
Bayesian Conditional Random Fields

Yuan (Alan) Qi
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

alanqi@csail.mit.edu

Martin Szummer
Microsoft Research

Cambridge, CB3 0FB
United Kingdom

szummer@microsoft.com

Thomas P. Minka
Microsoft Research

Cambridge, CB3 0FB
United Kingdom

minka@microsoft.com

Abstract

We propose Bayesian Conditional Random
Fields (BCRFs) for classifying interdependent
and structured data, such as sequences, images
or webs. BCRFs are a Bayesian approach to
training and inference with conditional random
fields, which were previously trained by maxi-
mizing likelihood (ML) (Lafferty et al., 2001).
Our framework eliminates the problem of overfit-
ting, and offers the full advantages of a Bayesian
treatment. Unlike the ML approach, we estimate
the posterior distribution of the model parameters
during training, and average over this posterior
during inference. We apply an extension of EP
method, the power EP method, to incorporate the
partition function. For algorithmic stability and
accuracy, we flatten the approximation structures
to avoid two-level approximations. We demon-
strate the superior prediction accuracy of BCRFs
over conditional random fields trained with ML
or MAP on synthetic and real datasets.

1 Introduction

Traditional classification models assume that data items are
independent. However, real world data is often interde-
pendent and has complex structure. Suppose we want to
classify web pages into different categories, e.g., home-
pages of students versus faculty. The category of a web
page is often related to the categories of pages linked to
it. Rather than classifying pages independently, we should
model them jointly to incorporate such contextual cues.

Joint modeling of structured data can be performed by gen-
erative graphical models, such as Bayesian networks or
Markov random fields. For example, hidden Markov mod-
els have been used in natural language applications to as-
sign labels to words in a sequence, where labels depend
both on words and other labels along a chain. However,

generative models have fundamental limitations. Firstly,
generative models require specification of the data genera-
tion process, i.e., how data can be sampled from the model.
In many applications, this process is unknown or impracti-
cal to write down, and not of interest for the classification
task. Secondly, generative models typically assume condi-
tional independence of observations given the labels. This
independence assumption limits their modeling power and
restricts what features can be extracted for classifying the
observations. In particular, this assumption rules out fea-
tures capturing long-range correlations, multiple scales, or
other context.

Conditional random fields (CRF) are a conditional ap-
proach for classifying structured data, proposed by Lafferty
et al. (2001). CRFs model only the label distribution condi-
tioned on the observations. Unlike generative models, they
do not need to explain the observations or features, and
thereby conserve model capacity and reduce effort. This
also allows CRFs to use flexible features such as complex
functions of multiple observations. The modeling power
of CRFs has shown great benefit in several applications,
such as natural language parsing (Sha & Pereira, 2003),
information extraction (McCallum, 2003), and image mod-
eling (Kumar & Hebert, 2004).

To summarize, CRFs provide a compelling model for struc-
tured data. Consequently, there has been an intense search
for effective training and inference algorithms. The first
approaches maximized conditional likelihood (ML), either
by generalized iterative scaling or by quasi-Newton meth-
ods (Lafferty et al., 2001; Sha & Pereira, 2003). However,
the ML criterion is prone to overfitting the data, especially
since CRFs are often trained with very large numbers of
correlated features. The maximum a posteriori (MAP) cri-
terion can reduce overfitting, but provides no guidance on
the choice of parameter prior. Furthermore, large margin
criteria have been applied to regularize the model parame-
ters and also to kernelize CRFs (Taskar et al., 2004; Laf-
ferty et al., 2004). Nevertheless, training and inference for
CRFs remains a challenge, and the problems of overfitting,
feature and model selection have largely remained open.



In this paper, we propose Bayesian Conditional Random
Fields (BCRF), a novel Bayesian approach to training and
inference for conditional random fields. Applying the
Bayesian framework brings principled solutions and tools
for addressing overfitting, model selection and many other
aspects of the problem. Unlike ML, MAP, or large-margin
approaches, we train BCRFs by estimating the posterior
distribution of the model parameters. Subsequently, we can
average over the posterior distribution for BCRF inference.

The complexity of the partition function in CRFs (the de-
nominator of the likelihood function) necessitates approx-
imations. Previous deterministic approximations includ-
ing expectation propagation (EP) (Minka, 2001) or varia-
tional methods do not directly apply. In order to incorpo-
rate the partition function, we apply an extension of EP, the
power EP method (Minka, 2004). Furthermore, we flatten
the approximation structures for BCRFs to avoid two-level
approximations. This significantly enhances the algorith-
mic stability and improves the estimation accuracy.

We first formally define CRFs, present the power EP
method, and flatten the approximation structure for train-
ing. Then we propose an approximation method for model
averaging, and finally show experimental results.

2 From conditional random fields to BCRFs

A conditional random field (CRF) models label variables
according to an undirected graphical model conditioned on
observed data (Lafferty et al., 2001). Letx be an “input”
vector describing the observed data instance, andt be an
“output” random vector over labels of the data components.
We assume that all labels for the components belong to a
finite label alphabetT = {1, . . . , T}. For example, the in-
putx could be image features based on small patches, and
t be labels denoting ’person, ’car’ or ’other’ patches. For-
mally, we have the following definition of CRFs (Lafferty
et al., 2001):

Definition 2.1 Let G = (V, E) be a graph such thatt is
indexed by the vertices ofG. Then(x, t) is a conditional
random field (CRF) if, when conditioned onx, the random
variablesti obey the Markov property with respect to the
graph: p(ti|x, tV−i) = p(ti|x, tNi

) whereV− i is the set
of all nodes inG except the nodei, Ni is the set of neigh-
bors of the nodei in G, andtΩ represents the random vari-
ables of the vertices in the setΩ.

Unlike traditional generative random fields, CRFs only
model the conditional distributionp(t|x) and do not explic-
itly model the marginalp(x). Note that the labels{ti} are
globally conditioned on the whole observationx in CRFs.
Thus, we do not assume that the observed datax are con-
ditionally independent as in a generative random field.

BCRFs are a Bayesian approach to training and inference
with conditional random fields. In some sense, BCRFs can
be viewed as an extension of conditional Bayesian linear
classifiers, e.g., Bayes point machines (BPM) (Herbrich
et al., 1999; Minka, 2001), which are used to classify inde-
pendent data points.

According to the Hammersley-Clifford theorem, a CRF de-
fines the conditional distribution of the labelst given the
observationsx to be proportional to a product of potential
functions on cliques of the graphG. For simplicity, we
consider only pairwise clique potentials such that

p(t|x,w) =
1

Z(w)

∏
{i,j}∈E

gi,j(ti, tj ,x;w) (1)

where

Z(w) =
∑
t

∏
{i,j}∈E

gi,j(ti, tj ,x;w) (2)

is a normalizing factor known as the partition function,
gi,j(ti, tj ,x;w) are pairwise potentials, andw are the
model parameters. Note that the partition function is a
complicated function of the model parameterw. This
makes Bayesian training much harder for CRFs than
for Bayesian linear classifiers, since the normalizer of a
Bayesian linear classifier is a constant.

In standard conditional random fields, the pairwise poten-
tials are defined as

gi,j(ti, tj ,x;w) = exp(wT
ti,tj

φi,j(x, ti, tj)) (3)

whereφi,j(x, ti, tj) are features extracted for the edge be-
tween verticesi andj of the conditional random field, and
wti,tj

are elements corresponding to labels{ti, tj} in w,
wherew = [wT

1,1,w
T
1,2, . . . ,w

T
T,T ]T. There are no restric-

tions on the relation between features.

Instead of using an exponential potential function, we pre-
fer to use the probit functionΨ(·) (the cumulative distri-
bution function of a Gaussian with mean 0 and variance
1). This function is bounded, unlike the exponential, and
permits efficient Bayesian training. Furthermore, to incor-
porate robustness against labeling errors, we allow a small
probability ε of a label being incorrect, thus bounding the
potential away from 0. Specifically, our robust potentials
are:

gi,j(ti, tj ,x;w) = (1− ε)Ψ(wT
ti,tj

φi,j(x, ti, tj))+

ε(1−Ψ(wT
ti,tj

φi,j(x, ti, tj))). (4)

Given the data likelihood and a Gaussian priorp0(w) ∼
N (w;0,diag(α)), the posterior of the parameters is

p(w|t,x) ∝ 1
Z(w)

p0(w)
∏

{i,j}∈E

gi,j(ti, tj ,x;w) (5)



Expectation Propagation exploits the fact that the posterior
is a product of simple terms. If we approximate each of
these terms well, we can get a good approximation of the
posterior. Mathematically, EP approximatesp(w|t,x) as

q(w) = p0(w)
1

Z̃(w)

∏
{i,j}∈E

g̃i,j(w) (6)

=
1

Z̃(w)
R̃(w) (7)

whereR̃(w) = p0(w)
∏

{i,j}∈E g̃i,j(w) is the numerator

in q(w). The approximation terms̃gi,j(w) and 1
Z̃(w)

have

the form of a Gaussian, so that the approximate posterior
q(w) is a Gaussian, i.e.,q(w) ∼ N (mw,Σw). We can ap-
proximate the pairwise potential functionsgi,j(ti, tj ,x;w)
by g̃i,j(w) in the numerator̃R(w), just as in Bayesian lin-
ear classifiers (Minka, 2001). The main difficulty here is
how to approximate the denominatorZ(w) by Z̃(w) and
incorporate it intoq(w).

3 EP and Power EP

This section reviews EP and presents power EP algorithms
for BCRFs. Power EP is an extension of EP to make the
computations more tractable. It was first used by Minka
and Lafferty (2002), in the case of positive powers. How-
ever, power EP also works with negative powers, and this is
one of the key insights that makes BCRF training tractable.

Given a distributionp written as a product of terms, and
an approximating familyq as in the previous section, Ex-
pectation Propagation tries to makeq “close” to p in the
sense of the Kullback Leibler divergenceKL(p||q) =∫

p(w) log(p(w)/q(w))dw. This is done by minimizing
the divergence with respect to each term individually, hold-
ing the other terms fixed. We repeatedly cycle through all
the terms until a fixed point is reached.

For thegk terms, wherek indexes edges, the algorithm first
computesq\k(w), which represents the “rest of the distri-
bution.” Then it minimizes KL-divergence over̃gk, hold-
ing q\k fixed. This process can be written succinctly as
follows:

q\k(w) ∝ q(w)/g̃k(w) (8)

g̃k(w)new = argminKL(gk(w)q\k(w) || g̃k(w)q\k(w))
(9)

= proj
[
gk(w)q\k(w)

]
/q\k(w) (10)

q(w)new = q\k(w)g̃k(w)new (11)

Hereproj is a “moment matching” operator: it finds the
Gaussian having the same moments as its argument, thus
minimizing KL. Algorithmically, (8) means “divide the
Gaussians to get a new Gaussian, and call itq\k(w).” Sim-
ilarly, (9) means “construct a Gaussian whose moments

matchgk(w)q\k(w) and divide it byq\k(w), to get a new
Gaussian which replaces̃gk(w).” This is the basic EP al-
gorithm.

Power EP introduces a powernk into EP and modifies the
updates as follows:

q\k(w) ∝ q(w)/g̃k(w)1/nk (12)

g̃k(w)new =
(
proj

[
gk(w)1/nkq\k(w)

]
/q\k(w)

)nk

(13)

q(w)new = q(w)
g̃k(w)new

g̃k(w)
(14)

As shown by Minka (2004), this update seeks to mini-
mize a different measure of divergence, theα-divergence,
whereα = 2/nk − 1. Note thatα can be any real num-
ber. By picking the powernk appropriately, the updates
can be greatly simplified. (This result is originally due to
Wiegerinck and Heskes (2002). They discussed an algo-
rithm called “fractional belief propagation” which is a spe-
cial case of power EP, and all of their results also apply to
power EP.)

We will use this update for the denominator term, so that
gk becomes1/Z, g̃k becomes1/Z̃, and picknk = −1:

q\z(w) ∝ q(w)/Z̃(w) = R̃(w)/Z̃(w)2 (15)

Z̃(w)new = proj
[
Z(w)q\z(w)

]
/q\z(w) (16)

q(w)new = q(w)
Z̃(w)

Z̃(w)new
(17)

In this way, we only need the moments ofZ(w), not
1/Z(w).

4 Approximating the partition function

In the moment matching step, we need to approximate the
moments ofZ(w)q\z(w). Murray and Ghahramani (2004)
have proposed approximate MCMC methods to approxi-
mate the partition function of an undirected graph. This
section presents an alternative method.

For clarity, let us rewrite the partition function as follows:

Z(w) =
∑
t

Z(w, t) (18)

Z(w, t) =
∏
k∈E

gk(ti, tj ,x;w) (19)

wherek = {i, j} indexes edges. To compute the mo-
ments ofw, we can use EP recursively, to approximate
Z(w, t)q\z(w) as a function ofw and t. The approxi-
mation will have a factorized form:

q(w)q(t) = Z̃(w)Z̃(t)q\z(w) (20)

Z̃(w)Z̃(t) =
∏
k∈E

f̃k(w)f̃k(ti)f̃k(tj) (21)



wheref̃k(w)f̃k(ti)f̃k(tj) approximatesgk(ti, tj ,x;w) in
the denominator. Note that thisq(w) is the same as the
overallq(w) at the convergence.

Because the approximation is factorized, the computation
will have the flavor of loopy belief propagation. The initial
f̃k will be 1, making the initialq(w) = q\z(w) andq(t) =
1. The EP update for̃fk is:

q\k(w) ∝ q(w)/f̃k(w) (22)

q\k(ti) ∝ q(ti)/f̃k(ti) (similarly for j) (23)

fk(w) =
∑
ti,tj

gk(ti, tj ,x;w)q\k(ti)q\k(tj) (24)

f̃k(w)new = proj
[
q\k(w)fk(w)

]
/q\k(w) (25)

f̃k(ti)new =
∑
tj

∫
w

gk(ti, tj ,x;w)q\k(w)q\k(tj)dw

(26)

q(w)new = q\k(w)f̃k(w)new (27)

q(ti)new = q\k(ti)f̃k(ti)new (28)

These updates are iterated for allk, until a fixed point is
reached. A straightforward implementation of the above
updates costsO(d3) time, whered is the dimension of the
parameter vectorw, since they involve inverting the covari-
ance matrix ofw. However, as shown in the next section,
it is possible to do them with low-rank matrix updates, in
O(d2) time.

5 Efficient low-rank matrix computation for
moments

First, let us defineφk(m,n,x) as shorthand ofφk(ti =
m, tj = n,x), whereφk(ti, tj ,x) are feature vectors ex-
tracted at edgek = {i, j} with labelsti andtj on nodesi
andj, respectively. Then we have

Ak =
(

φk(1, 1, x) 0 . . . 0
0 φk(1, 2, x) 0 . . .
0 . . . 0 φk(T, T, x)

)
y = AT

k w (29)

fk(y) =
∑
ti,tj

Ψ(yti,tj )q
\k(ti)q\k(tj) (30)

whereyti,tj
= wTφk(ti, tj ,x). Clearly, we can rewrite

q(w) as fk(y)q\k(w). Since the dimensionality ofy is
usually a lot smaller than that ofw, the exact termfk(y)
only constrains the distributionq(w) in a smaller subspace.
Therefore, it is sensible to use low-rank matrix computation
to obtainmw andVw, the mean and variance ofq(w).

The derivation is omitted because of the space limitation.
The details can be found in Qi (2004). Here, we simply
give the updates:

mw = m\k
w + V\k

w Akc (31)

Vw = V\k
w −V\k

w AkDAT
k V\k

w (32)

c = (V\k
y )−1

(
my −m\k

y

)
(33)

D = (V\k
y )−1 − (V\k

y )−1(Gy −mymT
y )(V\k

y )−1

(34)

where

Z =
∑
ti,tj

q\k(ti, tj)
∫

Ψ(yti,tj
)N (y|m\k

y ,V\k
y )dy

(35)

=
∑
ti,tj

q\k(ti)q\k(tj)Zti,tj (36)

my =
∫

fk(y)yN (y|m\k
y ,V\k

y )
Z

(37)

=

∑
ti,tj

Zti,tj
myti,tj

q\k(ti)q\k(tj)

Z
(38)

Gy =
∫

fk(y)yyTN (y|m\k
y ,V\k

y )
Z

(39)

=

∑
ti,tj

Zti,tjGyti,tj
q\k(ti)q\k(tj)

Z
(40)

where

zti,tj
=

ekm
\k
y√

ekV
\k
y eT

k + 1
(41)

ρti,tj
=

1√
ekV

\k
y eT

k + 1

(1− 2εN (zti,tj |0, 1))
ε + (1− 2ε)Ψ(zti,tj

)
(42)

Zti,tj
=

∫
Ψ(yi,j)N (y|m\k

y ,V\k
y )dy (43)

=
∫

Ψ(eky)N (y|m\k
y ,V\k

y )dy (44)

= ε + (1− 2ε)Ψ(zti,tj
) (45)

myti,tj
=

∫
Ψ(eky)yN (y|m\k

y ,V\k
y )dy

Zti,tj

(46)

= m\k
y + V\k

y ρti,tj
eT

k (47)

Gyti,tj
= V\k

y −

V\k
y eT

k

(ρti,tj
(ekmyti,tj

+ ρti,tj
)

ekV
\k
y e′k + 1

)
ekV\k

y (48)

whereek is a vector with all elements being zeros except
its kth element being one.

We updateq(ti) andq(tj) as follows:

q(ti, tj) =
Zti,tj

q\k(ti)q\k(tj)
Z

(49)

q(ti) =
∑
tj

q(ti, tj), q(tj) =
∑
ti

q(ti, tj) (50)



6 Flattening the approximation structure

In practice, we found that the approximation method, pre-
sented in Sections 3 and 4, led to non-positive definite co-
variance matrices in training. In this section, we examine
the reason for this problem and propose a method to fix it.

The approximation method has two levels of approxima-
tions, which are visualized at the top of Figure 1. At the
upper level of the top graph, the approximation method iter-
atively refines the approximate posteriorq(w) based on the
term approximatioñZ(w); at the lower level, it iteratively
refinesZ̃(w) by smaller approximation terms{f̃k(w)}.

A naive implementation of the two-level approximation
will always initialize the approximation terms{f̃k(w)}
as 1, such that the iterations at the lower level start from
scratch every time. Thus, removing the denominatorZ̃(w)
in the upper level amounts to removing all the previous ap-
proximation terms{f̃k(w)} in the lower level. The naive
implementation requires the “leave-one-out” approxima-
tion q\z(w) ∝ q(w)

Z̃(w)
to have a positive definite covariance

matrix. Since this requirement is hard to meet, the training
procedure often skips the whole denominatorZ(w) in the
upper level. This skipping would dramatically decrease the
approximation accuracy in practice.

A better idea is to keep the values of the approximation
terms and initialize the approximation terms using the val-
ues obtained from the previous iterations. By doing so, we
do not require the covariance ofq\z(w) to be positive defi-
nite anymore. Instead, we need that ofq\k(w) in equation
(22) to be positive definite, which is easier to satisfy. Now,
when the iterations in the lower level start,q\k(w) usually
has a positive definite covariance. However, after a few
iterations, the covariance ofq\k(w) often becomes non-
positive definite again. The underlying reason is that the
partition functionZ(w) is a complicated function, which
is difficult to be accurately approximated by EP.

To address the problem, we flatten the two-level approx-
imation structure by expanding̃Z(w) in the upper level.
Now we focus onq(w), which is of our interest in training,
without directly approximating the difficult partition func-
tion Z(w) in the intermediate step. The flattened structure
is shown at the bottom of the Figure 1. Specifically, the
approximate posteriorq(w) has the following form:

q(w) ∝ p0(w)
∏
k∈E

g̃k(w)
1∏

k∈E f̃k(w)
(51)

Equation (51) uses the approximation term̃fk(w) for each
edge rather than using̃Z(w). It is also possible to interpret
the flattened structure from the perspective of the two-level
approximation structure. That is, each time we partially
updateZ̃(w) based on only one small term approximation
f̃k(w), and then refineq(w) before updating̃Z(w) again
based on another small term approximation.

Iterations

Iterations

Iterations

Remove the intermediate level

Figure 1: Flattening the approximation structure. The up-
per graph shows the two-level approximation structure of
the methods described in the previous sections. The lower
graph shows the flattened single-level approximation struc-
ture.

With the flattened structure, the deletion steps for removing
g̃k(w) andf̃k(w) remain the same as before. The moment
matching steps are the same too. We only need to assign
negative power one to the approximation terms in the de-
nominators. Specifically, we have the following updates:

hk =
(
D−1 −AT

k V\k
w Ak

)−1
(52)

µk = c + hkAT
k mw (53)

ξk = 2hold
k − hk ηk = 2µold

k − µk (54)

Vw = V\k
w −V\k

w Ak(ξ−1
k + AT

k V\k
w Ak)−1AT

k V\k
w

(55)

mw = m\k
w −V\k

w Ak(ξ−1
k + AT

k V\k
w Ak)−1AT

k m\k
w +

VwAkηk (56)

wherec andD are defined in Equations (33) and (34).
Note that the above computation takesO(d2) time, while
a simple implementation of the two-level approximation
would takeO(d3) time due to the inverse of the covariance
matrix of Z̃(w).

As a result of structure flattening, we have the following
advantages over the previous two approaches. First, in our
experiments, training can converge easily. Instead of itera-
tively approximatingZ(w) in the lower level based all the
small terms as before, a partial update based on only one
small term makes training much more stable. Second, we
can obtain a better “leave-one-out” posteriorq\k(w), since
we updateq(w) more frequently than in the previous two
cases. A more refinedq(w) leads to a betterq\k(w), which
in turn guides the KL mininmization to find a better new
q(w). Finally, the flattened approximation structure allows
us to process approximation terms in any order. We found
empirically that, compared to using a random order, it is
better to process the denominator term{f̃k(w)} right after
processing the numerator term{g̃k(w)}, which is associ-



ated with the same edge as{f̃k(w)}.

Using the flattened structure and pairing the processing of
the corresponding numerator and denominator terms, we
can train BCRFs robustly. For example, on the tasks of
analyzing synthetic datasets in the experimental section,
training with the two-level structure breaks down by skip-
ping{Z̃(w)} or{f̃k(w)} and fails to converge. In contrast,
training with the flattened structure converges successfully
and leads to a test error around10%.

7 Inference by approximate model
averaging

Unlike traditional classification problems, where we have a
scalar output for each input, a BCRF jointly labels all the
hidden vertices in an undirected graph. The trained BCRF
infer the lables by model averaging, which makes full use
of the training data by employing not only the estimated
mean of the parameters, but also the estimated uncertainty
(variance).

Given a new graphx?, a BCRF trained on(x, t) can ap-
proximate the predictive distribution as follows:

p(t?|x?, t,x) =
∫

p(t?|x?,w)p(w|t,x)dw (57)

≈
∫

p(t?|x?,w)q(w)dw (58)

=
∫

q(w)
Z(w)

∏
{i,j}∈E

gi,j(t?i , t
?
j ,x

?;w)dw

where q(w) is the approximation of the true posterior
p(w|t,x). Since the exact integration for model averaging
is intractable, we need to approximate this integral.

We can approximate the predictive posterior term by term
as in EP. But typical EP updates will involve the updates
over both the parameters and the labels. That is much
more expensive than using a point estimate for inference,
which invloves only updates of the labels. To reduce the
computational complexity, we propose the following ap-
proach. It is based on the simple fact that without any la-
bel, the test data point does not offer information about the
parameters in the conditional model, since we do not cou-
ple BCRFs with semi-supervised learning. Sinceq(w) is
unchanged, we can only updateq(t?) when incorporating
one termgi,j(t?i , t

?
j ,x;w). Specifically, given the poste-

rior q(w) ∼ N (mw,Vw), we use the factorized approx-
imation q(t?) =

∏
i q(t?i ) and updateq(t?i ) andq(t?j ) as

follows:

zt?
i ,t?

j
=

φT
k m\k

w√
φT

k V\k
w φk + 1

(59)

Zt?
i ,t?

j
= ε + (1− 2ε)Ψ(zt?

i ,t?
j
) (60)

q(t?i , t
?
j ) =

Zt?
i ,t?

j
q\k(t?i )q

\k(t?j )

Z
(61)

q(t?i ) =
∑
tj

q(t?i , t
?
j ) (62)

q(t?j ) =
∑
ti

q(t?i , t
?
j ) (63)

whereφk is the feature vector extracted at thekth edge.
Note that the deletion and inclusion steps forq(t?) are sim-
ilar to those in BCRF training.

8 Experimental results

This section compares BCRFs with CRFs trained by max-
imum likelihood (ML) and maximum a posteriori (MAP)
methods on several synthetic datasets and a document la-
beling task, demonstrating BCRFs’ superior test perfor-
mance. MAP-trained CRFs include CRFs with probit po-
tential functions (4) and CRFs with exponential potential
functions (3). We used probit models as potential functions
by settingε = 0 in equation (4). In BCRF training, we
used a small step size to avoid divergence (see details in
Qi (2004)). For comparsion, the errors were counted on all
vertices in the test graphs.

8.1 Synthetic CRFs classification

All the synthetic datasets were sampled from CRFs with
probit potential functions (4). On these synthetic datasets,
we compared the test performance of BCRFs and MAP-
trained probit CRFs for different sizes of training sets and
different graphical structures.

The labels of the vertices in synthetic graphs are all binary.
The parameter vectorw has 24 elements. The feature vec-
tors{φi,j} are randomly sampled from one of four Gaus-
sians. We can easily control the discriminability of the data
by changing the variance of the Gaussians. Based on the
model parameter vector and the sampled feature vectors,
we can compute the joint probability of the labels as in
equation (1) and randomly sample the labels. For BCRFs,
we used a step size of 0.8 for training. For MAP-trained
CRFs, we used quasi-Newton methods with the BFGS ap-
proximation of Hessians (Sha & Pereira, 2003).

8.1.1 Different training sizes for loopy CRFs

Each graph has 3 vertices in a loop. In each trial, 10 loops
were sampled for training and 1000 loops for testing. The
procedure was repeated for 10 trials. A Gaussian prior with
mean0 and diagonal variance5I was used for both BCRF
and MAP CRF training. For ML- and MAP-trained CRFs,
we applied the junction tree algorithm for inference. For
BCRFs, we used approximate model averaging for infer-
ence. We repeated the same experiments by increasing the
number of training graphs from 10 to 30 to 100.
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Figure 2: Test error rates for MAP-trained CRFs and
BCRFs on synthetic datasets with different numbers of
training loops. The results are averaged over 10 runs. Each
run has 1000 test loops. Non-overlapping of error bars, the
standard errors scaled by 1.64, indicates95% significance
of the performance difference.
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Figure 3: Test error rates for MAP-trained CRFs and
BCRFs on synthetic datasets with different numbers of
training chains. The results are averaged over 10 runs.
Each run has 1000 test chains. Though the error bars over-
lap a little bit, BCRFs still outperform ML- and MAP-
trained CRFs at95% significance according to t-tests.

The results are visualized in Figure 2. According to t-
tests, which have stronger test power than the error bars in
Figure 2, BCRFs outperform ML- and MAP-trained CRFs
in all cases at98% statistical significance level. When
more training graphs are available, MAP-trained CRFs and
BCRFs perform increasingly similarly, though still statis-
tically differently. The reason is that the posterior is nar-
rower than in the case of fewer training graphs, such that
the posterior mode is closer to the posterior mean.

8.1.2 Different training sizes for chain-structured
CRFs

We then changed the graphs to be chain-structured. Specif-
ically, each graph has 3 vertices in a chain. In each trial,
10 chains were sampled for training and 1000 chains for
testing. The procedure was repeated for 10 trials. A Gaus-
sian prior with mean0 and diagonal variance5I was used
for both BCRF and MAP CRF training. Then we repeated
the same experiments by increasing the number of training
graphs from 10 to 30 to 100. The results are visualized
in Figure 3. Again, BCRFs outperform ML- and MAP-
trained CRFs with high statistical significance.

8.2 FAQ labeling

We compared BCRFs with MAP-trained probit and ex-
ponential CRFs on the frequently asked questions (FAQ)
dataset, introduced by McCallum et al. (2000). The
dataset consists of 47 files, belonging to 7 Usenet news-
group FAQs. Each files has multiple lines, which can be
the header (H), a question (Q), an answer (A), or the tail

(T). Since identifying the header and the tail is relatively
easy, we simplify the task to label only the lines that are
questions or answers. To save time, we truncated all the
FAQ files such that no file has more than 500 lines. On av-
erage, the truncated files have 479 lines. The dataset was
randomly split 10 times into 19 training and 28 test files.
Each file was modeled by a chain-structured CRF, whose
vertices correspond to lines in the files. The feature vec-
tor for each edge of a CRF is simply the concatenation of
feature vectors extracted at the two neighboring vertices.

BCRF−MA

MAP−Exp−CRF

 MAP−Probit−CRF

0.5 1.0 1.5

Test error rate (%)

Figure 4: Test error rates of different algorithms on FAQ
dataset. The results are averaged over 10 random splits.
Non-overlapping of the error bars, the standard errors mul-
tiplied by 1.64, indicates that BCRFs outperform MAP-
trained CRFs with probit and exponential potentials at95%
statistical significance level.

The test performance is visualized in Figure 4. According
to t-tests, BCRFs outperform ML- and MAP-trained CRFs
with probit or exponential potentials on the truncated FAQ
dataset at98% statistical significance level.



8.3 Comparing computational complexity

In general, the computational cost of ML and Bayesian
training depends on many factors. On the one hand, for
ML and MAP training, the cost of the BFGS algorithm is
O(d max{d, |E|}) per iteration, whered is the length ofw,
and|E| is the total number of edges in training graphs. The
cost of BCRF training isO(|E|d2) per iteration. There-
fore BCRF training is about asmin{d, |E|} times expen-
sive as ML and MAP training per iteration. On the other
hand, BCRF training generally takes much fewer iterations
to converge than BFGS training. Moreover, in BFGS train-
ing there is an embedded inference problem to obtain the
needed statistics for optimization. This inference problem
can be relatively expensive and cause a big hidden constant
in O(d max{d, |E|}), the BFGS cost per iteration. On syn-
thetic data where the number of edges is limited, BCRF
training is at least as efficient as BFGS training. For ex-
ample, given the 10 training sets in Section 8.1.2, each
of which has 30 chain-structured CRFs, BCRF and BFGS
training on a Pentium 4 3.1GHz computer used8.81 and
21.16 seconds on the average, respectively. On real-world
data, many factors play together to determine the efficiency
of a training method. On a random split of the FAQ dataset
where the total number of edges in graphs is more than
8000, it took about9 and2 hours (443 and 130 iterations)
for BFGS to train probit and exponential CRFs, while it
took BCRF training about6 hours (30 iterations).

9 Conclusions

This paper has presented BCRFs, a new approach to train-
ing and inference on conditional random fields. In train-
ing, BCRFs approximate the posterior distribution of the
parameters using a variant of the power EP method. Also,
BCRFs flatten approximation structures to increase the al-
gorithmic stability, efficiency, and prediction accuracy. In
testing, BCRFs use approximate model averaging. On syn-
thetic data and FAQ files, we compared BCRFs with ML-
and MAP-trained CRFs. In almost all the experiments,
BCRFs outperformed ML- and MAP-trained CRFs signifi-
cantly.

Compared to ML- and MAP-trained CRFs, BCRFs can ap-
proximate model averaging over the posterior distribution
of the parameters, instead of using a MAP or ML point es-
timate of the parameter vector for inference. Furthermore,
BCRF hyperparameters can be optimized in a principled
way, such as by maximizing the evidence, with parame-
ters integrated out. EP returns an estimate of the evidence
as a by-product. Similarly, we can use the method by Qi
et al. (2004) to do feature selection with BCRFs and to ob-
tain sparse kernelized BCRFs. More importantly, the tech-
niques developed for BCRFs have promise for Bayesian
learning in Markov networks.
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