Supplementary Materials

1 Derivation of Covariance Derivative Expression

Writing explicit dependence on A and with $S:=\left(B^{-1} C\right)^{q}$ and $T(A)=S+(I-S)(B-C)^{-1} A$ as in the text, we have

$$
\begin{equation*}
\Sigma_{\mathrm{hog}}(A)=T(A) \Sigma_{\mathrm{hog}}(A) T^{\top}(A)+\widetilde{D} \tag{1}
\end{equation*}
$$

from the discrete-time Lyapunov equation given in the text at the start of Section 4.2, where $\widetilde{D}=\sum_{j=0}^{q-1}\left(B^{-1} C\right)^{j} B^{-1} D B^{-\top}\left(B^{-1} C\right)^{q \top}$. Taking the total derivative of both sides with respect to A and evaluating at 0 we have
$\left[D_{0} \Sigma_{\mathrm{hog}}\right](A)-T(0)\left[D_{0} \Sigma_{\mathrm{hog}}\right](A) T^{\top}(0)=\left[D_{0} T\right](A) \Sigma_{\mathrm{hog}}(0) T^{\top}(0)+T(0) \Sigma_{\mathrm{hog}}(0)\left[D_{0} T\right]^{\top}(A)$
where $\left[D_{0} T\right](A)=(I-S)(B-C)^{-1} A$. Substituting $T(0)=S$ and $\widetilde{A}:=(B-C)^{-1} A(B-$ $C)^{-1}$ we have

$$
\begin{equation*}
\left[D_{0} \Sigma_{\mathrm{hog}}\right](A)-S\left[D_{0} \Sigma_{\mathrm{hog}}\right](A) S^{\top}=(I-S) \widetilde{A} S^{\top}+S \widetilde{A}(I-S)^{\top} \tag{3}
\end{equation*}
$$

