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1 The Log-Log Model Revisited

Earlier [1], we defined our term frequency distribution as
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forz € {0,1,2,...}, where the normalization constant is Z(a, b) = > . ,(z+b)".
Note that the noramlization constant is finite only when a < —1 and b > 0.
We also note that Z(—a,1) = ((a) is the Riemann Zeta Function. Generally
speaking, we cannot compute the normalization constant exactly. However, an
excellent approximation can be achieved using partial sums. Let S,, = ZZZO(:H—
b)®. We fit the function f(z) = Sy, for x € {1/1,1/2,...,1/n,...}, and use
the fit at £ = 0 as our approximation for Z.

As noted, P may not be a distribution if a > —1 or b < 0. Additionally, the
expectation of P is not finite if ¢ > —2. Without constraints or reparameteri-
zation, our optimization routine may try to evaluate such out-of-bounds values.
We choose to reparameterize so that any finite values of the parameters yield a
distribution with finite expectation. We reparameterize b as e” and a as —e® —2.
Thus, we have P(z) = (z+¢”)7¢"2/Z(a, B) and Z(a, B) = 3 (z +€7) 7" 72,

Now, consider the problem of fitting the distribution given a set of docu-
ments. Let the distribution for word i be Pi(x) oc (x 4 ¢%)~¢" 2. We learn a
separate 3; for each word and a single o for the entire data set. Let x;; be the
frequency of word ¢ in document j. Let n be the number of documents; let d be
the vocabulary size. Then, the data negative log-likelihood is

d n
J=—log P(D :ZZe + 2) log(wij + €%)+

i=1 j=1

anog <Z x+ eﬁi)_ea_2> . (2)
=0

*Update June 16, 2005



We can use gradient-descent-type techniques to learn the parameters. Note that
when we are assessing the probability of frequencies in a given document, there
is no need for us to be concerned with document length. Our document likeli-
hood is a joint probability that implicitly includes the event of the documents
having certain lengths. It is computationally difficult to calculate the chance of
observing a document of a given length. However, we find no need to calculate
this probability. Note that for other models, such as the unigram/multinomial,
it is also computationally difficult to calculate this marginal probability.

2 Optimization

Here we discuss the task of learning parameters of our log-log term frequency
model. As mentioned earlier, we use gradient-descent-type techniques. In par-
ticular, we focus on techniques that require only objective and gradient infor-
mation. We have already discussed the objective (2) and the approximation
necessary to calculate the normalization constant. Here we calculate the gradi-
ent. Define P, as the empirical distribution of frequencies for word i. Recall that
n is the number of documents. The gradient takes the usual form, the difference
between the expectations of the estimated and empirical distributions.
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Again, we must use approximations to compute these sums. We can use the
)
partial-sum/regression technique discussed earlier.



3 A Length-Conditional Version

So far, we have described a distribution that is not conditioned on the length
of the docuemnt. However, it is common for models to condition on document
length. The unigram model is a prime example. So, here we describe a length-
conditioned version of the log-log term frequency model.

Conditioning on length involes only a minor change in the math. Instead of
summing to infinity for the normalization constant, we sum to the length of the
document. Since the log-log model is heavy-tailed, this might yield a non-trivial
improvement in data likelihood. We use parameters a and {b;} (avoiding the
messy reparameterizations); our data negative log-likelihood is
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where I; = >, x;; is the length of document j. Note that the normailization
term now depends on the document.
The partial derivatives are
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