks. In the past decade,
related ideas have found use in various applications such as image
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restoration [4], radar imaging [5], and penalized regression [15].
There has also been some limited investigation of ideas similar to
ours in the array processing literature [6, 7, 16]. In [14], we have
presented a specific version of our proposed approach for the nar-
rowband, farfield, uniform linear array (ULA) case. The contribu-
tion of the current paper is the extension of the framework to more
general source localization scenarios.

Our experimental analysis on simulated data demonstrates that
compared to methods such as MUSIC, the proposed technique of-
fers increased resolution, reduced sidelobes, as well as robustness
to noise, limited data, coherence of the sources, and to mismatch
of the location of the sources with the scanning grid.

2. OBSERVATION MODEL

Consider K signals uk(t), k 2 f1; :::; Kg, impinging on an array
of M omnidirectional sensors corrupted by additive noise nm(t)
resulting in sensor outputs ym(t),m 2 f1; :::;Mg. Let f�1; :::; �N�g
be a sampling grid of all source locations. In the farfield case, �n’s
are scalars representing the directions of arrival (DOA), whereas
in the nearfield case, �n’s are vectors containing range and bearing
information. We represent the signal field by an N� � 1 vector
s(t), where the n-th element sn(t) is non-zero and equal to uk(t)
if source k comes from �n, for some k. In the frequency domain,
signal field at frequency ! will be denoted by s(!), resulting in a
slight abuse of notation. Similarly, n(!) will be used for noise. In
the narrowband case, the model becomes:

y(t) = As(t) + n(t); t = 1::T; (1)

where A = A(!0) and !0 is the center frequency. For wideband
case,

y(!) = A(!)s(!) + n(!); ! = !1::!W (2)

The M � N� matrices A(!) are composed of steering vectors
corresponding to each potential source location. Unlike the nar-
rowband case, in the wideband case the steering matrix is not the
same for all snapshots, but rather it depends on frequency.

Note that A differs from the steering matrix representation
used in many array processing methods in the sense that it con-
tains steering vectors for all potential locations, rather than only
the (unknown) source signal locations. Hence, in our framework
A is known and does not depend on the actual source locations.
The reason behind using such redundancy in the representation is
our desire to formulate the problem in a sparse signal reconstruc-
tion framework. This can also be viewed as representing the ob-
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servations as combination of elements from an overcomplete sig-
nal dictionary, as in adaptive signal representation methods such
as basis pursuit [8].

In the nearfield caseA also includes factors due to the uneven
attenuation of the source signals at the sensors.

3. SOURCE LOCALIZATION SCHEME

As in numerous non-parametric source localization techniques, our
approach consists of forming an estimate of the signal energy as a
function of position, which ideally contains dominant peaks at the
source locations. We need to obtain an estimate of the signal field
s (hence its energy) through the sensor observations y, which is
in general an ill-posed inverse problem. The central idea in our
approach is to solve this inverse problem via regularizing it by fa-
voring sparse signal fields, where energy is concentrated around a
small number of locations. In particular, we find s as the minimizer
of an objective function of the following form: 1

J(s) = J1(s) + �J2(s) (3)

where J1(s) is an `2-norm-based data fidelity term, J2(s) reflects
the regularizing sparsity constraint we would like to impose, and �
is a scalar parameter controlling the tradeoff between data-fidelity
and regularization. The choice of J2(s) is critical for attaining
the objectives of superresolution and noise suppression. Some of
the candidates include entropy [9], and `p-quasi-norm constraints.
Note that the use of `2-norm in J2(s) leads to results proportional
to the periodogram. The use of `1-norm is discussed in [16]. We
use J2(s) based on `p-quasi-norms where p < 1. In simulation,
we observe that keeping p strictly less than 1 noticeably increases
resolution. Use of other non-quadratic functions is possible. Thus
the objective function becomes:

J(s) = ky�Ask22 + �kskpp (4)

where k � kp denotes the `p-quasi-norm, (
P

i jsij
p)1=p.

Unlike some inverse problems applications such as image restora-
tion, the data in sensor-array processing typically has one more di-
mension, time, which can be handled in numerous ways. The most
direct way is to solve the inverse problem at each time instance (or
at each frequency), and to use multiple reconstructions to get an
estimate of the source locations. However, both the computational
complexity and sensitivity to noise would be very high.

In the case when the complex envelopes are non-zero mean,
averaging can be used to improve upon the previous case. The data
is combined prior to the reconstructions, and thus only a single
inverse problem has to be solved. The robustness to noise is also
substantially improved. Finally, since the exact statistical nature of
the sources plays a little role with such processing, only the means
are of concern, so coherent sources can be readily handled.

Yet another possibility is to transform the data into the beamspace
domain, and combine squared amplitudes of the time samples. The
steered beams are sampled on a grid of angles, and the correspond-
ing collection of manifold vectors is kept as columns in matrix B.
Then the beamspace data are

z(t) = B
H(y(t) + n(t)) = (BH

A)s(t) +BH
n(t) (5)

1Note that we have suppressed the dependence on time t and frequency
! for simplicity.

Denote the i; jth entry of BHA by vi;j , and BHn(t) by ~n(t).
Then

jz(t)j2i = j
X
j

sj(t)vi;j + ~ni(t)j
2

=
X
j

jsj(t)j
2jvi;j j

2 + 2
X
j1 6=j2
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�sj2 (t)v

�
i;j1vi;j2

+ 2
X
j

sj(t)
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When the sources are uncorrelated and zero mean, and the noise is
zero mean, the cross terms are all zero mean, and their time sums
are negligible. Hence the average squared beamspace data jzj2

can be represented well by a linear transformation of the element-
by-element square of BHA, denoted by V, with average squared
noise j~nj2 added.

jzj2 = Vjsj2 + j~nj2 (6)

Despite the assumptions of zero-mean and uncorrelatedness in the
development, on simulated examples the reconstructions exhibit
peaks in the vicinity of the correct source locations even when
these conditions are not met.

3.1. Numerical Solution

Herein, we outline the solution of the optimization problem in (4).
The sparsity enforcing matrix inversion algorithm applies with mi-
nor changes to all the three scenarios of treating time dependence,
thus only the general form will be presented. In the beamspace
and time-average versions it is applied once, whereas when the
temporal data is not combined, it is applied for each snapshot.

In order to avoid dealing with nonsmooth optimization, we
use the following smooth approximation to the p̀-quasi-norm in
(4) [3]:

kskpp �

KX
i=1

(jsij
2 + �)p=2 (7)

where � � 0 is a small constant, K is the length of the complex
vector z, and zi denotes its i-th element. The following slightly
modified cost function ensues:

J�(s) = ky�Ask22 + �

N�X
i=1

(jsij
2 + �)p=2 (8)

Note that J�(s) ! J(s) as � ! 0. The minimization of J(s) or
J�(s) does not yield a closed-form solution in general, so numeri-
cal optimization techniques must be used.

For solution of this optimization problem, we use the half-
quadratic regularization method of [11]. Half-quadratic regulariza-
tion converts a non-quadratic optimization problem into a series of
quadratic problems. We skip the derivations here and present the
resulting iterative algorithm:

H
�
ŝ
(n)
�
ŝ
(n+1) = A

H
y (9)

where n denotes the iteration number, and:

H(s) , 2AH
A+ ��(s) (10)



�(s) , diag

�
p

(jsij2 + �)1�p=2

�

where diagf�g is a diagonal matrix whose i-th diagonal element is
given by the expression inside the brackets. The important differ-
ence from methods such as ridge regression lies in the dependence
of �(s) on the previous iterate, and on the use of a non-quadratic
regularization term.

The method can also be interpreted as quasi-Newton with Hes-
sian approximation H. The full Hessian is given by

rJss = H(s) + �diag

�
p(p� 2)jsij

2

(jsij2 + �)2�p=2

�
(11)

The second term is always negative and may make the Hessian
indefinite. By keeping the first part only, we get a positive definite
approximation to the Hessian. Also, for p = 2, the approximation
becomes exact.

The quasi-Newton iteration has the following form:

ŝ
(n+1) = ŝ

(n) +H
�
ŝ
(n)
��1

rJs
�
ŝ
(n)
�

(12)

By choosing stepsize to be equal to 1, a cancellation of the terms
in the right hand side reduces this iteration to (9). We run the iter-

ation until k�̂s(n+1)��̂s(n)k22

k�̂s(n)k22
< Æ, where Æ > 0 is a small constant.

Compared to standard optimization tools, the above scheme yields
an efficient method matched to the structure of our optimization
problem. Convergence properties of algorithms of this type have
been analyzed, and convergence from any initialization to a local
minimum is guaranteed [4, 12].

4. CONDITIONS FOR UNIQUE SOLUTIONS

We shall limit this section solely to the consideration of the unique-
ness of sparse representations of signals in terms of an overcom-
plete basis. The proposed method is an attempt to approximate
the sparse representation, thus if the sparse representation is not
unique then the proposed method will also have multiple possible
solutions. However, the reverse is not always true. The question of
uniqueness of global optima for cost function in (8), and the attain-
ability of the unique sparse solution using the iterative procedure
will not be considered.

Consider the inverse problem y = As, y is M � 1, A is
N� �M , and s is N� � 1. Using our representation, typically
A will contain significantly more columns than the number of
sensors, N� >> M . Assuming that the array is rank-M unam-
biguos [17], every set of M distinct manifold vectors (columns of
A) will be linearly independent. Then any set of M columns form
a basis for the space. If the number of sources K � M , sensor
data can be represented by a linear combination of those K vec-
tors, hence the representation is not unique. When K < M , a
solution in terms of K arbitrary steering vectors will not exist for
an arbitrary signal. However, if K > M=2, there will exist sig-
nals for which there are multiple possible sparse representations
in terms of K steering vectors: consider a set of 2K array vec-
tors a1; :::; a2K . If 2K > M then the set is linearly dependent,
and there exist �1:::�2K such that

PK
i=1 �iai =

P2K
i=K+1 �iai.

Any signal lying on the line (
PK

i=1 �iai);  = �1::1 will
have two possible representations. The number of lines in the data
space allowing ambiguous representations explodes combinatori-
ally with the number of considered steering vectors, thus lack of

uniqueness becomes a likely outcome when even small amounts
of noise are present. However, if K �M=2, then

P2K
i=1 �iai = 0

only has the solution �i = 0 for all i. Therefore, the maximum
number of sources with unique sparse representation in terms of an
overcomplete rank-M unambiguous basis is b(M + 1)=2c. This
conclusion corresponds well to the simulations. Note that we have
not discussed whether the proposed approach will be able to arrive
at the unique solution, thus this condition serves as an upper bound
for the number of resolvable sources. For the beamspace version
of the algorithm, the inverse problem is (6), and the situation gets
more complicated, since rank ofV has a nontrivial dependence on
M . Simulations suggest that the upper bound on the number of
resolvable sources is M � 1.

5. SIMULATION RESULTS

We presented the results for farfield narrowband case with uniform
linear arrays and non-zero mean signals in [14]. First, we extend
the results to zero-mean uncorrelated sources. A uniform linear ar-
ray with 8 sensors is considered. We use p = 0:1 in our technique,
and the regularization parameter is chosen by subjective assess-
ment.
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Fig. 1. Spatial spectra of two zero-mean sources with DOAs of
68Æ and 73Æ. SNR = 0 dB.
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Fig. 2. Probability of correct detection as a function of SNR.
DOAs: 68Æ and 73Æ.



Figure 1 shows the spectrum plots with two sources coming
from DOAS 68Æ and 73Æ from endfire. MUSIC, Capon’s, and
beamforming spectra fail to separate the peaks this close together
and at such low SNR, whereas the proposed technique recovers
both DOAs. Figure 2 examines the probability that the detected
peaks fall within 1Æ of the true source location. The probability
for each SNR is empirically obtained using 200 trials. It can be
seen that the proposed technique performs better than the other
techniques at low SNRs.

Next, we consider a nonlinear array geometry. No assump-
tions about linearity or uniformity of the array have been made
in the development, thus the algorithm extends unchanged to any
geometry. We consider an 8-element Mills cross array, with sen-
sors residing on two perpendicular lines. We now consider non-
zero mean signals, and the averaging version of the proposed tech-
nique. The cross array has a smaller spatial extent then the linear
array with the same number of sensors, and thus the beamwidth
is larger. To avoid dealing with asymptotic bias of the proposed
technique [14], which occurs when the manifold vectors at the
source DOAs are far from being orthogonal, the spacing between
the signals is chosen to be 30Æ. The spectrum plot is presented in
Figure 3, and the probability of detection vs. SNR appears in Fig-
ure 4. The proposed technique performs better than MUSIC and
Capon’s methods at low SNR. The same behavior is observed for
probability of detection vs. number of samples [14], thus the pro-
posed technique is more robust to limited quantity and quality of
sensor observations, provided that the steering vectors at the true
source locations are sufficiently far from being linearly dependent.
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Fig. 3. Cross-array, two sources with DOAs of 60Æ and 90Æ.
SNR = 3 dB.

For the nearfield case, source locations are parameterized by
range and bearing. By flattening the 2-D search grid into a vec-
tor we get a similar computational problem to that of the farfield
case. The conventional and proposed reconstructions containing
two nearfield narrowband sources are presented in Figure 5. The
method exhibits resolution analogous to the farfield case. How-
ever, the dimension of the optimization problem grows quadrati-
cally with the fineness of the search grid. Thus to get very accurate
estimates of the source locations tractably, either a multi-resolution
approach or an approach separating the search variables has to be
used.

−15 −10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capon
MUSIC
LP−reg
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Fig. 5. Nearfield spectra: conventional (left) and proposed (right)

The wideband case is accomplished in one of two ways. The
most straightforward way is to process the data frequency by fre-
quency, and to aggregate the resulting narrowband spectra. The
amount of computation is proportional to the number of frequen-
cies of interest. The conventional and proposed spectra for three
chirps are presented in Figure 6. Note that when using the conven-
tional method, the chirps are not resolved except at the very end of
their frequency span.
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The alternative way is to merge all frequencies into one model, and
to reconstruct the resulting system once. One of the side-effects is
that sparsity is enforced both spatially and in frequency. This en-
hances the resolution for signals consisting of multiple harmonics,
but general wideband signals have to be treated differently. One
possibility is to apply a different prior in the frequency domain, de-
pending on the nature of the signals, for example on smoothness of
the spectrogram. Another possibility is to use an appropriate basis



if the family of signals is restricted to have a sparse representation
in that basis, for example, chirps have a sparse representation in
the chirplet basis. Extension to the general wideband case is the
subject of ongoing research.

6. CONCLUSIONS AND CURRENT WORK

We have approached the source localization problem with a sparse
signal reconstruction perspective. We have developed and demon-
strated the viability of a non-parametric superresolution source
localization method in a variational framework, using `p-quasi-
norm-based functionals as regularizing constraints. Several ver-
sions of the method have been presented to handle zero and non-
zero mean signals, and correlated and uncorrelated sources. The
approach improves upon the source localization accuracy of cur-
rently used nonparametric methods, especially in low-SNR and
limited-data scenarios. The method is very versatile, encompass-
ing farfield, nearfield, narrowband and wideband cases, as well as
non-uniform array geometry.

Our current work involves the examination and extension of
various aspects of our approach. An important issue in our method
is the selection of the parameters p and �, which we have so far
done manually based on subjective qualitative assessment. Devel-
oping techniques for automatic choice of these parameters is of
great interest.

At the same time, we shall attempt to develop conditions for
global convergence of the proposed method, and investigate the
asymptotic bias in estimated source locations for closely spaced
targets. Comparison of the iterative algorithm to other optimiza-
tion methods such as the interior point methods also belongs to our
agenda.

We are also working on developing extensions of our varia-
tional framework to handle self-calibration by taking into account
uncertainties in sensor locations. As a starting point we are using
a coordinate descent procedure optimizing the extended cost func-
tion alternatingly over source locations, and then over the sensor
position errors.
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