
CS61C L41 Intra-Machine Parallelism (1) Matt Johnson , Spring 2008

License

Except as otherwise noted, the content of
this presentation is licensed under the
Creative Commons Attribution 2.5 License.
Use of low-resolution copyrighted images
and logos is believed to qualify as fair use.

CS61C L41 Intra-Machine Parallelism (2) Matt Johnson, Spring 2008

TA Matt Johnson

 inst.eecs.berkeley.edu/~cs61c-tm

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures  

Lecture #41 
 Intra-Machine Parallelism and 

 Threaded Programming 
2008-5-7

http://hardware.slashdot.org/hardware/08/05/03/0440256.shtml

Nvidiaʼs Compute Unified Device Architecture
Nvidiaʼs CUDA system for C was developed for the
massive parallelism on their GPUs, but itʼs proving to be
a useful API for general intra-machine parallel
programming challenges.

http://www.geek.com/nvidia-is-shaking-up-the-parallel-programming-world/

CS61C L41 Intra-Machine Parallelism (3) Matt Johnson , Spring 2008

Review: Multicore everywhere!

• Multicore processors are taking over,
manycore is coming
• The processor is the “new transistor”
• This is a “sea change” for HW
designers and especially for
programmers
• Berkeley has world-leading research!
(RAD Lab, Par Lab, etc.)

CS61C L41 Intra-Machine Parallelism (4) Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions
• Synchronization constructs and
PThread syntax
• Multithreading example: domain
decomposition
• Speedup issues

• Overhead
• Caches
• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (5) Matt Johnson , Spring 2008

• Is it good enough to just have multiple
programs running simultaneously? 

• We want per-program performance
gains! 

• The leading solution: threads

How can we harness (many | multi)core?

Crysis, Crytek 2007

CS61C L41 Intra-Machine Parallelism (6) Matt Johnson , Spring 2008

Definitions: threads v.s. processes
• A process is a “program” with its own address

space.
• A process has at least one thread! 

• A thread of execution is an independent sequential
computational task with its own control flow, stack,
registers, etc.

•  There can be many threads in the same process
sharing the same address space 

•  There are several APIs for threads in several
languages. We will cover the PThread API in C.

CS61C L41 Intra-Machine Parallelism (7) Matt Johnson , Spring 2008

How are threads scheduled?
• Threads/processes are run
sequentially on one core or
simultaneously on multiple cores

• The operating system schedules threads and
processes by moving them between states

• # threads running = # logical cores on CPU
• Many threads can be “ready” or “waiting”

Based on diagram from Silberschatz, Galvin, and Gagne

ready running

waiting

thread
creation

interrupt thread
termination

scheduler dispatch I/O or synchronization wait
(e.g initiated read from disk,
tried to acquire a held lock,
slept on condition variable)

I/O completion
or wake signal

CS61C L41 Intra-Machine Parallelism (8) Matt Johnson , Spring 2008

Side: threading without multicore?

• Is threading useful without multicore?
• Yes, because of I/O blocking!

• Canonical web server example:
global workQueue;

dispatcher() {
 createThreadPool();
 while(true) {
 task = receiveTask();
 if (task != NULL) {
 workQueue.add(task);
 workQueue.wake();
 }
 }
}

worker() {
 while(true) {
 task = workQueue.get();
 doWorkWithIO(task);
 }
}

CS61C L41 Intra-Machine Parallelism (9) Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions
• Synchronization constructs and
PThread syntax
• Multithreading example: domain
decomposition
• Speedup issues

• Overhead
• Caches
• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (10) Matt Johnson , Spring 2008

How can we make threads cooperate?

• If task can be completely decoupled
into independent sub-tasks,
cooperation required is minimal

• Starting and stopping communication

• Trouble when they need to share data!
• Race conditions: 

• We need to force some serialization
• Synchronization constructs do that!

Thread B
Thread A

time -->

readX incX writeX
readX incX writeX

time -->

readX incX writeX
readX incX writeXThread B

Thread A
Scenario 2Scenario 1

CS61C L41 Intra-Machine Parallelism (11) Matt Johnson , Spring 2008

Lock / mutex semantics
• A lock (mutual exclusion, mutex)
guards a critical section in code so that
only one thread at a time runs its
corresponding section

• acquire a lock before entering crit. section
• releases the lock when exiting crit. section
• Threads share locks, one per section to
synchronize

• If a thread tries to acquire an in-use
lock, that thread is put to sleep

• When the lock is released, the thread
wakes up with the lock! (blocking call)

CS61C L41 Intra-Machine Parallelism (12) Matt Johnson , Spring 2008

Lock / mutex syntax example in PThreads

threadA() {
 int temp = foo(x);
 pthread_mutex_lock(&lock);
 x = bar(x) + temp;
 pthread_mutex_unlock(&lock);
 // continue…
}

threadB() {
 int temp = foo(9000);
 pthread_mutex_lock(&lock);
 baz(x) + bar(x); 
 x *= temp;
 pthread_mutex_unlock(&lock);
 // continue…
}

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
int x;

Thread B
Thread A readX

… acquireLock readX
acquireLock => SLEEP…

readX writeX releaseLock …
WAKE w/ LOCK … releaseLock

• But locks donʼt solve everything…
• Problem: potential deadlock!

time -->

threadA() {
 pthread_mutex_lock(&lock1);
 pthread_mutex_lock(&lock2);
}

threadB() {
 pthread_mutex_lock(&lock2);
 pthread_mutex_lock(&lock1);
}

CS61C L41 Intra-Machine Parallelism (13) Matt Johnson , Spring 2008

Condition variable semantics

• A condition variable (CV) is an object that
threads can sleep on and be woken from

• Wait or sleep on a CV
• Signal a thread sleeping on a CV to wake
• Broadcast all threads sleeping on a CV to wake
•  I like to think of them as thread pillows…

• Always associated with a lock!
• Acquire a lock before touching a CV
• Sleeping on a CV releases the lock in the

threadʼs sleep
•  If a thread wakes from a CV it will have the lock

• Multiple CVs often share the same lock

CS61C L41 Intra-Machine Parallelism (14) Matt Johnson , Spring 2008

Condition variable example in PThreads
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t mainCV = PTHREAD_COND_INITIALIZER;
pthread_cond_t workerCV = PTHREAD_COND_INITIALIZER;
int A[1000];
int num_workers_waiting = 0;

mainThread() {
 pthread_mutex_lock(&lock);
 // set up workers so they sleep on workerCV
 loadImageData(&A);
 while(true) {
 pthread_cond_broadcast(&workerCV);
 pthread_cond_wait(&mainCV,&lock);
 // A has been processed by workers!
 displayOnScreen(A);
 }
}

workerThreads() {
while(true){
 pthread_mutex_lock(&lock);
 num_workers_waiting += 1;
 // if we are the last ones here…
 if(num_workers_waiting == NUM_THREADS){
 num_workers_waiting = 0;
 pthread_cond_signal(&mainCV);
 }
 // wait for main to wake us up
 pthread_cond_wait(&workerCV, &lock);
 pthread_mutex_unlock(&lock);
 doWork(mySection(A));}}

workerCV

woken
by main

working

some sleeping, some finishing

last one to finish
wakes main before
sleeping

some finish and sleep

CS61C L41 Intra-Machine Parallelism (15) Matt Johnson , Spring 2008

Creating and destroying PThreads
#include <pthread.h>
#include <stdio.h>

#define NUM_THREADS 5
pthread_t threads[NUM_THREADS];

int main(void) {
 for(int ii = 0; ii < NUM_THREADS; ii+=1) {
 (void) pthread_create(&threads[ii], NULL, threadFunc, (void *) ii);
 }

 for(int ii = 0; ii < NUM_THREADS; ii+=1) {
 pthread_join(threads[ii],NULL); // blocks until thread ii has exited
 }

 return 0;
}

void *threadFunc(void *id) {
 printf(“Hi from thread %d!\n”,(int) id);
 pthread_exit(NULL);
}

To compile against the PThread library, use gccʼs -lpthread flag!

CS61C L41 Intra-Machine Parallelism (16) Matt Johnson , Spring 2008

Side: OpenMP is a common alternative!

• PThreads arenʼt the only game in town
• OpenMP can automatically parallelize
loops and do other cool, less-manual
stuff!

#define N 100000
int main(int argc, char *argv[]){
 int i, a[N];
 #pragma omp parallel for
 for (i=0;i<N;i++)
 a[i]= 2*i;
 return 0;
}

CS61C L41 Intra-Machine Parallelism (17) Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions
• Synchronization constructs and
PThread syntax
• Multithreading example: domain
decomposition
• Speedup issues

• Overhead
• Caches
• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (18) Matt Johnson , Spring 2008

Domain decomposition demo (1)

• Domain decomposition refers to
solving a problem in a data-parallel
way

• If processing elements of a big array can
be done independently, divide the array
into sections (domains) and assign one
thread to each!

• (Common data parallelism in Scheme?)

• Remember the shader from Caseyʼs
lecture?

• Thanks for the demo, Casey!

CS61C L41 Intra-Machine Parallelism (19) Matt Johnson , Spring 2008

Domain decomposition demo (2)
void drawEllipse() {
 glBegin(GL_POINTS);
 for(int x = 0; x < viewport.w; x++) {
 for(int y = 0; y < viewport.h; y++) {
 float sX = sceneX(x);
 float sY = sceneY(y);
 if(inEllip(sX,sY)) {
 vec3 ellipPos = getEllipPos(sX,sY);
 vec3 ellipNormal = getEllipNormal(ellipPos);
 vec3 ellipColor = getEllipColor(ellipNormal,ellipPos);
 setPixel(x, y, ellipColor);
 }
 }
 }
 glEnd();
}

void setPixel(int x, int y, GLfloat r, GLfloat g, GLfloat b) {
 // openGL calls work via an internal state machine
 // what would you call this section?
 glColor3f(r, g, b);
 glVertex2f(x, y);

}

CS61C L41 Intra-Machine Parallelism (20) Matt Johnson , Spring 2008

Domain decomposition demo (3)

• Demo shown here

CS61C L41 Intra-Machine Parallelism (21) Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions
• Synchronization constructs and
PThread syntax
• Multithreading example: domain
decomposition
• Speedup issues

• Overhead
• Caches
• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (22) Matt Johnson , Spring 2008

Speedup issues: overhead

• In the demo, we saw (both relative to
single threaded version):

• 2 threads => ~50% performance boost!
• 3 threads => ~10% performance boost!?

• More threads does not always mean
better!

• I only have two cores…
• Threads can spend too much time
synchronizing (e.g. waiting on locks and
condition variables)

• Synchronization is a form of overhead
• Also communication and creation/
deletion overhead

CS61C L41 Intra-Machine Parallelism (23) Matt Johnson , Spring 2008

Speedup issues: caches

• Caches are often one of the largest
considerations in performance
• For multicore, common to have
independent L1 caches and shared L2
caches
• Can drive domain 
decomposition design

CS61C L41 Intra-Machine Parallelism (24) Matt Johnson , Spring 2008

•  Applications can almost never be completely parallelized; some
serial code remains

•  s is serial fraction of program, P is # of processors
•  Amdahlʼs law:
Speedup(P) = Time(1) / Time(P)
 ≤ 1 / (s + ((1-s) / P)), and as P ∞
 ≤ 1/s
•  Even if the parallel portion of your application speeds up perfectly,

your performance may be limited by the sequential portion

Speedup Issues: Amdahlʼs Law

Time

Number of Processors

Parallel portion

Serial portion

1 2 3 4 5

CS61C L41 Intra-Machine Parallelism (25) Matt Johnson , Spring 2008

Pseudo-PRS Quiz

• Super-linear speedup is possible
• Multicore is hard for architecture
people, but pretty easy for software
• Multicore made it possible for Google
to search the web

CS61C L41 Intra-Machine Parallelism (26) Matt Johnson , Spring 2008

Pseudo-PRS Answers!

• Super-linear speedup is possible 
True: more cores means simply more cache
accessible (e.g. L1), so some problems may
see super-linear speedup
• Multicore is hard for architecture people,

but pretty easy for software 
False: parallel processors put the burden of
concurrency largely on the SW side
• Multicore made it possible for Google to

search the web 
False: web search and other Google
problems have huge amounts of data. The
performance bottleneck becomes RAM
amounts and speeds! (CPU-RAM gap)

CS61C L41 Intra-Machine Parallelism (27) Matt Johnson , Spring 2008

Summary

• Threads can be awake and ready/running on
a core or asleep for sync. (or blocking I/O)
• Use PThreads to thread C code and use

your multicore processors to their full
extent!

•  pthread_create(), pthread_join(), pthread_exit()
•  pthread_mutex_t, pthread_mutex_lock(),
pthread_mutex_unlock()

•  pthread_cond_t, pthread_cond_wait(),
pthread_cond_signal(), pthread_cond_broadcast()

• Domain decomposition is a common
technique for multithreading programs
• Watch out for

• Synchronization overhead
• Cache issues (for sharing data, decomposing)
• Amdahlʼs Law and algorithm parallelizability

