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The proofs of the paper “Necessary and Sufficient Conditions for High-Dimensional Salient Subset Re-
covery” presented in Austin, TX for ISIT 2010 are provided. Note that all equation numbers refer to the
corresponding equation in the main paper (e.g., (1) refers to equation (1) in the main paper). The same
holds for theorems, propositions and lemmas.
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1 Proof of Proposition 1

Proof We will prove that (S3) ⇔ (S1) ⇔ (S2). Assuming (S1) holds, D(P (d) ||Q(d)) = D(P
(d)
Sd

||Q(d)
Sd

)
implies that the conditional KL-divergence is identically zero, i.e,

D(P
(d)
Sc
d|Sd

||Q(d)
Sc
d|Sd

) = 0. (A-1)

Expanding the above expression yields the following:
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Q
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= 0. (A-2)

From the positivity of the distributions and non-negativity of the KL-divergence, we have that
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Q
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d|Sd
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|xSd

)
= 0, ∀xSd

∈ X k. (A-3)

We conclude that

P
(d)
Sc
d|Sd

(xSc
d
|xSd

) = Q
(d)
Sc
d|Sd

(xSc
d
|xSd

), ∀xSd
∈ X k, xSc

d
∈ X d−k, (A-4)

which implies that the conditional distributions are identical. This proves (S3). The reverse implication is
obvious.

Assume that Sd is KL-divergence salient (S1). Then from the above, we have (6). The Chernoff infor-
mation is then given by

D∗(P (d), Q(d)) = − min
t∈[0,1]

log

(∑
z

(P (d)(z))t(Q(d)(z))1−t

)
, (A-5)
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log
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= − min
t∈[0,1]

log

∑
zSd
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(zSd
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(d)
Sd

(zSd
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 = D∗(P
(d)
Sd
, Q

(d)
Sd

), (A-9)

which proves that Sd is Chernoff information salient (S2). Now for the reverse implication, we claim the
following lemma:

Lemma A-1 (Monotonicity of Chernoff information) For every set A ⊂ Vd, the Chernoff information
satisfies

D∗(P (d), Q(d)) ≥ D∗(P
(d)
A , Q

(d)
A ), (A-10)

with equality if and only if (6) holds, i.e., the conditionals P
(d)
Ac|A and Q

(d)
Ac|A are identical.

Assuming Lemma A-1 and assuming that Sd is Chernoff information-salient, we have that P (d) and Q(d)

satisfy (S3). Since (S3) ⇔ (S2), this completes the proof of Lemma 1. It remains to prove Lemma A-1. 2

2



Proof of Lemma A-1
We drop the superscript (d) for notational simplicity. Then we have the following chain

D∗(P,Q) = − min
t∈[0,1]

log

(∑
z

P (z)tQ(z)1−t

)
, (A-11)

= − min
t∈[0,1]

log

(∑
z

PA(zA)
tQA(zA)

1−tPAc|A(zAc |zA)tQAc|A(zAc |zA)1−t
)
, (A-12)

= − min
t∈[0,1]

log

(∑
zA

PA(zA)
tQA(zA)

1−t
∑
zAc

PAc|A(zAc |zA)tQAc|A(zAc |zA)1−t
)
, (A-13)

≥ − min
t∈[0,1]

log

(∑
zA

PS(zA)
tQA(zA)

1−t

)
= D∗(PA, QA), (A-14)

where (A-14) results from Hölder’s inequality: For non-negative vectors v = [vk] and w = [wk] that sum to
1,
∑
k v

t
kw

1−t
k ≤ (

∑
k vk)

t(
∑
k wk)

1−t = 1 for every t ∈ [0, 1]. The inequality in (A-10) is tight iff Hölder’s
inequality holds with equality. This occurs iff v = w (since both vectors need to sum to unity). Thus, for
equality to hold in (A-10), we need the conditionals PAc|A and QAc|A to be identical, i.e., (6). This completes
the proof. 2

2 Proof of Proposition 2

Proof Consider the following collection of events ES′
d
:= {ψ∗

n(x
n,yn) = S′

d} for all S′
d ∈ Sk,d \ {Sd}.

Alternatively,

ES′
d
:=

{
S′
d = argmax

S̃d∈Sk,d

D(P̂
(d)

S̃d
|| Q̂(d)

S̃d
)

}
, (A-15)

where the quantities in hats are the empirical distributions. That is ES′
d
is the event that the output of the

exhaustive search decoder is the non-salient set S′
d.

We now bound the probability of each ES′
d
(wrt the probability measure Pn). By Sanov’s theorem [1, Ch.

11] applied to the product distribution P
(d)
Sd∪S′

d
×Q

(d)
Sd∪S′

d
, we have the upper bound

Pn(ES′
d
) ≤ (n+ 1)|X ||Sd∪S′

d|
exp(−nJS′

d|Sd
) ≤ (n+ 1)|X |2k exp(−nJS′

d|Sd
), (A-16)

where the error rate is given as the information projection:

JS′
d|Sd

= min
ν∈ΓS′

d
|Sd

D(ν ||P (d)
Sd∪S′

d
×Q

(d)
Sd∪S′

d
). (A-17)

Note that in the above, we have implicitly applied the contraction principle [2, Ch. 4] to the continuous
function f : P(X 2|Sd∪S′

d|) → R given by the recipe

f
(
(P

(d)
Sd∪S′

d
, Q

(d)
Sd∪S′

d
)
)
:= D(P

(d)
Sd

||Q(d)
Sd

)−D(P
(d)
S′
d
||Q(d)

S′
d
). (A-18)

The constraint set ΓS′
d|Sd

was defined in (13). Note also that the minimum in (A-17) is achieved because the
objective function is continuous and the constraint set is compact. Also, the minimizer in (A-17) is achieved
at the boundary of the constraint set

ΛS′
d|Sd

:= {ν = (P,Q) ∈ P(X |Sd∪S′
d|) : D(PSd

||QSd
) ≤ D(PS′

d
||QS′

d
)} (A-19)
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as can be readily checked, i.e., ν∗ ∈ Bd(ΛS′
d|Sd

) = ΓS′
d|Sd

. This follows from the convexity of the KL-
divergence objective in (A-17) (see [3, Theorem 2] for the details). Next, we complete the proof by applying
the union bound and “largest-exponent-wins” principle [2, 4].

Pn(ψ∗
n(x

n,yn) ̸= Sd) = Pn
 ∪
S′
d∈Sk,d\{Sd}

ES′
d

 (A-20)

≤
∑

S′
d∈Sk,d\{Sd}

Pn(ES′
d
) (A-21)

≤
∑

S′
d∈Sk,d\{Sd}

(n+ 1)|X |2k exp(−nJS′
d|Sd

) (A-22)

.
= exp(−nC(P (d), Q(d))), (A-23)

where the notation
.
= denotes equality in the first order of the exponent1 C(P (d), Q(d)) was given in (14).

Note that the constancy of k and d is crucial in (A-23) (this restrictive assumption is relaxed in Theorem 3).
The conclusion in (A-23) means that

lim sup
n→∞

1

n
logPn(ψ∗

n(x
n,yn) ̸= Sd) ≤ −C(P (d), Q(d)). (A-24)

Together with the trivial lower bound

lim inf
n→∞

1

n
logPn(ψ∗

n(x
n,yn) ̸= Sd) ≥ −C(P (d), Q(d)), (A-25)

we conclude that the limit exists and equals the error exponent, i.e,

lim
n→∞

− 1

n
logPn(ψ∗

n(x
n,yn) ̸= Sd) = C(P (d), Q(d)). (A-26)

This completes the proof. 2

3 Proof of Theorem 3

We first state four basic lemmas.

Lemma A-2 For a continuously differentiable real-valued function f : A ⊂ Rn → R, define the Lipschitz
constant

L := sup
x∈A

∥∇f(x)∥∞ = sup
x∈A

(
max
1≤i≤n

∣∣∣∣ ∂f∂xi (xi)
∣∣∣∣) , (A-27)

and assume L <∞. Then, we have the Lipschitz condition

∀x,y ∈ A, |f(x)− f(y)| ≤ L∥x− y∥1. (A-28)

Remark In fact this claim holds for any pair of conjugate exponents2 p, q ∈ [1,∞], i.e., if the ∞ norm
in (A-27) is replaced by p norm and the 1 norm in (A-28) is replaced by q norm.

Lemma A-3 The following bound for the binomial coefficient holds:(
d

k

)
≤ exp

(
dHb(

k

d
)

)
≤ exp

[
k

(
log(

d

k
) + 1

)]
, (A-29)

where Hb is the binary entropy function.
1We say that two positive sequences {an}n∈N and {bn}n∈N are equal to first order in the exponent (written an

.
= bn) if

limn→∞ n−1 log(an/bn) = 0.
2p and q are called conjugate exponents if 1/p+ 1/q = 1.
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Lemma A-4 Let n be a positive integer and ϵ ∈ (0, 1). Then the following relation3 holds(
n+ n1−ϵ

n

)
∈ eo(n), (A-30)

where the binomial coefficient defined in terms of Gamma functions, namely(
n+ n1−ϵ

n

)
:=

Γ(n+ n1−ϵ + 1)

Γ(n1−ϵ + 1)Γ(n+ 1)
. (A-31)

Lemma A-5 For two distributions Q1, Q2 with the same support Ω (a finite set), we have

∂D(Q1 ||Q2)

∂Q1(a)
= 1 + log

Q1(a)

Q2(a)
,

∂D(Q1 ||Q2)

∂Q2(a)
= −Q1(a)

Q2(a)
, ∀ a ∈ Ω. (A-32)

We defer the proofs of the first three lemmas to after the proof of the theorem. The fourth follows by simple
calculus and is thus omitted. We now prove the theorem assuming Lemmas A-2 – A-5.

Proof of Theorem 3
Step 1: We first prove that the family of differentiable functions (indexed by d) hd : P(X 2|Sd∪S′

d|) → R
given by the recipe

hd

(
(P

(d)
Sd∪S′

d
, Q

(d)
Sd∪S′

d
)
)
:= D(P

(d)
Sd

||Q(d)
Sd

)−D(P
(d)
S′
d
||Q(d)

S′
d
), (A-33)

is equi-Lipschitz continuous in the l1 norm, i.e., there exists a L′ <∞ (independent of d), such that

∀ d ∈ N, ∀ ν = (P
(d)
Sd∪S′

d
, Q

(d)
Sd∪S′

d
), ν̃ = (P̃

(d)
Sd∪S′

d
, Q̃

(d)
Sd∪S′

d
), |hd(ν)− hd(ν̃)| ≤ L′∥ν − ν̃∥1, (A-34)

To prove this first claim, we first argue that ν, ν̃ defined in (A-34) satisfy condition A3, i.e., the log-likelihood

ratio between the distributions P
(d)
Sd∪S′

d
and Q

(d)
Sd∪S′

d
is uniformly bounded (by L). By using A1 and A3 (which

says that the log-likelihood ratio of P
(d)
Sd

and Q
(d)
Sd

is uniformly bounded by L), we conclude that

∀xSd∪S′
d
∈ X |Sd∪S′

d|, log
P

(d)
Sd∪S′

d
(xSd∪S′

d
)

Q
(d)
Sd∪S′

d
(xSd∪S′

d
)
∈ [−L,L], (A-35)

because the union of a non-salient set to the salient set Sd does not change the log-likelihood ratio (cf.

the argument after Proposition 1). Thus, the L-boundedness condition also holds for P
(d)
Sd∪S′

d
and Q

(d)
Sd∪S′

d
.

Denote the set of such distributions (where the log-likelihood ratio is bounded by L) as DL. By evaluating
the partial derivative of the KL-divergences in (A-33) with respect to each of its components and applying
Lemma A-5 repeatedly, we conclude that the l∞ norm of the gradient vector of each function hd in (A-33)
is uniformly bounded, i.e., there exists a L′ <∞ such that

sup
(P

(d)

Sd∪S′
d
,Q

(d)

Sd∪S′
d
)∈DL

∥∥∥∇hd ((P (d)
Sd∪S′

d
, Q

(d)
Sd∪S′

d
)
)∥∥∥

∞
= L′. (A-36)

In fact, we can verify directly from Lemma A-5 that L′ = max{2eL, 2L+2} <∞. Now since the right-hand
side of (A-36) is independent of d, we can take the supremum over all d on the left-hand side, i.e.,

sup
d∈N

 sup
(P

(d)

Sd∪S′
d
,Q

(d)

Sd∪S′
d
)∈DL

∥∥∥∇hd ((P (d)
Sd∪S′

d
, Q

(d)
Sd∪S′

d
)
)∥∥∥

∞

 = L′. (A-37)

3The asymptotic notation h(n) ∈ eo(n) means that log h(n) is a sublinear function, i.e., to every ϵ, there is a N ∈ N such
that log h(n) < ϵn for all n > N .
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Finally apply Lemma A-2 to every d ∈ N to conclude that the equi-Lipschitz continuity condition (A-34) for
the family of functions {hd}d∈N in (A-33) holds with equi-Lipschitz constant L′.

Step 2: Now, most importantly, we prove that B > 0, where B is defined in (16). Assume, to the contrary,
that B = 0 (since B cannot be negative). For a set of distributions Γ, let D(Γ ||µ) := minν∈ΓD(ν ||µ). By
the definition of B and the infimum, there exists a d ∈ N (and a minimizing non-salient set S′

d) such that
the divergence satisfies

D(ΓS′
d|Sd

||P (d)
S′
d∪Sd

×Q
(d)
S′
d∪Sd

) <

(
η

2L′√2 log 2

)2

. (A-38)

The quantity η was defined in (10) and represents how distinguishable the salient set Sd is from the non-
salient sets S′

d ∈ Sk,d \ {Sd}. The quantity L′ < ∞ is the equi-Lipschitz constant in (A-37). Let ν be the

product distribution P
(d)
S′
d∪Sd

×Q(d)
S′
d∪Sd

and ν∗ be the minimizer of the optimization problem in the information

projection (15) or equivalently (A-17), i.e.,

ν∗ := argmin
{
D(ν ||P (d)

S′
d∪Sd

×Q
(d)
S′
d∪Sd

) : ν ∈ ΓS′
d|Sd

}
. (A-39)

Now referring back to (A-34) and applying Pinsker’s inequality [1, Ch. 11], we have the chain of inequalities

|hd(ν)− hd(ν
∗)| ≤ L′∥ν − ν∗∥1 ≤ L′

√
2 log 2

√
D(ΓS′

d|Sd
||P (d)

S′
d∪Sd

×Q
(d)
S′
d∪Sd

) <
η

2
, (A-40)

where the final inequality is because of (A-38). Notice how the finiteness and uniformity (independence from
d) of L′ are crucial in (A-38) and (A-40). Consequently, hd(ν) ≥ η (by assumption A2 on η-distinguishability)
and hd(ν

∗) = 0 (because ν∗ ∈ ΓS′
d|Sd

by compactness of the constraint set ΓS′
d|Sd

). Thus,

|hd(ν)− hd(ν
∗)| = hd(ν)− hd(ν

∗) ≥ η (A-41)

and from (A-40), we conclude that η < η/2, which is a contradiction. Hence B > 0.

Step 3: Now we simply put together the pieces in the proof by upper bounding the error probability
pn, defined in (9). Indeed, we have

Pn(ψn(xn,yn) ̸= Sd) ≤
∑

S′
d∈Sk,d\{Sd}

Pn(ES′
d
), (A-42)

≤
k−1∑
l=0

(
k

l

)(
d− k

k − l

)
max

S′
d∈Sk,d\{Sd}

Pn(ES′
d
), (A-43)

≤
k−1∑
l=0

(
k

l

)(
d− k

k − l

)
max

S′
d∈Sk,d\{Sd}

(
n+ |X ||Sd∪S′

d| − 1

n

)
exp(−nJS′

d|Sd
), (A-44)

≤
k−1∑
l=0

(
k

l

)(
d− k

k − l

)(
n+ |X |2k − 1

n

)
exp(−nB), (A-45)

≤
k−1∑
l=0

exp(k) exp

[
k

(
log(

d− k

k
) + 1

)](
n+ |X |2k

n

)
exp(−nB), (A-46)

< k exp

[
k

(
log(

d− k

k
) + 2

)](
n+ n1−ϵ

n

)
exp(−nB), (A-47)

≤ exp

[
k log(

d− k

k
)

]
exp(2k + log k)

(
n+ n1−ϵ

n

)
exp(−nB), (A-48)

≤ exp

[
k log(

d− k

k
)

]
exp(o(n)) exp(−nB), (A-49)
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where

• (A-42) follows from the union bound and definition of the event ES′
d
given in the proof of Proposition 2

(cf. (A-15)).

• (A-43) follows by a simple counting argument that the number of non-salient sets S′
d that overlap

with Sd in l indices is exactly
(
k
l

)(
d−k
k−l
)
. We also upper bound the probability Pn(ES′

d
) by the largest

possible probability.

• (A-44) follows from Sanov’s theorem and the fact that the number of types [5] with denominator n for

a distributions with support X |Sd∪S′
d| is precisely

(
n+|X ||Sd∪S′

d|−1
n

)
.

• (A-45) follows from the definition of B > 0 in (16) (infimum over all error rates over all d) and the
fact that |Sd ∪ S′

d| ≤ 2k (because |Sd| = |S′
d| = k). Notice how the positivity of B, proved in Step 2, is

crucial here.

• (A-46) follows from two applications of Lemma A-3. In particular, we note that
(
k
l

)
≤ exp(kHb(l/k)) ≤

exp(k) (for every l = 0, 1, . . . , k− 1) and also
(
d−k
k−l
)
is maximized when l = 0. We also employ a trivial

upper bound of the second binomial coefficient.

• (A-47) follows from the fact that there are only k terms in the sum and assumption that there exists
a ϵ such that

k <
(1− ϵ) log n

2 log |X |
⇐⇒ exp

(
2k log |X |
1− ϵ

)
< n. (A-50)

This is given by the function g1 in (17).

• (A-48) follows by simple rearrangement. Note that exp(2k + log k) ∈ exp(o(n)) by (A-50).

• Lastly (A-49) follows from Lemma A-4 and the absorption of all subexponential terms into exp(o(n)).

Finally, from (A-49), we notice by a simple rearrangement that the exponent is given by −n(B − o(1) −
(k/n) log((d− k)/k)). In order to ensure that the error probability decays to zero, it is suffices to have

B − o(1)− k

n
log(

d− k

k
) > 0. (A-51)

Condition (A-51) holds if for sufficiently large n

n >
k

B − ϵ′
log(

d− k

k
), (A-52)

Take ϵ′ → 0. We conclude from (A-50) and (A-52) that if n > g1(k, ϵ)∨g2(d, k), then {(n, d, k)}n∈N is achiev-
able, where g1 and g2 were defined in (17). Now it is easy to see that the rate of decay lim supn→∞ n−1 log pn
is simply given by −c where c is the difference between B and the contribution from the binomial coefficient
term

(
d−k
k

)
, i.e.,

c = B − lim sup
n→∞

k

n
log(

d− k

k
), (A-53)

which concludes the proof of Theorem 3. 2

Now we prove the remaining lemmas.
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Proof of Lemma A-2
Consider n = 2. The general case is easily deducible by extending the argument below straightforwardly.
Let x = (x1, x2),y = (y1, y2) ∈ A ⊂ R2 be any two points.

|f(x1, x2)− f(y1, y2)| = |f(x1, x2)− f(y1, x2) + f(y1, x2)− f(y1, y2)| (A-54)

≤ |f(x1, x2)− f(y1, x2)|+ |f(y1, x2)− f(y1, y2)| (A-55)

=

∣∣∣∣ ∂f∂x1 (ξ1)
∣∣∣∣ |x1 − y1|+

∣∣∣∣ ∂f∂x2 (ξ2)
∣∣∣∣ |x2 − y2| (A-56)

≤ sup
ξ1:(ξ1,y1)∈A

∣∣∣∣ ∂f∂x1 (ξ1)
∣∣∣∣ |x1 − y1|+ sup

ξ2:(x2,ξ2)∈A

∣∣∣∣ ∂f∂x2 (ξ2)
∣∣∣∣ |x2 − y2| (A-57)

≤ L(|x1 − y1|+ |x2 − y2|) = L∥x− y∥1, (A-58)

where in (A-56) we have made use of the 1-dimensional mean-value theorem [6, Ch. 5] and ξj ∈ (xj , yj) for
j = 1, 2 and in (A-57) and (A-58) we made use of the hypothesis in the lemma (cf. (A-27)). The claim thus
follows. 2

Proof of Lemma A-3
From [1, Ch. 11], we have the straightforward upper bound(

d

k

)
≤ exp

(
dHb(

k

d
)

)
. (A-59)

It remains to bound the binary entropy function Hb(q) for q ∈ [0, 1]. Note that for all 0 ≤ q ≤ 3,

−(1− q) log(1− q) ≤ −(1− q)(−q + q2

2
) = q − 3

2
q2 +

q3

2
≤ q, (A-60)

where we have used the fact that log(1− t) ≥ −t+ t2/2. Thus, we have

Hb(q) = −q log q − (1− q) log(1− q) ≤ −q log q + q = q(− log q + 1). (A-61)

The proof is completed with the identification q = k/d in (A-59). 2

Proof of Lemma A-4
We make use of the following bound from [7, Corollary 2.3]:

∀α ∈ R+, n ∈ N,
(
αn

n

)
<

1√
2π
n−1/2 ααn+1/2

(α− 1)(α−1)n+1/2
. (A-62)

Note from close examination of the proof in [7] that this bound applies to the case where αn may not be an
integer. In this case, the binomial coefficient is defined by the one involving Gamma functions (cf. (A-31)).
Thus, taking α = 1 + n−ϵ in (A-62), we have(

n+ n1−ϵ

n

)
=

(
n(1 + n−ϵ)

n

)
< poly(n)

(1 + n−ϵ)n(1+n
−ϵ)

(n−ϵ)n1−ϵ =: poly(n)M(n). (A-63)

where poly(n) ∈ eo(n) is some polynomial function in n. It suffices to prove that M(n) ∈ eo(n). Indeed,

logM(n) = n(1 + n−ϵ) log(1 + n−ϵ)− n1−ϵ log n−ϵ (A-64)

≤ n(1 + n−ϵ)n−ϵ + ϵn1−ϵ log n ∈ o(n) (A-65)

where (A-65) comes from the inequality log(1 + t) ≤ t. Thus M(n) ∈ eo(n) and this completes the proof. 2
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4 Proof of Corollary 4

Proof Assume that k = k0 is constant. The claim follows by replacing the upper bound for
(
d
k0

)
in (A-46)

with the trivial upper bound dk0 . If k0R < B, the corresponding exponent (cf. (A-51)) is positive. 2

5 Proof of Theorem 5

Proof Recall the Markov chain given in Section III-D of the main paper:

Sd
φn−→ (xn,yn)

ψn−→ Ŝd (A-66)

Applying Fano’s inequality [1, Ch. 1], we have

Pn(Sd ̸= Ŝd) ≥
H(Sd|Ŝd)− 1

log
(
d
k

) (A-67)

=
H(Sd)− I(Sd; Ŝd)− 1

log
(
d
k

) (A-68)

=
log
(
d
k

)
− I(Sd; Ŝd)− 1

log
(
d
k

) (A-69)

where (A-69) follows from the uniform distribution on Sd, which implies that H(Sd) = log |Sk,d|. Now we
upper bound the mutual information term:

I(Sd; Ŝd)
(a)

≤ I(Sd;x
n,yn)

(b)

≤ H(xn,yn)
(c)

≤ n(H(x) +H(y))
(d)
= n(H(P (d)) +H(Q(d))), (A-70)

where (a) follows from the data processing inequality (cf. (A-66)), (b) follows from non-negativity of condi-
tional entropy, (c) follows from conditioning reduces entropy and (d) follows from equivalence of H(x) and
H(P (d)). Inserting (A-70) into (A-69), we have

Pn(Sd ̸= Ŝd) ≥ 1− n(H(P (d)) +H(Q(d)))

log
(
d
k

) − o(1)
(a)

≥ 1− n(H(P (d)) +H(Q(d)))

k log d
k

− o(1), (A-71)

where (a) follows from the fact that
(
d
k

)
≥ (d/k)k. The claim in part (i) thus follows. Note the independence

of the proof on the decoder ψn. 2

6 Proof of Corollary 6

Proof With the added assumption that the conditional entropies are bounded by a linear function in k, i.e.,

max{H(P
(d)
Sc
d|Sd

),H(Q
(d)
Sc
d|Sd

)} ≤Mk, the entropy decomposes as follows:

H(P (d)) = H(P
(d)
Sd

) +H(P
(d)
Sc
d|Sd

)
(a)

≤ log |X |k +H(P
(d)
Sc
d|Sd

) ≤ k log |X |+Mk = (log |X |+M)k, (A-72)

where (a) is due to the fact that P
(d)
Sd

∈ P(X k) and hence H(P
(d)
Sd

) ≤ log |X |k. Substituting this and the

corresponding upper bound for H(Q(d)) into (A-71) completes the proof of the claim in part (ii). 2
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7 Proof of Corollary 7

Proof Take λ = 1 in (25). Then the claim follows by replacing d in (25) with CenR (for some C > 0) and
further noticing that the inequality is satisfied if and only if

R > 2(M + log |X |) + log k

n
= 2(M + log |X |) + o(1). (A-73)

This completes the proof. 2

8 Proof of Proposition 8

Proof Recall that k and d are kept constant. We first demonstrate that the Chow-Liu algorithm for learning
the common tree is consistent, as for a single tree [3, 8]. Let T d be set of trees (or edge sets) with d nodes.
Also let D(X d; T d) ⊂ P(X d) be the set of distributions Markov on some tree in T d. The consistency claim
follows from the equivalence of the following optimizations:

min
P̃ ,Q̃∈D(Xd;T d):TP̃=TQ̃

D((P̂ , Q̂) || (P̃ , Q̃)), (A-74)

min
P̃ ,Q̃∈D(Xd;T d):TP̃=TQ̃

D(P̂ || P̃ ) +D(Q̂ || Q̃), (A-75)

min
EP̃ ,EQ̃∈T d:EP̃=EQ̃

∑
(i,j)∈EP̃

I(P̂i,j) +
∑

(i,j)∈EP̃

I(Q̂i,j), (A-76)

min
E∈T d

∑
(i,j)∈E

I(P̂i,j) +
∑

(i,j)∈E

I(Q̂i,j), (A-77)

min
E∈T d

∑
(i,j)∈E

I(P̂i,j) + I(Q̂i,j), (A-78)

where (A-76) follows from Chow-Liu [9] and (A-77) follows from enforcing the equality constraint EP̃ = EQ̃
into the objective. Thus, the edge weights are indeed given by the sum of the empirical mutual informations.

Furthermore, the KL-divergence is continuous in its arguments. To be more explicit, as n→ ∞, D̂i → Di

and Ŵi,j → Wi,j in probability. Thus, the node and edge weights in (28) converge to their true values and
the overall algorithm is consistent. The second claim follows from the fact that the complexity of Chow-Liu
is O(nd2|X |2) and the complexity of the k-CARD TREE procedure is O(dk2) [10,11]. 2

9 Relationship between the Exhaustive Search andMaximum Like-
lihood Decoders

In this section, we will define the Exhaustive Search Decoder (ESD) in terms of the symmetrized KL diver-
gence, which we will denote by the symbol Dsym:

Dsym(P ||Q) :=
∑
x∈X

P (x) log
P (x)

Q(x)
+Q(x) log

Q(x)

P (x)

where (P,Q) ∈ P(X )×P(X ) for some alphabet X . The analysis in the rest of the paper still holds with this
definition of the ESD, but while it is clumsier to use in the other parts, it provides the clearest connection
with the Maximum Likelihood Decoder (MLD).

First, we write the Maximum Likelihood decoder in terms of minimizing an asymmetric KL divergence:

S∗
ML := arg min

S∈Sk,d

min
PS ,QS ,WSc|S

D(P̂ × Q̂||PSWSc|S ×QSWSc|S) (A-79)
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Recall that Sk,d denotes the set of cardinality-k subsets in {1, . . . , d}. In the inner optimization, we seek
the distributions P := PSWSc|S and Q := QSWSc|S that form the closest match to the empirical product

distribution P̂ × Q̂ subject to the constraint that they factor according to the fixed salient set S, c.f.
Lemma 1. The outer optimization ranges over all possible sets S of the given size k. This expression
encodes the standard maximum likelihood optimization: minimizing the KL divergence from the empirical
distribution to the feasible set of models, which in this case takes the form of pairs of distributions with a
salient set of size k.

We can expand and transform the above objective for the MLD as follows:

D(P̂ × Q̂||PSWSc|S ×QSWSc|S) =
∑

(x1,x2)∈X×X

P̂ (x1)Q̂(x2) log
P̂ (x1)Q̂(x2)

(PSWSc|S)(x1)(QSWSc|S)(x2)
(A-80)

=
∑
x1

P̂ (x1) log
P̂ (x1)

(PSWSc|S)(x1)
+
∑
x2

Q̂(x2) log
Q̂(x2)

(QSWSc|S)(x2)
(A-81)

For each of the above two terms, we can split the summations over the salient and non-salient variable
subsets. For the first term, we have∑

x1

P̂ (x1) log
P̂ (x1)

(PSWSc|S)(x1)
=
∑
x1,S

P̂S(x1,S) log
P̂S(x1,S)

PS(x1,S)
+
∑
x1,S

P̂S(x1,S)
∑
x1,Sc

P̂ cS(x1,S) log
P̂S(x1,S)

WSc|S(x1,S)

(A-82)

We can rewrite the second term similarly to arrive at the following expression for the objective∑
xS

P̂S(xS) log
P̂S(xS)

PS(xS)
+
∑
xS

Q̂S(xS) log
Q̂S(xS)

QS(xS)
+ (A-83)(∑

xS

P̂S(xS)
∑
xSc

P̂Sc|S(xSc |xS) log
P̂Sc|S(xSc |xS)
WSc|S(xSc |xS)

)
+

(∑
xS

Q̂S(xS)
∑
xSc

Q̂Sc|S(xSc |xS) log
Q̂Sc|S(xSc |xS)
WSc|S(xSc |xS)

)
(A-84)

We can recognize the first two summations as divergences between the empirical distributions restricted
to the salient set and the free optimization parameters PS and QS , and therefore these terms can be set
to zero. To minimize the terms that remain, the task is to choose a WSc|S that simultaneously minimizes

divergence-like objectives from P̂Sc|S and Q̂Sc|S .
We can regard the choice of a WSc|S as choosing a set of conditional distributions, WSc|S(·|x̄S), for each

fixed x̄S ∈ X k, and the objective decouples so that we are left with a set of optimization problems of the
form

min
W̃

a ·D(P̂Sc|S ||W̃ ) + b ·D(Q̂Sc|S ||W̃ ) (A-85)

for the appropriate constants a := P̂S(x̄S) and b := Q̂S(x̄S). Note that there are a set of constants a and b,
one pair for each x̄S and hence for each additive term in the objective, but since we will generally examine
these terms individually, we suppress the notational dependence on x̄S .

We can apply calculus to show that the optimizing choice for W̃ is given by

W̃ ∗ =
a · P̂Sc|S + b · Q̂Sc|S

a+ b
(A-86)

and thus each term can be expressed as

a ·D(P̂Sc|S ||
a · P̂Sc|S + b · Q̂Sc|S

a+ b
) + b ·D(Q̂Sc|S ||

a · P̂Sc|S + b · Q̂Sc|S

a+ b
) (A-87)
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P̂Sc|S

Q̂Sc|S
W

∗

Figure 1: An illustration of the relationship between the terms summed in the Maximum Likelihood De-
coder and Exhaustive Search Decoder objectives. The solid line represents the re-weighted symmetrized KL
divergence which is used in the ESD objective (c.f. (A-91)). The corresponding term in the MLD objective
is represented by the dashed lines, in which KL divergence is measured from each empirical distribution to
a convex interpolation W ∗ (c.f. (A-87)). Lines are curved to emphasize the general non-Euclidean nature of
the divergences.

We emphasize that there is one such value for each x̄S ∈ X k, and the sum of all the terms is used as the
score for a given subset S.

We can examine the ESD from a similar perspective. The ESD can be written as the optimization

S∗
ESD := arg max

S∈Sk,d

Dsym(P̂S ||Q̂S) (A-88)

where we have employed the symmetrized definition of KL divergence. The following identity always holds:

Dsym(P̂ ||Q̂) = Dsym(P̂S ||Q̂S) +

(∑
xS

P̂S
∑
xSc

P̂Sc|S log
P̂Sc|S

Q̂Sc|S

)
+

(∑
xS

Q̂S
∑
xSc

Q̂Sc|S log
Q̂Sc|S

P̂Sc|S

)
(A-89)

and since for any empirical distribution the left-hand side is a constant, we can rewrite the ESD optimization
expression equivalently as

S∗
ESD := arg min

S∈Sk,d

(∑
xS

P̂S
∑
xSc

P̂Sc|S log
P̂Sc|S

Q̂Sc|S

)
+

(∑
xS

Q̂S
∑
xSc

Q̂Sc|S log
Q̂Sc|S

P̂Sc|S

)
(A-90)

To compare this objective to the terms in the MLD objective given by (A-87), we can again examine
terms for each fixed x̄S ∈ X k, each of which is given by

a ·D(P̂Sc|S ||Q̂Sc|S) + b ·D(P̂Sc|S ||Q̂Sc|S) (A-91)

for the same constants a and b in (A-87). As before, these terms are summed to produce a final score for a
given set S.

Finally, we can relate the expressions in (A-87) and (A-91) by interpreting their components as similar

but distinct divergences between P̂Sc|S and Q̂Sc|S . The divergence used by the ESD, given in (A-91), can be
viewed as a re-weighting of the standard symmetrized KL divergence, while the divergence in the MLD is
given by the asymmetric KL divergence to a convex combination of the two distributions. Indeed, numerical
experiments show that the two are not equivalent in general. The relationship is summarized in Figure 1.

It is of interest to note that in the regime where P̂ ≈ Q̂, the ESD and the MLD become identical. This
result can be seen by applying the Euclidean geometric approximations to the divergences in (A-87) and

(A-91). More specifically, we can express P̂ ≈ Q̂ as:

||P̂ − Q̂||∞ < ϵ (A-92)

which implies ||P̂S − Q̂S || < |X |d−kϵ. Thus we have, in both (A-87) and (A-91), a ≈ b. We can thus simplify
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(A-87) as:

a ·D(P̂Sc|S ||
a · P̂Sc|S + b · Q̂Sc|S

a+ b
) + b ·D(Q̂Sc|S ||

a · P̂Sc|S + b · Q̂Sc|S

a+ b
) (A-93)

≈ a||P̂Sc|S − W̃ ∗||2 + b||Q̂Sc|S − W̃ ∗||2 (A-94)

≈ a
b2

(a+ b)2
||P̂Sc|S − Q̂Sc|S ||2 + b

a2

(a+ b)2
||Q̂Sc|S − P̂Sc|S ||2 (A-95)

≈ (a+ b)

2
||P̂Sc|S − Q̂Sc|S ||2 ≈ a||P̂Sc|S − Q̂Sc|S ||2 ≈ b||P̂Sc|S − Q̂Sc|S ||2 (A-96)

where we have used the identity ||P −W ∗|| = b
a+b ||P −Q|| when W ∗ := a

a+bP + b
a+bQ, and for the last line

we have used a ≈ b. We can directly apply the Euclidean approximation to (A-91) to show the equivalence
of the objectives:

a ·D(P̂Sc|S ||Q̂Sc|S) + b ·D(P̂Sc|S ||Q̂Sc|S) ≈ (a+ b)||P̂Sc|S − Q̂Sc|S ||2 (A-97)

where the scalar factor is unimportant since we are comparing the two expressions as objectives.
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