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Abstract

Wepresentanounphrasecoreferencesys-
tem that extends the work of Soon et
al. (2001) and, to our knowledge, pro-
ducesthebestresultsto dateontheMUC-
6 andMUC-7 coreferenceresolutiondata
sets— F-measuresof 70.4 and63.4, re-
spectively. Improvementsarisefrom two
sources: extra-linguistic changesto the
learningframework anda large-scaleex-
pansionof thefeaturesetto includemore
sophisticatedlinguisticknowledge.

1 Intr oduction

Noun phrasecoreferenceresolution refers to the
problemof determiningwhich nounphrases(NPs)
refer to eachreal-worldentity mentionedin a doc-
ument. Machinelearningapproachesto this prob-
lem have beenreasonablysuccessful,operatingpri-
marily by recastingthe problemasa classification
task(e.g.Aone andBennett(1995),McCarthyand
Lehnert(1995)). Specifically, a pair of NPsis clas-
sifiedasco-referringor notbasedonconstraintsthat
are learnedfrom an annotatedcorpus. A separate
clusteringmechanismthencoordinatesthepossibly
contradictorypairwiseclassificationsandconstructs
a partition on the set of NPs. Soonet al. (2001),
for example,applyanNP coreferencesystembased
on decisiontree induction to two standardcoref-
erenceresolutiondatasets(MUC-6, 1995; MUC-
7, 1998),achieving performancecomparableto the
best-performingknowledge-basedcoreferenceen-
gines. Perhapssurprisingly, this wasaccomplished

in adecidedlyknowledge-leanmanner— thelearn-
ing algorithmhasaccessto just12surface-level fea-
tures.

ThispaperpresentsanNPcoreferencesystemthat
investigatestwo typesof extensionsto the Soonet
al. corpus-basedapproach. First, we proposeand
evaluatethreeextra-linguistic modificationsto the
machinelearning framework, which togetherpro-
vide substantialand statistically significant gains
in coreferenceresolutionprecision. Second,in an
attemptto understandwhetherincorporatingaddi-
tional knowledgecan improve the performanceof
a corpus-basedcoreferenceresolutionsystem,we
expandthe Soonet al. featureset from 12 features
to an arguablydeepersetof 53. We proposeaddi-
tional lexical, semantic,andknowledge-basedfea-
tures;mostnotably, however, we propose26 addi-
tional grammaticalfeaturesthat includea varietyof
linguistic constraintsandpreferences.Althoughthe
useof similarknowledgesourceshasbeenexplored
in thecontext of bothpronounresolution(e.g.Lap-
pin andLeass(1994))andNPcoreferenceresolution
(e.g.Grishman(1995),Lin (1995)),most previous
work treatslinguistic constraintsasbroadlyandun-
conditionallyapplicablehardconstraints.Because
sourcesof linguistic informationin alearning-based
systemarerepresentedasfeatures,we can,in con-
trast,incorporatethemselectively ratherthanasuni-
versalhardconstraints.

Our results using an expandedfeature set are
mixed.First,wefind thatperformancedropssignifi-
cantly whenusingthe full featureset,even though
the learning algorithms investigatedhave built-in
featureselectionmechanisms.We demonstrateem-
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pirically thatthedegradationin performancecanbe
attributed,at leastin part, to poor performanceon
commonnounresolution.A manuallyselectedsub-
set of 22–26 features,however, is shown to pro-
vide significantgainsin performancewhenchosen
specificallyto improve precisionon commonnoun
resolution.Overall, thelearningframework andlin-
guistic knowledgesourcemodificationsboostper-
formanceof Soon’s learning-basedcoreferenceres-
olutionapproachfrom anF-measureof 62.6to 70.4,
andfrom 60.4 to 63.4 for the MUC-6 andMUC-7
datasets,respectively. To our knowledge,theseare
thebestresultsreportedto dateonthesedatasetsfor
thefull NP coreferenceproblem.1

The restof the paperis organizedasfollows. In
sections2 and 3, we presentthe baselinecorefer-
encesystemandexplore extra-linguistic modifica-
tionsto themachinelearningframework. Section4
describesandevaluatestheexpandedfeatureset.We
concludewith relatedandfuturework in Section5.

2 The BaselineCoreferenceSystem

Our baselinecoreferencesystemattemptsto dupli-
cateboth the approachand the knowledgesources
employedin Soonetal. (2001).Morespecifically, it
employsthe standardcombinationof classification
andclusteringdescribedabove.

Building an NP coreference classifier. We use
the C4.5 decisiontree induction system(Quinlan,
1993) to train a classifierthat, given a description
of two NPs in a document,NP� and NP� , decides
whetheror not they are coreferent. Eachtraining
instancerepresentsthetwo NPsunderconsideration
and consistsof the 12 Soonet al. features,which
aredescribedin Table1. Linguistically, thefeatures
canbedivided into four groups:lexical, grammati-
cal,semantic,andpositional.2 Theclassificationas-
sociatedwith a training instanceis oneof COREF-
ERENT or NOT COREFERENT dependingonwhether
theNPsco-referin theassociatedtraining text. We
follow theprocedureemployedin Soonetal. to cre-

1Resultspresentedin Harabagiuet al. (2001) are higher
thanthosereportedhere,but assumethatall andonly thenoun
phrasesinvolved in coreferencerelationshipsareprovided for
analysisby thecoreferenceresolutionsystem.We presumeno
preprocessingof thetrainingandtestdocuments.

2In all of the work presentedhere,NPsareidentified,and
featuresvaluescomputedentirelyautomatically.

atethe trainingdata:we rely on coreferencechains
from theMUC answerkeys to create(1) a positive
instancefor eachanaphoricnounphrase,NP� , andits
closestprecedingantecedent,NP� ; and(2) anegative
instancefor NP� pairedwith eachof the intervening
NPs,NP����� , NP���	� , 
�
�
 , NP���� . This methodof neg-
ative instanceselectionis furtherdescribedin Soon
etal. (2001);it is designedto operatein conjunction
with their methodfor creatingcoreferencechains,
which is explainednext.

Applying the classifier to create coreference
chains. After training,thedecisiontreeis usedby
aclusteringalgorithmto imposeapartitioningonall
NPsin thetesttexts,creatingoneclusterfor eachset
of coreferentNPs. As in Soonet al., texts arepro-
cessedfrom left to right. EachNPencountered,NP� ,
is comparedin turn to eachprecedingNP, NP� , from
right to left. For eachpair, a testinstanceis created
as during training and is presentedto the corefer-
enceclassifier, which returnsa numberbetween0
and1 that indicatesthelikelihood that the two NPs
arecoreferent.3 NPpairswith classvaluesabove0.5
areconsideredCOREFERENT; otherwisethe pair is
consideredNOT COREFERENT. The processtermi-
natesassoonasanantecedentis foundfor NP� or the
beginningof thetext is reached.

2.1 BaselineExperiments

We evaluate the Duplicated Soon Baseline sys-
tem using the standardMUC-6 (1995) and MUC-
7 (1998) coreferencecorpora,training the corefer-
enceclassifieron the 30 “dry run” texts, and ap-
plying the coreferenceresolutionalgorithm on the
20–30“formal evaluation” texts. The MUC-6 cor-
pusproducesatrainingsetof 26455instances(5.4%
positive) from 4381 NPs and a test set of 28443
instances(5.2% positive) from 4565 NPs. For the
MUC-7 corpus,weobtainatrainingsetof 35895in-
stances(4.4%positive)from 5270NPsandatestset
of 22699instances(3.9%positive)from 3558NPs.

Resultsare shown in Table 2 (DuplicatedSoon
Baseline)whereperformanceis reportedin terms
of recall,precision,andF-measureusingthemodel-
theoreticMUC scoringprogram(Vilain etal.,1995).

3We convertthebinaryclassvalueusingthesmoothedratio������ ��� , wherep is the numberof positive instancesand t is the
total numberof instancescontainedin the correspondingleaf
node.



FeatureType Feature Description
Lexical SOON STR C if, after discardingdeterminers,thestring denotingNP� matchesthat of

NP� ; elseI.
Grammatical PRONOUN 1* Y if NP� is a pronoun;elseN.

PRONOUN 2* Y if NP� is a pronoun;elseN.
DEFINITE 2 Y if NP� startswith theword “the;” elseN.

DEMONSTRATIVE 2 Y if NP� startswith a demonstrative such as “this,” “that,” “these,” or
“those;” elseN.

NUMBER* C if theNPpairagreein number;I if they disagree;NA if numberinforma-
tion for oneor bothNPscannotbedetermined.

GENDER* C if theNPpairagreein gender;I if they disagree;NA if genderinformation
for oneor bothNPscannotbedetermined.

BOTH PROPER NOUNS* C if both NPsarepropernames;NA if exactly oneNP is a propername;
elseI.

APPOSITIVE* C if theNPsarein anappositive relationship;elseI.
Semantic WNCLASS* C if theNPshave thesameWordNetsemanticclass;I if they don’t; NA if

thesemanticclassinformationfor oneor bothNPscannotbedetermined.
ALIAS* C if oneNP is analiasof theother;elseI.

Positional SENTNUM* DistancebetweentheNPsin termsof thenumberof sentences.

Table1: FeatureSetfor theDuplicatedSoonBaselinesystem.Thefeaturesetcontainsrelationalandnon-relational

features.Non-relationalfeaturestestsomepropertyP of oneof theNPsunderconsiderationandtakeon a valueof YES or NO

dependingon whetherP holds. RelationalfeaturestestwhethersomepropertyP holdsfor the NP pair underconsiderationand

indicatewhethertheNPsareCOMPATIBLE or I NCOMPATIBLE w.r.t. P; avalueof NOT APPLICABLE is usedwhenpropertyPdoes

notapply. *’ d featuresarein thehand-selectedfeatureset(seeSection4) for at leastoneclassifier/datasetcombination.

The system achieves an F-measureof 66.3 and
61.2 on the MUC-6 andMUC-7 datasets,respec-
tively. Similar, but slightly worse performance
was obtained using RIPPER (Cohen, 1995), an
information-gain-basedrule learningsystem. Both
setsof resultsareat leastasstrongas the original
Soonresults(row oneof Table2), indicating indi-
rectly that our Baselinesystemis a reasonabledu-
plicationof thatsystem.4 In addition,the treespro-
ducedby Soonandby ourDuplicatedSoonBaseline
areessentiallythesame,differingonly in two places
wherethe Baselinesystemimposesadditionalcon-
ditionson coreference.

The primary reasonfor improvementsover the
original Soonsystemfor the MUC-6 data set ap-
pearsto beourhigherupperboundon recall(93.8%
vs. 89.9%),dueto betteridentificationof NPs. For
MUC-7, our improvementstemsfrom increasesin
precision,presumablydueto moreaccuratefeature
valuecomputation.

4In all of the experimentsdescribedin this paper, default
settingsfor all C4.5parametersareused.Similarly, all RIPPER
parametersaresetto theirdefaultvalueexceptthatclassification
rulesareinducedfor boththepositive andnegative instances.

3 Modifications to the Machine Learning
Framework

This sectionstudiesthe effect of threechangesto
the generalmachinelearningframework employed
by Soonet al. with thegoalof improving precision
in theresultingcoreferenceresolutionsystems.

Best-first clustering. Rather than a right-to-left
searchfrom eachanaphoricNP for the first coref-
erentNP, we hypothesizedthata right-to-left search
for a highly likely antecedentmight offer morepre-
cise, if not generallybettercoreferencechains. As
a result,we modify thecoreferenceclusteringalgo-
rithm to selectastheantecedentof NP� theNP with
thehighestcoreferencelikelihoodvaluefromamong
precedingNPswith coreferenceclassvaluesabove
0.5.

Training setcreation. For theproposedbest-first
clustering to be successful,however, a different
method for training instanceselection would be
needed:ratherthangeneratea positive training ex-
ample for eachanaphoricNP and its closestan-
tecedent,we insteadgeneratea positivetrainingex-
amplesfor its most confident antecedent. More
specifically, for a non-pronominalNP, we assume
thatthemostconfidentantecedentis theclosestnon-



C4.5 RIPPER
MUC-6 MUC-7 MUC-6 MUC-7

SystemVariation R P F R P F R P F R P F
Original Soonetal. 58.6 67.3 62.6 56.1 65.5 60.4 - - - - - -
DuplicatedSoonBaseline 62.4 70.7 66.3 55.2 68.5 61.2 60.8 68.4 64.3 54.0 69.5 60.8
LearningFramework 62.4 73.5 67.5 56.3 71.5 63.0 60.8 75.3 67.2 55.3 73.8 63.2

StringMatch 60.4 74.4 66.7 54.3 72.1 62.0 58.5 74.9 65.7 48.9 73.2 58.6
TrainingInstanceSelection 61.9 70.3 65.8 55.2 68.3 61.1 61.3 70.4 65.5 54.2 68.8 60.6
Clustering 62.4 70.8 66.3 56.5 69.6 62.3 60.5 68.4 64.2 55.6 70.7 62.2

All Features 70.3 58.3 63.8 65.5 58.2 61.6 67.0 62.2 64.5 61.9 60.6 61.2
Pronounsonly – 66.3 – – 62.1 – – 71.3 – – 62.0 –
ProperNounsonly – 84.2 – – 77.7 – – 85.5 – – 75.9 –
CommonNounsonly – 40.1 – – 45.2 – – 43.7 – – 48.0 –

Hand-selectedFeatures 64.1 74.9 69.1 57.4 70.8 63.4 64.2 78.0 70.4 55.7 72.8 63.1
Pronounsonly – 67.4 – – 54.4 – – 77.0 – – 60.8 –
ProperNounsonly – 93.3 – – 86.6 – – 95.2 – – 88.7 –
CommonNounsonly – 63.0 – – 64.8 – – 62.8 – – 63.5 –

Table2: Resultsfor theMUC-6 andMUC-7 datasetsusingC4.5andRIPPER.Recall,Precision,andF-measure

areprovided.Resultsin boldfaceindicatethebestresultsobtainedfor a particulardatasetandclassifiercombination.

pronominal precedingantecedent.For pronouns,
weassumethatthemostconfidentantecedentissim-
ply its closestprecedingantecedent.Negativeexam-
plesaregeneratedasin theBaselinesystem.5

String match feature. Soon’sstringmatchfeature
(SOON STR) testswhetherthe two NPsundercon-
siderationarethesamestring after removing deter-
minersfrom each. We hypothesized,however, that
splitting this featureinto several primitive features,
dependingon the typeof NP, might give the learn-
ing algorithmadditionalflexibility in creatingcoref-
erencerules. Exact string match is likely to be a
bettercoreferencepredictorfor propernamesthan
it is for pronouns,for example. Specifically, we
replacethe SOON STR featurewith three features
— PRO STR, PN STR, and WORDS STR — which
restrict the applicationof string matchingto pro-
nouns,propernames,andnon-pronominalNPs,re-
spectively. (Seethe first entriesin Table 3.) Al-
thoughsimilar featuresplits might have beencon-
sideredfor other features(e.g. GENDER and NUM-
BER), only thestringmatchfeaturewastestedhere.

Results and discussion. Resultson the learning
framework modificationsareshown in Table2 (third
block of results). When usedin combination,the
modificationsconsistentlyprovide statisticallysig-
nificantgainsin precisionover theBaselinesystem

5This new methodof trainingsetcreationslightly altersthe
classvaluedistribution in thetrainingdata:for theMUC-6 cor-
pus,therearenow 27654training instancesof which 5.2%are
positive; for the MUC-7 corpus,therearenow 37870training
instancesof which4.2%arepositive.

without any lossin recall.6 As a result,we observe
reasonableincreasesin F-measurefor both classi-
fiers andboth datasets. Whenusing RIPPER,for
example,performanceincreasesfrom 64.3 to 67.2
for the MUC-6 dataset and from 60.8 to 63.2 for
MUC-7. Similar, but weaker, effectsoccurwhenap-
plying eachof thelearningframework modifications
to theBaselinesystemin isolation.(Seetheindented
LearningFramework resultsin Table2.)

Our resultsprovide direct evidencefor the claim
(Mitkov, 1997) that the extra-linguistic strategies
employedto combinetheavailablelinguisticknowl-
edgesourcesplay an important role in computa-
tional approachesto coreferenceresolution.In par-
ticular, our resultssuggestthat additional perfor-
mancegainsmight be obtainedby further investi-
gatingthe interactionbetweentraining instancese-
lection, featureselection,andthe coreferenceclus-
teringalgorithm.

4 NP CoreferenceUsingMany Features

This sectiondescribesthe secondmajor extension
to theSoonapproachinvestigatedhere:we explore
theeffectof including41additional,potentiallyuse-
ful knowledgesourcesfor the coreferenceresolu-
tion classifier(Table3). The featureswerenot de-
rivedempiricallyfrom thecorpus,but werebasedon
common-senseknowledgeand linguistic intuitions

6Chi-square statistical significance tests are applied to
changesin recall and precisionthroughoutthe paper. Unless
otherwisenoted, reporteddifferencesare at the 0.05 level or
higher. Thechi-squaretestis notapplicableto F-measure.



regardingcoreference.Specifically, we increasethe
numberof lexical featuresto nine to allow more
complex NP string matchingoperations. In addi-
tion, we include four new semanticfeaturesto al-
low finer-grainedsemanticcompatibility tests. We
test for ancestor-descendentrelationshipsin Word-
Net (SUBCLASS), for example, and also measure
theWordNetgraph-traversaldistance(WNDIST) be-
tweenNP� andNP� . Furthermore,weaddanew posi-
tional featurethatmeasuresthedistancein termsof
thenumberof paragraphs(PARANUM) betweenthe
two NPs.

The most substantialchangesto the featureset,
however, occurfor grammaticalfeatures:weadd26
new featurestoallow theacquisitionof moresophis-
ticatedsyntacticcoreferenceresolutionrules. Four
featuressimply determineNP type, e.g. are both
NPsdefinite,or pronouns,or partof aquotedstring?
Thesefeaturesallow otherteststo beconditionedon
the typesof NPsbeingcompared.Similarly, three
new featuresdeterminethegrammaticalrole of one
or bothof theNPs. Currently, only testsfor clausal
subjectsaremade.Next, eight featuresencodetra-
ditional linguistic (hard)constraintson coreference.
For example,coreferentNPsmustagreebothin gen-
der and number(AGREEMENT); cannotSPAN one
another(e.g. “government”and “governmentoffi-
cials”); andcannotviolatetheBINDING constraints.
Still othergrammaticalfeaturesencodegenerallin-
guisticpreferenceseitherfor or againstcoreference.
For example,an indefiniteNP (that is not in appo-
sition to an anaphoricNP) is not likely to be coref-
erentwith any NP thatprecedesit (ARTICLE). The
lastsubsetof grammaticalfeaturesencodesslightly
morecomplex, but generallynon-linguistic heuris-
tics. For instance,the CONTAINS PN feature ef-
fectively disallows coreferencebetweenNPs that
contain distinct proper namesbut are not them-
selves proper names(e.g. “IBM executives” and
“Microsoft executives”).

Two final features make use of an in-house
naivepronounresolutionalgorithm(PRO RESOLVE)
and a rule-basedcoreferenceresolution system
(RULE RESOLVE), eachof which relieson theorigi-
nal andexpandedfeaturesetsdescribedabove.

Results and discussion. Results using the ex-
pandedfeatureset are shown in the All Features

block of Table2. Theseandall subsequentresults
also incorporatethe learning framework changes
from Section3. In comparison,we seestatistically
significantincreasesin recall, but much larger de-
creasesin precision. As a result,F-measuredrops
precipitouslyfor both learningalgorithmsandboth
datasets. A closerexaminationof the resultsindi-
catesverypoorprecisiononcommonnounsin com-
parisonto thatof pronounsandpropernouns.(See
the indentedAll Featuresresultsin Table 2.7) In
particular, the classifiersacquirea numberof low-
precisionrules for commonnoun resolution,pre-
sumablybecausethe current featureset is insuffi-
cient. For instance,a rule inducedby RIPPERclas-
sifiestwoNPsascoreferentif thefirst NPis aproper
name,thesecondNP is a definiteNP in thesubject
position, and the two NPs have the sameseman-
tic classand are at most one sentenceapart from
eachother. This rule covers 38 examples,but has
18 exceptions. In comparison,the Baselinesys-
temobtainsmuchbetterprecisiononcommonnouns
(i.e. 53.3 for MUC-6/RIPPERand61.0 for MUC-
7/RIPPERwith lowerrecallin bothcases)wherethe
primary mechanismemployedby theclassifiersfor
commonnounresolutionis its high-precisionstring
matchingfacility. Our resultsalsosuggestthatdata
fragmentationis likely to have contributed to the
drop in performance(i.e. we increasedthe number
of featureswithoutincreasingthesizeof thetraining
set).For example,thedecisiontreeinducedfromthe
MUC-6 datasetusingthe Soonfeatureset(Learn-
ing Framework results)has16 leaves,eachof which
contains1728instancesonaverage;thetreeinduced
from the samedatasetusingall of the 53 features,
on theotherhand,has86 leaveswith anaverageof
322instancesperleaf.

Hand-selectedfeature sets. As a result,we next
evaluatea versionof thesystemthatemploysman-
ual feature selection: for each classifier/dataset
combination,we discardfeaturesusedprimarily to
induce low-precisionrules for commonnoun res-
olution andre-train the coreferenceclassifierusing
thereducedfeatureset.Here,featureselectiondoes
not dependon a separatedevelopmentcorpusand

7For eachof theNP-type-specificruns,we measureoverall
coreferenceperformance,but restrictNP� to beof thespecified
type. As a result, recall andF-measurefor theserunsarenot
particularlyinformative.



L PRO STR* C if bothNPsarepronominalandarethesamestring;elseI.
e PN STR* C if bothNPsarepropernamesandarethesamestring;elseI.
x WORDS STR C if bothNPsarenon-pronominalandarethesamestring;elseI.
i
c

SOON STR NONPRO* C if bothNPsarenon-pronominalandthestringof NP� matchesthatof NP� ; elseI.

a
l

WORD OVERLAP C if theintersectionbetweenthecontentwordsin NP� andNP� is notempty;elseI.

MODIFIER C if theprenominalmodifiersof oneNParea subsetof theprenominalmodifiersof the
other;elseI.

PN SUBSTR C if bothNPsarepropernamesandoneNP is a propersubstring(w.r.t. contentwords
only) of theother;elseI.

WORDS SUBSTR C if bothNPsarenon-pronominalandoneNPis apropersubstring(w.r.t. contentwords
only) of theother;elseI.

G NP BOTH DEFINITES C if bothNPsstartwith “the;” I if neitherstartwith “the;” elseNA.
r
a

type BOTH EMBEDDED C if bothNPsareprenominalmodifiers; I if neitherareprenominalmodifiers;elseNA.

m
m

BOTH IN QUOTES C if bothNPsarepartof aquotedstring;I if neitherarepartof aquotedstring;elseNA.

a BOTH PRONOUNS* C if bothNPsarepronouns;I if neitherarepronouns,elseNA.
t role BOTH SUBJECTS C if bothNPsaregrammaticalsubjects;I if neitheraresubjects;elseNA.
i SUBJECT 1* Y if NP� is a subject;elseN.
c SUBJECT 2 Y if NP� is a subject;elseN.
a
l

lin-
gui-

AGREEMENT* C if the NPsagreein both genderandnumber;I if they disagreein both genderand
number;elseNA.

stic ANIMACY* C if theNPsmatchin animacy; elseI.
MAXIMALNP* I if bothNPshave thesamemaximalNPprojection;elseC.

con- PREDNOM* C if theNPsform a predicatenominalconstruction;elseI.
stra- SPAN* I if oneNPspanstheother;elseC.
ints BINDING* I if theNPsviolateconditionsB or C of theBinding Theory;elseC.

CONTRAINDICES* I if theNPscannotbeco-indexedbasedon simpleheuristics;elseC. For instance,two
non-pronominalNPsseparatedby a prepositioncannotbeco-indexed.

SYNTAX* I if the NPs have incompatiblevaluesfor the BINDING, CONTRAINDICES, SPAN or
MAXIMALNPconstraints;elseC.

ling. INDEFINITE* I if NP� is anindefiniteandnotappositive;elseC.
prefs PRONOUN I if NP� is a pronounandNP� is not;elseC.
heur-
istics

CONSTRAINTS* C if theNPsagreein GENDER andNUMBER anddo not have incompatiblevaluesfor
CONTRAINDICES, SPAN, ANIMACY, PRONOUN, andCONTAINS PN; I if theNPshave
incompatiblevaluesfor any of theabove features;elseNA.

CONTAINS PN I if both NPsarenot propernamesbut containpropernamesthat mismatchon every
word;elseC.

DEFINITE 1 Y if NP� startswith “the;” elseN.
EMBEDDED 1* Y if NP� is anembeddednoun;elseN.
EMBEDDED 2 Y if NP� is anembeddednoun;elseN.
IN QUOTE 1 Y if NP� is partof aquotedstring;elseN.
IN QUOTE 2 Y if NP� is partof a quotedstring;elseN.

PROPER NOUN I if bothNPsarepropernames,but mismatchon everyword;elseC.
TITLE* I if oneor bothof theNPsis a title; elseC.

S
e

CLOSEST COMP C if NP� is theclosestNPprecedingNP� thathasthesamesemanticclassasNP� andthe
two NPsdonotviolateany of thelinguisticconstraints;elseI.

m
a

SUBCLASS C if theNPshave differentheadnounsbut have anancestor-descendentrelationshipin
WordNet;elseI.

n
t
i

WNDIST DistancebetweenNP� andNP� in WordNet(usingthefirst senseonly) whenthey have
anancestor-descendent relationshipbut have differentheads;elseinfinity.

c WNSENSE Sensenumberin WordNetfor which thereexists an ancestor-descendent relationship
betweenthetwo NPswhenthey havedifferentheads;elseinfinity.

P
os

PARANUM DistancebetweentheNPsin termsof thenumberof paragraphs.

O
t

PRO RESOLVE* C if NP� is a pronounandNP� is its antecedentaccordingto a naive pronounresolution
algorithm;elseI.

h
er

RULE RESOLVE C if theNPsarecoreferentaccordingto a rule-basedcoreferenceresolutionalgorithm;
elseI.

Table3: Additional featuresfor NP coreference.As before,*’ d featuresarein thehand-selectedfeaturesetfor at least

oneclassifier/datasetcombination.



is guidedsolelyby inspectionof thefeaturesassoci-
atedwith low-precisionrulesinducedfrom thetrain-
ing data. In currentwork, we areautomatingthis
featureselectionprocess,which currentlyemploys
a fair amountof userdiscretion,e.g.to determinea
precisioncut-off. Featuresin the hand-selectedset
for at leastone of the testedsystemvariationsare
*’ d in Tables1 and3.

In general, we hypothesizedthat the hand-
selectedfeatureswouldreclaimprecision,hopefully
without losing recall. For the most part, the ex-
perimentalresultssupportthis hypothesis.(Seethe
Hand-selectedFeaturesblock in Table2.) In com-
parisonto the All Featuresversion,we seestatisti-
cally significantgainsin precisionandstatistically
significant,but muchsmaller, dropsin recall, pro-
ducing systemswith better F-measurescores. In
addition,precisionon commonnounsrisessubstan-
tially, asexpected.Unfortunately, thehand-selected
featuresprecipitatea largedropin precisionfor pro-
nounresolutionfor the MUC-7/C4.5dataset. Ad-
ditional analysisis requiredto determinethereason
for this.

Moreover, the Hand-selectedFeaturesproduce
thehighestscorespostedto datefor boththeMUC-
6 andMUC-7 datasets:F-measureincreasesw.r.t.
the Baselinesystemfrom 64.3 to 70.4 for MUC-
6/RIPPER,andfrom 61.2to 63.4for MUC-7/C4.5.
In one variation (MUC-7/RIPPER),however, the
Hand-selectedFeaturesslightly underperformsthe
Learning Framework modifications(F-measureof
63.1 vs. 63.2) althoughchangesin recall and pre-
cision arenot statisticallysignificant. Overall, our
results indicate that pronounand especiallycom-
mon noun resolutionremain important challenges
for coreferenceresolutionsystems.Somewhat dis-
appointingly, only four of the new grammatical
featurescorrespondingto linguistic constraintsand
preferencesare selectedby the symbolic learning
algorithmsinvestigated: AGREEMENT, ANIMACY,
BINDING, andMAXIMALNP.

Discussion. In an attempt to gain additional in-
sightinto thedifferencein performancebetweenour
systemand the original Soonsystem,we compare
the decisiontree inducedby eachfor the MUC-6

ALIAS = C: + (347.0/23.8)
ALIAS = I:
|  SOON_STR_NONPRO = C:
|  |  ANIMACY = NA: - (4.0/2.2)
|  |  ANIMACY = I: + (0.0)
|  |  ANIMACY = C: + (259.0/45.8)
|  SOON_STR_NONPRO = I:
|  |  PRO_STR = C: + (39.0/2.6)
|  |  PRO_STR = I:
|  |  |  PRO_RESOLVE = C:
|  |  |  |  EMBEDDED_1 = Y: - (7.0/3.4)
|  |  |  |  EMBEDDED_1 = N:
|  |  |  |  |  PRONOUN_1 = Y:
|  |  |  |  |  |  ANIMACY = NA: - (6.0/2.3)
|  |  |  |  |  |  ANIMACY = I: - (1.0/0.8)
|  |  |  |  |  |  ANIMACY = C: + (10.0/3.5)
|  |  |  |  |  PRONOUN_1 = N:
|  |  |  |  |  |  MAXIMALNP = C: + (108.0/18.2)
|  |  |  |  |  |  MAXIMALNP = I:
|  |  |  |  |  |  |  WNCLASS = NA: - (5.0/1.2)
|  |  |  |  |  |  |  WNCLASS = I: + (0.0)
|  |  |  |  |  |  |  WNCLASS = C: + (12.0/3.6)
|  |  |  PRO_RESOLVE = I:
|  |  |  |  APPOSITIVE = I: - (26806.0/713.8)
|  |  |  |  APPOSITIVE = C:
|  |  |  |  |  GENDER = NA: + (28.0/2.6)
|  |  |  |  |  GENDER = I: + (5.0/3.2)
|  |  |  |  |  GENDER = C: - (17.0/3.7)

Figure 1: Decision Tree using the Hand-selected
featureseton theMUC-6 dataset.

dataset.8 For oursystem,weusethetreeinducedon
thehand-selectedfeatures(Figure1). Thetwo trees
are fairly different. In particular, our tree makes
useof many of the featuresthat arenot presentin
the original Soonfeatureset. The root featurefor
Soon,for example,is the generalstring matchfea-
ture (SOON STR); splitting the SOON STR feature
into threeprimitivefeaturespromotestheALIAS fea-
ture to the root of our tree, on the other hand. In
addition,giventwo non-pronominal,matchingNPs
(SOON STR NONPRO=C), our treerequiresanaddi-
tional teston ANIMACY beforeconsideringthe two
NPs coreferent; the Soon tree insteaddetermines
twoNPstobecoreferentaslongasthey arethesame
string. Pronounresolutionis alsoperformedquite
differentlyby the two trees,althoughbothconsider
two pronounscoreferentwhen their stringsmatch.
Finally, intersententialandintrasententialpronomi-
nalreferencesarepossiblein oursystemwhile inter-
sententialpronominalreferencesarelargely prohib-
ited by theSoonsystem.

5 Conclusions

We investigatetwo methodsto improve existing
machine learning approachesto the problem of

8Soon et al. (2001) presentonly the tree learnedfor the
MUC-6 dataset.



nounphrasecoreferenceresolution. First, we pro-
posethreeextra-linguisticmodificationsto the ma-
chine learning framework, which togetherconsis-
tently producestatisticallysignificantgainsin pre-
cision and correspondingincreasesin F-measure.
Our resultsindicatethatcoreferenceresolutionsys-
temscan improve by effectively exploiting the in-
teractionbetweentheclassificationalgorithm,train-
ing instanceselection,andtheclusteringalgorithm.
Weplanto continueinvestigationsalongtheselines,
developing,for example,a truebest-firstclustering
coreferenceframework andexploring a “supervised
clustering” approachto the problem. In addition,
weprovide thelearningalgorithmswith many addi-
tional linguistic knowledgesourcesfor coreference
resolution.Unfortunately, we find thatperformance
dropssignificantlywhen using the full featureset;
weattributethis,at leastin part,to thesystem’spoor
performanceoncommonnounresolutionandtodata
fragmentationproblemsthat arise with the larger
featureset. Manual featureselection,with an eye
towardeliminatinglow-precisionrulesfor common
nounresolution,is shown to reliably improve per-
formanceover the full featuresetandproducesthe
bestresultstodateontheMUC-6 andMUC-7 coref-
erencedatasets— F-measuresof 70.4and63.4,re-
spectively. Nevertheless,thereis substantialroom
for improvement.As notedabove, for example,it is
importantto automatetheprecision-orientedfeature
selectionprocedureas well as to investigateother
methodsfor featureselection. We alsoplan to in-
vestigateprevious work on commonnoun phrase
interpretation(e.g.Sidner(1979),Harabagiuet al.
(2001)) as a meansof improving common noun
phraseresolution, which remainsa challengefor
state-of-the-artcoreferenceresolutionsystems.

Acknowledgments

Thanksto threeanonymousreviewersfor their commentsand,

in particular, for suggestingthat we investigatedatafragmen-

tation issues. This work was supportedin part by DARPA

TIDES contractN66001-00-C-8009,andNSFGrants0081334

and0074896.

References

C. Aone and S. W. Bennett. 1995. EvaluatingAuto-
matedandManual Acquisition of AnaphoraResolu-
tion Strategies. In Proceedingsof the 33rd Annual

Meetingof theAssociationfor ComputationalLinguis-
tics, pages122–129.

W. Cohen.1995. FastEffective RuleInduction. In Pro-
ceedingsof the Twelfth International Conferenceon
MachineLearning.

R. Grishman. 1995. The NYU Systemfor MUC-6 or
Where’s theSyntax?In Proceedingsof theSixthMes-
sageUnderstandingConference(MUC-6).

S. Harabagiu,R. Bunescu,andS. Maiorano.2001. Text
and KnowledgeMining for CoreferenceResolution.
In Proceedingsof the SecondMeeting of the North
AmericaChapterof theAssociationfor Computational
Linguistics(NAACL-2001), pages55–62.

S. Lappin and H. Leass. 1994. An Algorithm for
Pronominal Anaphora Resolution. Computational
Linguistics, 20(4):535–562.

D. Lin. 1995.Universityof Manitoba:Descriptionof the
PIESystemasUsedfor MUC-6. In Proceedingsof the
SixthMessageUnderstandingConference(MUC-6).

J. McCarthy and W. Lehnert. 1995. Using Decision
Treesfor CoreferenceResolution. In Proceedingsof
the FourteenthInternationalConferenceon Artificial
Intelligence, pages1050–1055.

R. Mitkov. 1997. Factorsin anaphoraresolution: they
arenot theonly thingsthatmatter. A casestudybased
on two different approaches.In Proceedingsof the
ACL’97/EACL’97 Workshopon Operational Factors
in Practical, RobustAnaphora Resolution.

MUC-6. 1995.Proceedingsof theSixthMessageUnder-
standingConference(MUC-6). Morgan Kaufmann,
SanFrancisco,CA.

MUC-7. 1998. Proceedingsof the Seventh Message
UnderstandingConference(MUC-7). MorganKauf-
mann,SanFrancisco,CA.

J. R. Quinlan. 1993. C4.5: Programs for Machine
Learning. MorganKaufmann,SanMateo,CA.

C. Sidner. 1979. Towards a ComputationalTheory
of DefiniteAnaphora Comprehensionin EnglishDis-
course. PhDThesis,MassachusettsInstituteof Tech-
nology.

W. M. Soon,H. T. Ng, and D. C. Y. Lim. 2001. A
MachineLearningApproachto CoreferenceResolu-
tion of Noun Phrases. Computational Linguistics,
27(4):521–544.

M. Vilain, J. Burger, J. Aberdeen,D. Connolly, and
L. Hirschman. 1995. A model-theoreticcoreference
scoring scheme. In Proceedingsof the Sixth Mes-
sageUnderstandingConference(MUC-6), pages45–
52,SanFrancisco,CA. MorganKaufmann.


