
CS61C L41 Intra-Machine Parallelism (1)
 Matt Johnson , Spring 2008

License

Except as otherwise noted, the content of
this presentation is licensed under the
Creative Commons Attribution 2.5 License.

Use of low-resolution copyrighted images
and logos is believed to qualify as fair use.

CS61C L41 Intra-Machine Parallelism (2)
 Matt Johnson, Spring 2008

TA Matt Johnson

 inst.eecs.berkeley.edu/~cs61c-tm

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures  

Lecture #41 
 Intra-Machine Parallelism and 

 Threaded Programming 
2008-5-7

http://hardware.slashdot.org/hardware/08/05/03/0440256.shtml

Nvidiaʼs Compute Unified Device Architecture

Nvidiaʼs CUDA system for C was developed for the
massive parallelism on their GPUs, but itʼs proving to be
a useful API for general intra-machine parallel
programming challenges.

http://www.geek.com/nvidia-is-shaking-up-the-parallel-programming-world/

CS61C L41 Intra-Machine Parallelism (3)
 Matt Johnson , Spring 2008

Review: Multicore everywhere!

• Multicore processors are taking over,
manycore is coming

• The processor is the “new transistor”

• This is a “sea change” for HW
designers and especially for
programmers

• Berkeley has world-leading research!
(RAD Lab, Par Lab, etc.)

CS61C L41 Intra-Machine Parallelism (4)
 Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions

• Synchronization constructs and
PThread syntax

• Multithreading example: domain
decomposition

• Speedup issues

• Overhead

• Caches

• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (5)
 Matt Johnson , Spring 2008

• Is it good enough to just have multiple
programs running simultaneously? 

• We want per-program performance
gains! 

• The leading solution: threads

How can we harness (many | multi)core?

Crysis, Crytek 2007

CS61C L41 Intra-Machine Parallelism (6)
 Matt Johnson , Spring 2008

Definitions: threads v.s. processes

• A process is a “program” with its own address

space.

• A process has at least one thread! 

• A thread of execution is an independent sequential
computational task with its own control flow, stack,
registers, etc.

•  There can be many threads in the same process
sharing the same address space 

•  There are several APIs for threads in several
languages. We will cover the PThread API in C.

CS61C L41 Intra-Machine Parallelism (7)
 Matt Johnson , Spring 2008

How are threads scheduled?

• Threads/processes are run
sequentially on one core or
simultaneously on multiple cores

• The operating system schedules threads and
processes by moving them between states

• # threads running = # logical cores on CPU

• Many threads can be “ready” or “waiting”

Based on diagram from Silberschatz, Galvin, and Gagne

ready running

waiting

thread
creation

interrupt thread
termination

scheduler dispatch I/O or synchronization wait
(e.g initiated read from disk,
tried to acquire a held lock,
slept on condition variable)

I/O completion
or wake signal

CS61C L41 Intra-Machine Parallelism (8)
 Matt Johnson , Spring 2008

Side: threading without multicore?

• Is threading useful without multicore?

• Yes, because of I/O blocking!

• Canonical web server example:

global workQueue;

dispatcher() {

 createThreadPool();

 while(true) {

 task = receiveTask();

 if (task != NULL) {

 workQueue.add(task);

 workQueue.wake();

 }

 }

}

worker() {

 while(true) {

 task = workQueue.get();

 doWorkWithIO(task);

 }

}

CS61C L41 Intra-Machine Parallelism (9)
 Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions

• Synchronization constructs and
PThread syntax

• Multithreading example: domain
decomposition

• Speedup issues

• Overhead

• Caches

• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (10)
 Matt Johnson , Spring 2008

How can we make threads cooperate?

• If task can be completely decoupled
into independent sub-tasks,
cooperation required is minimal

• Starting and stopping communication

• Trouble when they need to share data!

• Race conditions: 

• We need to force some serialization

• Synchronization constructs do that!

Thread B

Thread A

time -->

readX
 incX
 writeX

readX
 incX
 writeX

time -->

readX
 incX
 writeX

readX
 incX
 writeX
Thread B

Thread A

Scenario 2
Scenario 1

CS61C L41 Intra-Machine Parallelism (11)
 Matt Johnson , Spring 2008

Lock / mutex semantics

• A lock (mutual exclusion, mutex)
guards a critical section in code so that
only one thread at a time runs its
corresponding section

• acquire a lock before entering crit. section

• releases the lock when exiting crit. section

• Threads share locks, one per section to
synchronize

• If a thread tries to acquire an in-use
lock, that thread is put to sleep

• When the lock is released, the thread
wakes up with the lock! (blocking call)

CS61C L41 Intra-Machine Parallelism (12)
 Matt Johnson , Spring 2008

Lock / mutex syntax example in PThreads

threadA() {

 int temp = foo(x);

 pthread_mutex_lock(&lock);

 x = bar(x) + temp;

 pthread_mutex_unlock(&lock);

 // continue…

}

threadB() {

 int temp = foo(9000);

 pthread_mutex_lock(&lock);

 baz(x) + bar(x); 
 x *= temp;

 pthread_mutex_unlock(&lock);

 // continue…

}

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int x;

Thread B

Thread A
 readX

…
 acquireLock
 readX

acquireLock => SLEEP
…

readX
 writeX
 releaseLock
 …

WAKE w/ LOCK
 …
 releaseLock

• But locks donʼt solve everything…

• Problem: potential deadlock!

time -->

threadA() {

 pthread_mutex_lock(&lock1);

 pthread_mutex_lock(&lock2);

}

threadB() {

 pthread_mutex_lock(&lock2);

 pthread_mutex_lock(&lock1);

}

CS61C L41 Intra-Machine Parallelism (13)
 Matt Johnson , Spring 2008

Condition variable semantics

• A condition variable (CV) is an object that
threads can sleep on and be woken from

• Wait or sleep on a CV

• Signal a thread sleeping on a CV to wake

• Broadcast all threads sleeping on a CV to wake

•  I like to think of them as thread pillows…

• Always associated with a lock!

• Acquire a lock before touching a CV

• Sleeping on a CV releases the lock in the

threadʼs sleep

•  If a thread wakes from a CV it will have the lock

• Multiple CVs often share the same lock

CS61C L41 Intra-Machine Parallelism (14)
 Matt Johnson , Spring 2008

Condition variable example in PThreads

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t mainCV = PTHREAD_COND_INITIALIZER;

pthread_cond_t workerCV = PTHREAD_COND_INITIALIZER;

int A[1000];

int num_workers_waiting = 0;

mainThread() {

 pthread_mutex_lock(&lock);

 // set up workers so they sleep on workerCV

 loadImageData(&A);

 while(true) {

 pthread_cond_broadcast(&workerCV);

 pthread_cond_wait(&mainCV,&lock);

 // A has been processed by workers!

 displayOnScreen(A);

 }

}

workerThreads() {
while(true){
 pthread_mutex_lock(&lock);
 num_workers_waiting += 1;
 // if we are the last ones here…
 if(num_workers_waiting == NUM_THREADS){
 num_workers_waiting = 0;
 pthread_cond_signal(&mainCV);
 }
 // wait for main to wake us up
 pthread_cond_wait(&workerCV, &lock);
 pthread_mutex_unlock(&lock);
 doWork(mySection(A));}}

workerCV

woken

by main

working

some sleeping, some finishing

last one to finish

wakes main before

sleeping

some finish and sleep

CS61C L41 Intra-Machine Parallelism (15)
 Matt Johnson , Spring 2008

Creating and destroying PThreads

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

pthread_t threads[NUM_THREADS];

int main(void) {

 for(int ii = 0; ii < NUM_THREADS; ii+=1) {

 (void) pthread_create(&threads[ii], NULL, threadFunc, (void *) ii);

 }

 for(int ii = 0; ii < NUM_THREADS; ii+=1) {

 pthread_join(threads[ii],NULL); // blocks until thread ii has exited

 }

 return 0;

}

void *threadFunc(void *id) {

 printf(“Hi from thread %d!\n”,(int) id);

 pthread_exit(NULL);

}

To compile against the PThread library, use gccʼs -lpthread flag!

CS61C L41 Intra-Machine Parallelism (16)
 Matt Johnson , Spring 2008

Side: OpenMP is a common alternative!

• PThreads arenʼt the only game in town

• OpenMP can automatically parallelize
loops and do other cool, less-manual
stuff!

#define N 100000

int main(int argc, char *argv[]){

 int i, a[N];

 #pragma omp parallel for

 for (i=0;i<N;i++)

 a[i]= 2*i;

 return 0;

}

CS61C L41 Intra-Machine Parallelism (17)
 Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions

• Synchronization constructs and
PThread syntax

• Multithreading example: domain
decomposition

• Speedup issues

• Overhead

• Caches

• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (18)
 Matt Johnson , Spring 2008

Domain decomposition demo (1)

• Domain decomposition refers to
solving a problem in a data-parallel
way

• If processing elements of a big array can
be done independently, divide the array
into sections (domains) and assign one
thread to each!

• (Common data parallelism in Scheme?)

• Remember the shader from Caseyʼs
lecture?

• Thanks for the demo, Casey!

CS61C L41 Intra-Machine Parallelism (19)
 Matt Johnson , Spring 2008

Domain decomposition demo (2)

void drawEllipse() {
 glBegin(GL_POINTS);
 for(int x = 0; x < viewport.w; x++) {
 for(int y = 0; y < viewport.h; y++) {
 float sX = sceneX(x);
 float sY = sceneY(y);
 if(inEllip(sX,sY)) {
 vec3 ellipPos = getEllipPos(sX,sY);
 vec3 ellipNormal = getEllipNormal(ellipPos);
 vec3 ellipColor = getEllipColor(ellipNormal,ellipPos);
 setPixel(x, y, ellipColor);
 }
 }
 }
 glEnd();
}

void setPixel(int x, int y, GLfloat r, GLfloat g, GLfloat b) {
 // openGL calls work via an internal state machine
 // what would you call this section?
 glColor3f(r, g, b);
 glVertex2f(x, y);

}

CS61C L41 Intra-Machine Parallelism (20)
 Matt Johnson , Spring 2008

Domain decomposition demo (3)

• Demo shown here

CS61C L41 Intra-Machine Parallelism (21)
 Matt Johnson , Spring 2008

Outline for Today

• Motivation and definitions

• Synchronization constructs and
PThread syntax

• Multithreading example: domain
decomposition

• Speedup issues

• Overhead

• Caches

• Amdahlʼs Law

CS61C L41 Intra-Machine Parallelism (22)
 Matt Johnson , Spring 2008

Speedup issues: overhead

• In the demo, we saw (both relative to
single threaded version):

• 2 threads => ~50% performance boost!

• 3 threads => ~10% performance boost!?

• More threads does not always mean
better!

• I only have two cores…

• Threads can spend too much time
synchronizing (e.g. waiting on locks and
condition variables)

• Synchronization is a form of overhead

• Also communication and creation/
deletion overhead

CS61C L41 Intra-Machine Parallelism (23)
 Matt Johnson , Spring 2008

Speedup issues: caches

• Caches are often one of the largest
considerations in performance

• For multicore, common to have
independent L1 caches and shared L2
caches

• Can drive domain 
decomposition design

CS61C L41 Intra-Machine Parallelism (24)
 Matt Johnson , Spring 2008

•  Applications can almost never be completely parallelized; some
serial code remains

•  s is serial fraction of program, P is # of processors

•  Amdahlʼs law:

Speedup(P) = Time(1) / Time(P)

 ≤ 1 / (s + ((1-s) / P)), and as P  ∞

 ≤ 1/s

•  Even if the parallel portion of your application speeds up perfectly,

your performance may be limited by the sequential portion

Speedup Issues: Amdahlʼs Law

Time

Number of Processors

Parallel portion

Serial portion

1
 2
 3
 4
 5

CS61C L41 Intra-Machine Parallelism (25)
 Matt Johnson , Spring 2008

Pseudo-PRS Quiz

• Super-linear speedup is possible

• Multicore is hard for architecture
people, but pretty easy for software

• Multicore made it possible for Google
to search the web

CS61C L41 Intra-Machine Parallelism (26)
 Matt Johnson , Spring 2008

Pseudo-PRS Answers!

• Super-linear speedup is possible 
True: more cores means simply more cache
accessible (e.g. L1), so some problems may
see super-linear speedup

• Multicore is hard for architecture people,

but pretty easy for software 
False: parallel processors put the burden of
concurrency largely on the SW side

• Multicore made it possible for Google to

search the web 
False: web search and other Google
problems have huge amounts of data. The
performance bottleneck becomes RAM
amounts and speeds! (CPU-RAM gap)

CS61C L41 Intra-Machine Parallelism (27)
 Matt Johnson , Spring 2008

Summary

• Threads can be awake and ready/running on
a core or asleep for sync. (or blocking I/O)

• Use PThreads to thread C code and use

your multicore processors to their full
extent!

•  pthread_create(), pthread_join(), pthread_exit()
•  pthread_mutex_t, pthread_mutex_lock(),
pthread_mutex_unlock()

•  pthread_cond_t, pthread_cond_wait(),
pthread_cond_signal(), pthread_cond_broadcast()

• Domain decomposition is a common
technique for multithreading programs

• Watch out for

• Synchronization overhead

• Cache issues (for sharing data, decomposing)

• Amdahlʼs Law and algorithm parallelizability

