
Chapter 2

Background

In this chapter we provide a brief overview of the foundations on which this thesis builds,

particularly probabilistic graphical models, exponential family distributions, hidden

Markov models, and Bayesian nonparametric models constructed using the Dirichlet

process.

⌅ 2.1 Graphical models

In this section we overview the key definitions and results for directed and undirected

probabilistic graphical models, which we use both for defining models and constructing

algorithms in this thesis. For a more thorough treatment of probabilistic graphical

models, see Koller and Friedman [65].

⌅ 2.1.1 Directed graphical models

Directed graphical models, also called Bayes nets, naturally encode generative model

parameterizations, where a model is specified via a sequence of conditional distribu-

tions. They are particularly useful for the hierarchical Bayesian models and algorithms

developed in this thesis.

First, we give a definition of directed graphs and a notion of directed separation

of nodes. Next, we connect these definitions to conditional independence structure for

collections of random variables and factorization of joint densities.

Definition 2.1.1 (Directed graph). For some n 2 N, a directed graph on n nodes is

a pair (V, E) where V = [n] , {1, 2, . . . , n} and E ✓ (V ⇥ V ) \ {(i, i) : i 2 V }. We call

the elements of V the (labeled) nodes or vertices and the elements of E the edges, and

we say (i, j) 2 E is an edge from i to j.

Given a graph (V, E), for distinct i, j 2 V we write i ! j or j  i if (i, j) 2 E

and write i — j if (i, j) 2 E or (j, i) 2 E. We say there is a directed path from i1 to

in of length n � 1 if for some i2, i3, . . . , in�1 2 V we have i1 ! i2 ! · · · ! in, and an

undirected path if we have i1 — i2 — · · · — in. We say node j is a descendant of node i
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(a) (b) (c)

Figure 2.1: An illustration of the cases in Definition 2.1.2. Shaded nodes are in the
set C.

if there is a directed path from i to j, and we say j is a child of i if there is a directed

path of length 1. Similarly, we say i is an ancestor of j if j is a descendant of i, and

we say i is a parent of j if j is a child of i. We use ⇡G(i) to denote the set of parents

of node i and cG(i) to denote its children.

We say a directed graph is cyclic if there is a node i 2 V that is its own ancestor,

and we say a graph is acyclic if it is not cyclic. For directed graphical models, and all

of the directed graphs in this thesis, we use directed acyclic graphs (DAGs).

Using these notions we can define the main idea of directed separation.

Definition 2.1.2 (Blocked/unblocked triples). Given a DAG G = (V, E), let a— b— c

be an undirected path with a, b, c 2 V , and let C ⇢ V be a subset of nodes with C \
{a, c} = ?. We call a — b — c a triple, and we say it is blocked by C in two cases:

1. if the structure is not a! b c, then b 2 C

2. if the structure is a! b c, and for all descendants b0 2 V of b we have b0 62 C.

We say a triple is unblocked by C if it is not blocked by C.

We illustrate the cases in Definition 2.1.2 in Figure 2.1, which shows six triples of

nodes, where nodes in the set C are shaded. In each of (a) and (b), the top triple is

unblocked while the bottom triple is blocked, corresponding to case 1 in the definition.

However, in (c) the reverse is true: the top triple is blocked while the bottom triple is

unblocked, corresponding to case 2 in the definition.

Definition 2.1.3 (Blocked/unblocked path). Given a DAG G = (V, E) and a set

C ⇢ V , let i1 — i2 — · · · — in be a path with C \ {i1, in} = ?. We call the path

unblocked by C if every triple in the path is unblocked by C. We call the path blocked

by C if it is not unblocked.

Note that Koller and Friedman [65] uses the term active trail for our definition of

unblocked path.

Definition 2.1.4 (d-separation). Given a DAG G = (V, E), for distinct i, j 2 V and

a subset C ⇢ V with C \ {i, j} = ?, we say i and j are d-separated in G by C
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if there is no undirected path between i and j that is unblocked by C, and we write

d-sepG(i, j|C). Further, for disjoint subsets A, B, C ⇢ V with A and B nonempty we

write d-sepG(A, B|C) if we have d-sepG(i, j|C) for all i 2 A and j 2 B.

In words, i, j 2 V may not be d-separated in G given C if there exists an undirected

path between i and j in G. However, the path must be unblocked, where if a node

on the path belongs to C it generally blocks the path except when there is a “V”

structure a! b c on the path, in which case b blocks the path unless it or one of its

descendants is in C. This special rule is useful when defining probabilistic structure in

terms of the graph because it models how independent random variables can become

dependent when they are competing explanations for the same observation.

Next, we give a definition of conditional independence structure in collections of

random variables that uses graphical d-separation.

Definition 2.1.5 (Markovianity on directed graphs). Given a DAG G = (V, E) and a

collection of random variables X = {Xi : i 2 V } indexed by labeled nodes in the graph,

we say X is Markov on G if for disjoint subsets A, B, C ⇢ V we have

d-sepG(A, B|C) =) XA ?? XB|XC (2.1.1)

where for S ✓ V we define XS , {Xi : i 2 S}.
Note that this definition does not require that the graph capture all of the condi-

tional independencies present in the collection of random variables. Indeed, a collection

of random variables can be Markov on many distinct graphs, and every collection is

Markov on the complete graph. Graphs that capture more structure in the collection

of random variables are generally more useful.

Conditional independence structure can be used in designing inference algorithms,

and a graphical representation can make clear the appropriate notion of local informa-

tion when designing an algorithm with local updates. A particularly useful notion of

local information is captured by the Markov blanket.

Definition 2.1.6 (Directed Markov blanket). Given a DAG G = (V, E), the Markov

blanket for node i 2 V , denoted MBG(i), is the set of its parents, children, and childrens’

parents:

MBG(i) , {j 2 V : j ! i} [ {j 2 V : i! j} [ {j 2 V : 9k . i! k  j}. (2.1.2)

The Markov blanket for a set of nodes A ✓ V contains the Markov blankets for all nodes

in A except the nodes in A itself:

MBG(A) ,
[

i2A
MBG(i) \ A. (2.1.3)
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i

Figure 2.2: An illustration of the directed Markov blanket defined in Definition 2.1.6.
Nodes in the Markov blanket of node i are shaded gray.

We illustrate Definition 2.1.6 in Figure 2.2. The nodes in the Markov blanket of

node i are shaded gray.

Proposition 2.1.7. Given a collection of random variables {Xi : i 2 V } that is Markov

with respect to a DAG G = (V, E), we have

Xi ?? XS |XMBG(i) (2.1.4)

where S , V \ (MBG(i) [ {i}).

Proof. By conditioning on the parents of node i, all paths of the form a ! b ! i are

blocked. By conditioning on its children, all paths of the form i ! b ! c are blocked.

By conditioning on the childrens’ parents, all paths of the form i ! b  c, which

may have been unblocked by conditioning on b or one of its descendants via case 2 of

Definition 2.1.4, are blocked.

Another common and convenient notion of probabilistic graphical structure is a

density’s factorization with respect to a DAG.

Definition 2.1.8 (Factoring on directed graphs). Given a DAG G = (V, E) on n nodes

and a collection of random variables X = {Xi : i 2 V } with density pX with respect to

some base measure, we say pX factorizes according to G if we can write

pX(x1, . . . , xn) =
Y

i2V
p(xi|x⇡G(i)) (2.1.5)

where ⇡G(i) , {j 2 V : j ! i} denotes the set of parents of node i in G.
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Theorem 2.1.9. A collection of random variables {Xi : i 2 V } with a joint density

(with respect to some base measure) is Markov on a DAG G if and only if the joint

density factorizes as in Eq. (2.1.5).

Proof. The proof is straightforward. In Koller and Friedman [65], Theorem 3.1 shows

Markovianity implies the densities factor and Theorem 3.2 shows the reverse.

⌅ 2.1.2 Undirected graphical models

Undirected graphical models, also called Markov random fields, do not easily encode

generative model specifications. However, they can be more useful for encoding soft con-

straints or local partial correlations. We use an undirected graphical model perspective

in our analysis of Hogwild Gibbs Sampling in Chapter 7.

As with directed graphical models, we first define undirected graphs and a notion

of separation of nodes, then give definitions that link the graphical structure to both

conditional independence structure in a collection of random variables and factorization

structure in the joint density for those variables.

Definition 2.1.10 (Undirected graph). For some n 2 N, an undirected graph on n

nodes is a pair (V, E) where V = [n] and E ✓ {{i, j} : i, j 2 V, i 6= j}.

Analogous to the definition in the previous section, there is a natural notion of an

undirected path between nodes. Given a graph (V, E), for distinct i, j 2 V we write

i— j if {i, j} 2 E, and we say there is an (undirected) path from i1 to in of length n�1

if for some i2, i3, . . . , in�1 2 V we have i1 — i2 — · · · — in. We say i is a neighbor of j

if {i, j} 2 E and denote the set of neighbors of node i as nG(i) , {j 2 V : {i, j} 2 E}.

We say a pair of nodes is connected if there exists an (undirected) path from i to j.

The notion of undirected separation and corresponding notion of Markovianity on

undirected graphs is simpler than those for directed graphs.

Definition 2.1.11 (Undirected separation). Given an undirected graph G = (V, E), for

distinct i, j 2 V and a subset C ⇢ V with C \ {i, j} = ?, we say i and j are separated

in G given C and write sepG(i, j|C) if there is no path from i to j that avoids C. For

disjoint subsets A, B, C ⇢ V with A and B nonempty we write sepG(A, B|C) if we have

sepG(i, j|C) for all i 2 A and j 2 B.

Definition 2.1.12 (Markovianity on undirected graphs). Given an undirected graph

G = (V, E) and a collection of random variables X = {Xi : i 2 V } indexed by labeled

nodes in the graph, we say X is Markov on G if for disjoint subsets A, B, C ⇢ V we

have

sepG(A, B|C) =) XA ?? XB|XC . (2.1.6)
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As with Markovianity with respect to directed graphs, an undirected graph may

not encode all the conditional independence statements possible for a given collection

of random variables.

The notion of Markov blanket for an undirected graph is also simpler.

Definition 2.1.13 (Undirected Markov blanket). Given an undirected graph G =

(V, E), the Markov blanket for each node i 2 V , denoted MBG(i), is the set of neighbors

of node i:

MBG(i) , nG(i) = {j 2 V : {i, j} 2 E}. (2.1.7)

The Markov blanket for a set of nodes A ✓ V is the set of all neighbors to nodes in A

excluding those in A:

MBG(A) ,
[

i2A
MBG(i) \ A. (2.1.8)

We can use this definition for an undirected analog of Proposition 2.1.7.

Proposition 2.1.14. Given a collection of random variables {Xi : i 2 V } that is

Markov with respect to an undirected graph G = (V, E), we have

Xi ?? XS |XMBG(i) (2.1.9)

where S , V \ (MBG(i) [ {i}).

Proof. Because all the neighbors of i are in MBG(i), for any j 2 S there can be no

undirected path from j to i that avoids MBG(i).

We can also define a density factorization with respect to an undirected graph,

though we must first define the notion of a clique. A clique in a graph (V, E) is a

nonempty subset of fully-connected nodes; that is, a nonempty set C ✓ V is a clique if

for every distinct i, j 2 C we have {i, j} 2 E.

Definition 2.1.15 (Factoring on undirected graphs). Given an undirected graph G =

(V, E) and a collection of random variables X = {Xi : i 2 V } with density pX with

respect to some base measure, we say pX factorizes according to G if we can write

pX(x1, . . . , xn) =
1

Z

Y

C2C
 C(xC) (2.1.10)

for a collection of cliques C of G and nonnegative potentials or factors { C : C 2 C}
indexed by those cliques, where

Z ,
Z

Y

C2C
 C(xC)⌫(dx) (2.1.11)
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is a normalizing constant.

Note that cliques typically overlap; that is, we may have Ci \ Cj 6= ? for distinct

Ci, Cj 2 C. To remove many possible redundancies, without loss of generality one can

assume that C includes only maximal cliques, where a maximal clique cannot have any

other node added to it and remain a (fully-connected) clique.

The correspondence between a collection of random variables being Markov on an

undirected graph and its joint density factorizing as Eq. (2.1.10) is not quite as simple as

that for directed graphs because deterministic relationships among the random variables

can prevent factoring the density, as shown in the next example.

Example 2.1.16. Using Example 4.4 from Koller and Friedman [65], consider four

binary random variables X = {Xi : i = 1, 2, 3, 4} with a PMF that takes value 1/8 on

the configurations of (x1, x2, x3, x4) given by

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

and 0 elsewhere. Then X is Markov on the graph 1 — 2 — 3 — 4 — 1 but the density

cannot be factorized into pairwise potentials.

This issue cannot arise when we restrict our attention to strictly positive densities.

Theorem 2.1.17. Given a collection of random variables X = {Xi : i 2 V } with a

joint density pX (with respect to some base measure) and an undirected graph G, we

have

1. If pX factorizes according to G, then X is Markov on G.

2. If X is Markov on G and pX is strictly positive, then pX factors according to G.

Proof. The proof for 1 is straightforward and is given as the proof of Theorem 4.1 in

Koller and Friedman [65]. The proof for 2 is the proof of the Hammersley-Cli↵ord

theorem, given as Theorem 4.8 in Koller and Friedman [65].

⌅ 2.1.3 Exact inference and graph structure

Given some specification of a probability distribution, inference for that distribution

means computing quantities of interest such as marginals, conditionals, or expectations.

In the graphical model framework we can be precise about the computations required

to perform inference and their complexity, as we overview in this subsection. For

concreteness, we focus on undirected models with densities.
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Consider an undirected graphical model specified by an undirected graph G = (V, E)

and a set of potentials { C : C 2 C} on a set C of cliques of G. The joint density is

proportional to the product of the clique potentials p(x) / Q

C2C  C(xC). We can

represent an arbitrary inference query in terms of a subset of nodes on which we con-

dition, a subset of nodes which we marginalize out, and a subset over which we want

to represent the resulting density; that is, we partition the set of nodes V into three

disjoint (possibly empty) subsets A1, A2, A3 with A1 [ A2 [ A3 = V and write

p(xA
1

|xA
3

) =

Z

p(xA
1

, xA
2

|xA
3

)⌫(dxA
2

) =

R

Q

C2C  C(xC)⌫(dxA
2

)
R

Q

C2C  C(xC)⌫(dxA
1

[A
2

)
. (2.1.12)

Therefore to compute an arbitrary inference query we need only to compute integrals of

products of the factors in the density. To simplify notation, we write such computations

in the form Z

Y

C2C
 C(xC)⌫(dxA) (2.1.13)

for some subset A ✓ V .

Graph structure a↵ects how we can organize a computation of the form (2.1.13) and

thus its computational complexity. Consider the special case of integrating out a single

variable xj by partitioning the set of cliques into those which contain node j and those

which do not, Cj , {C 2 C : j 2 C} and C\j , {C 2 C : j 62 C}, and writing

Z

Y

C2C
 C(xC)⌫(dxj) =

Y

C\j2C\j

 C\j (xC\j )

Z

Y

Cj2Cj

 Cj (xCj )⌫(dxj) (2.1.14)

=
Y

C\j2C\j

 C\j (xC\j ) B(xB) (2.1.15)

where B , {i 2 Cj : Cj 2 Cj}\{j} is the set of all indices that share a clique with node

j in G and  B is a new factor on the clique B resulting from the integral over xj . Thus

as a result of the integral there is an induced graph on V \ {j} formed by eliminating j

by fully connecting its neighbors and deleting it from the graph.

When integrating over multiple variables, the process repeats: given an elimination

order, nodes are eliminated one by one from the graph, and each elimination introduces

a new clique in the graph and a corresponding new potential term in the density over

the remaining variables. The computational complexity of the process is determined

by the size of the largest clique encountered. In the case of PMFs with finite support,

the number of entries in the table encoding the new potential formed in (2.1.15) is

typically exponential in the size of the new clique; in the case of PDFs, the complexity
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depends on the complexity of integrating over factors on cliques, where the clique size

determines the number of dimensions in the domain of the integrand, and the complexity

of representing the result. The optimal elimination order is itself NP hard to find for

general graphs.

Some classes of graphs have straightforward elimination orderings that avoid the

growth in clique size, and inference in distributions that are Markov on such graphs

avoids the corresponding growth in complexity.

Definition 2.1.18 (Tree graph). A directed or undirected graph G = (V, E) is a tree

if for each pair distinct nodes i, j 2 V there is a unique undirected path from i to j in

G.

In an undirected tree G, we refer to the nodes i with only single neighbors |nG(i)| = 1

as leaves. In a directed tree, we refer to the nodes with no children as leaves.

Proposition 2.1.19 (Markov on trees). A density p that factors on an undirected tree

(V, E) can be written in terms of pairwise factors { ij : {i, j} 2 E} as

p(x) =
1

Z

Y

{i,j}2E

 ij(xi, xj). (2.1.16)

Proof. All of the maximal cliques in an undirected tree are of size at most 2.

Note that because the edges are undirected,  ij and  ji denote the same object.

Given a density that factors according to an undirected tree specified in terms of its

pairwise factors { ij : {i, j} 2 E} we can convert it to a directed specification by local

normalization, i.e. by choosing a direction for each edge and computing

p(xi|xj) =
 ij(xi, xj)

R

 ij(xi, xj0)⌫(dxj0)
. (2.1.17)

Note that a density that factors on a directed tree may not in general be written

purely in terms of conditional probability factors that depend only on pairs of nodes,

as shown in the next example.

Example 2.1.20. A density that factors according to the directed tree G = (V, E) with

V = {1, 2, 3} and edges 1 ! 2  3 may include a factor p(x2|x1, x3). Such a density

is not Markov on the undirected tree G0 = (V 0, E0) with V 0 = V and edges 1 — 2 — 3,

and instead only factors on the complete undirected graph with edges 1 — 2 — 3 — 1.

Directed trees in which each node has at most one parent avoid this issue, and

we can convert freely between directed and undirected tree parameterizations for such

models.



24 CHAPTER 2. BACKGROUND

Proposition 2.1.21. A density p that factors on a directed tree G = (V, E) in which

each node only has one parent, i.e. |⇡G(i)|  1 for i 2 V , also factors with respect to

the undirected tree G0 = (V 0, E0) formed by dropping the directions on the edges of G,

i.e. V 0 = V and E0 = {{i, j} : (i, j) 2 E}
Proof. Set  ij(xi, xj) = p(xi|xj).

With undirected trees and directed trees in which each node has at most one parent

we can perform elimination without introducing larger factors by using an elimination

order that recursively eliminates leaves. Furthermore, the corresponding partial sums

for all such elimination orderings can be computed simultaneously with an e�cient

dynamic programming algorithm, as shown in the next theorem.

For an undirected graph G = (V, E) and a subset of nodes A ✓ V , we define G \ A

to be the graph formed by deleting the nodes A and the edges incident on nodes in A,

i.e. the graph (V 0, E0) where V 0 = V \A and E0 = {{i, j} 2 E : i, j 62 A}. We say a pair

of nodes is connected if there exists an undirected path from i to j, and we say subsets

A, B ⇢ V are connected if there exists an i 2 A and j 2 B that are connected.

Definition 2.1.22 (Tree messages). Given a density with respect to a base measure

⌫ that factorizes on an undirected tree G = (V, E) of the form (2.1.16), we define the

message from node i to node j with {i, j} 2 E to be

mj!i(xi) ,
Z

Y

{i0,j0}2E0

 i0j0(xi0 , xj0) ij(xi, xj)⌫(dxV 0) (2.1.18)

where (V 0, E0) is the subtree of G that is disconnected from node i in G \ {j}.
Theorem 2.1.23 (Tree message passing). For a density that factorizes on an undirected

tree G = (V, E) of the form (2.1.16), the result of any computation of the form (2.1.13)

can be written in terms of messages as
Z

Y

{i,j}2E

 ij(xi, xj)⌫(dxA) =
Y

{i,j}2E0

 ij(xi, xj)
Y

k2B
mj!k(xk) (2.1.19)

where (V 0, E0) = G\A is the graph over the the nodes that are not integrated out and B

is the set of nodes in V 0 that have edges to A in G, i.e. B = {k 2 V 0 : {k, j} 2 E, j 2
A}. Furthermore, all messages can be computed e�ciently and simultaneously via the

recursions

mi!j(xi) =

Z

 ij(xi, xj)
Y

k2nG(j)\{i}

mj!k(xj)⌫(dxj). (2.1.20)

Therefore all inference queries in undirected trees can be computed in time linear in the

length of the longest path in the tree.
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Proof. The theorem follows from applying elimination to trees and expressing every

partial elimination result as (2.1.20).

We refer to an implementation of the recursion (2.1.20) as a tree message-passing

algorithm. We use tree message passing algorithms extensively as subroutines in the

inference algorithms for the time series models that we develop in the sequel.

⌅ 2.2 Exponential families and conjugacy

In this section, we define exponential families and give some of the properties that we

use in this thesis.

⌅ 2.2.1 Definition and basic properties

Definition 2.2.1 (Exponential family). We say a family of densities p with respect to

a base measure ⌫ indexed by a parameter vector ✓ is an exponential family of densities

if it can be written as

p(x|✓) = h(x) exp{h⌘(✓), t(x)i � Z(⌘(✓))} (2.2.1)

where h·, ·i is an inner product on real vector spaces. We call ⌘(✓) the natural parameter

vector, t(x) the (su�cient) statistic vector, h(x) the base density, and

Z(⌘) , ln

Z

eh⌘,t(x)ih(x)⌫(dx) (2.2.2)

the log partition function.

It is often useful to parameterize the family directly in terms of ⌘, in which case we

simply write the density as p(x|⌘). Note that marginalizing over part of the support of

an exponential family, such as marginalizing over one coordinate of x or of t(x), does

not in general yield another exponential family.

Given an exponential family of the form (2.2.1) we define the set of natural param-

eters that yield valid normalizable probability densities as ⇥, where

⇥ , {⌘ : Z(⌘) < 1} (2.2.3)

and the set of realizable expected statistics as

M , {EX⇠p(·|⌘)[t(X)] : ⌘ 2 ⇥} (2.2.4)

where X ⇠ p( · |⌘) denotes that X is distributed with density p( · |⌘). We say a family

is regular if ⇥ is open, and minimal if there is no nonzero a such that ha, t(x)i is equal
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to a constant (⌫-a.e.). Minimality ensures that there is a unique natural parameter for

each possible density (up to values on sets of ⌫-measure 0). We say a family is tractable

if for any ⌘ we can evaluate Z(⌘) e�ciently1and when X ⇠ p( · |⌘) we can compute

E[t(X)] and simulate samples of X e�ciently.

For a regular exponential family, derivatives of Z are related to expected statistics.

Proposition 2.2.2 (Mean mapping and cumulants). For a regular exponential family

of densities of the form (2.2.1) with X ⇠ p( · |⌘), we have rZ : ⇥ ! M and

rZ(⌘) = E[t(X)] (2.2.5)

and writing µ , E[t(X)] we have

r2Z(⌘) = E[t(X)t(X)T] � µµT. (2.2.6)

More generally, the moment generating function of t(X) can be written

Mt(X)(s) , E[ehs,t(X)i] = eZ(⌘+s)�Z(⌘). (2.2.7)

and so derivatives of Z give cumulants of t(X), where the first cumulant is the mean and

the second and third cumulants are the second and third central moments, respectively.

Proof. Note that we require the family to be regular even to define rZ. To show 2.2.5,

using ⌫ as the base measure for the density we write

r⌘Z(⌘) = r⌘ ln

Z

eh⌘,t(x)ih(x)⌫(dx) (2.2.8)

=
1

R

eh⌘,t(x)ih(x)⌫(dx)

Z

t(x)eh⌘,t(x)ih(x)⌫(dx) (2.2.9)

=

Z

t(x)p(x|⌘)⌫(dx) (2.2.10)

= E[t(X)]. (2.2.11)

To derive the form of the moment generating function, we write

1We do not provide a precise definition of computational e�ciency here. Common definitions often
correspond to the complexity classes P or BPP [3].
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E[ehs,t(X)i] =

Z

ehs,t(x)ip(x)⌫(dx) (2.2.12)

=

Z

ehs,t(x)ieh⌘,t(x)i�Z(⌘)h(x)⌫(dx) (2.2.13)

= eZ(⌘+s)�Z(⌘). (2.2.14)

The cumulant generating function for t(X) is then ln Mt(X)(s) = Z(⌘ + s) � Z(⌘).

When a specific set of expected statistics can only arise from one member of an

exponential family, we say the family is identifiable and we can use the moments as an

alternative way to parameterize the family.

Theorem 2.2.3 (Exponential family identifiability). For a regular, minimal exponen-

tial family of the form (2.2.1), rZ : ⇥ ! M is injective, and rZ : ⇥ ! M� is

surjective, where M� denotes the interior of M. Therefore rZ : ⇥ ! M� is a bijec-

tion.

Proof. See Wainwright and Jordan [113, Theorem 3.3].

When parameterizing a regular, minimal exponential family in terms of expected

statistics µ 2 M�, we say it is written with mean parameters, and we have ⌘(µ) =

(rZ)�1(µ) using Theorem 2.2.3. Given a set of moments, the corresponding minimal

exponential family member has a natural interpretation as the density (relative to ⌫)

with maximum entropy subject to those moment constraints [113, Section 3.1].

For members of an exponential family, many quantities can be expressed generically

in terms of the natural parameter, expected statistics under that parameter, and the

log partition function.

Proposition 2.2.4 (Entropy, score, and Fisher information). For a regular exponential

family of densities of the form (2.2.1) parameterized in terms of its natural parameter

⌘, with X ⇠ p( · |⌘) and µ(⌘) , E[t(X)] we have

1. The (di↵erential) entropy is

H[p] , �E[ln p(X|⌘)] = �h⌘, µ(⌘)i + Z(⌘). (2.2.15)

2. When the family is regular, the score with respect to the natural parameter is

v(x, ⌘) , r⌘ ln p(x|⌘) = t(x) � µ(⌘) (2.2.16)
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3. When the family is regular, the Fisher information with respect to the natural

parameter is

I(⌘) , E[v(X, ⌘)v(X, ⌘)T] = r2Z(⌘). (2.2.17)

Proof. Each follows from (2.2.1), where (2.2.16) and (2.2.17) use Proposition 2.2.2.

When the family is parameterized in terms of some other parameter ✓ so that

⌘ = ⌘(✓), the properties in Proposition 2.2.4 include Jacobian terms of the form @⌘/@✓.

When the alternative parameter is the mean parameter µ, since ⌘(µ) = (rZ)�1(µ) the

relevant Jacobian is (r2Z)�1. We use the Fisher information expression (2.2.17) in the

development of a stochastic variational inference (SVI) algorithm in Chapter 5.

We conclude this subsection with two examples of exponential families of densities.

Example 2.2.5 (Gaussian). The Gaussian PDF can be parameterized in terms of its

mean and covariance (µ, ⌃), where µ 2 Rd and ⌃ 2 Rd⇥d with ⌃ � 0, and can be

written

p(x|µ, ⌃) = (2⇡)�d/2|⌃|�1/2 exp

⇢

�1

2
(x � µ)T⌃�1(x � µ)

�

= (2⇡)�d/2

| {z }

h
N

(x)

exp
�⌦

(�1
2⌃

�1, ⌃�1µ)
| {z }

⌘
N

(µ,⌃)

, (xxT, x)
| {z }

t
N

(x)

↵� (12 ln |⌃| + 1
2µ

T⌃�1µ)
| {z }

Z
N

(⌘
N

(µ,⌃))

 

.

where h(A, b), (C, d)i = tr(ATC)+bTd. Therefore it is an exponential family of densities,

and further it is a regular exponential family since ⇥ = {(⌃, µ) : ⌃ � 0, µ 2 Rd} is open

(in the standard product topology for Euclidean spaces). The family is minimal because

there is no nonzero (A, b) such that xTAx + bTx equal to a constant (⌫-a.e.).

Example 2.2.6 (Categorical). Consider drawing a sample X from a finite distribution

with support on [K] = {1, 2, . . . , K}, where p(x = k|⇡) = ⇡k for K 2 [K] and ⇡ satisfies
P

i ⇡i = 1 and ⇡ > 0 element-wise. We can write the PMF for X as

p(x|⇡̄) =
K
Y

k=1

⇡I[x=k]
k = exp

�

K
X

k=1

ln ⇡kI[x = k]
 

= exp
�hln ⇡, xi

 

(2.2.18)

where the log is taken element-wise, I[ · ] is an indicator function that takes value 1 when

its argument is true and 0 otherwise, and k is an indicator vector with its ith entry

I[k = i]. We call this family of densities the categorical family, and it is an exponential

family of densities with natural parameter ⌘(⇡) = ln ⇡ and statistic t(x) = x. (A

closely related family is the multinomial family, where we consider drawing a set of n

independent samples from the same process, x = {xi : i 2 [n]}, and defining the statistic

to be the counts of each occurrence, i.e. the kth entry of t(x) is |{xi : xi = k}|.)
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Note that Z(⇡) = 0. The categorical family as written in (2.2.18) is not a regular

exponential family because ⇥ = {⇡ 2 RK :
P

i ⇡i = 1, ⇡ > 0} is not open. Since

the family is not regular, (2.2.16) does not apply. We can instead write the family of

densities as

p(x|⇡) = exp
�hln ⇡̄, xi � ln

PK
i=1⇡̄i

 

(2.2.19)

where Z(⌘(⇡̄)) = ln
PK

i=1 ⇡̄i so that ⇥ = {⇡̄ 2 RK : ⇡ > 0} is open. However, neither

(2.2.18) or (2.2.19) is a minimal exponential family, since the statistic satisfies h1, xi =

1 for any x 2 [K]. As is clear from the renormalization in (2.2.19), the parameter is

not identifiable, so Theorem 2.2.3 does not apply.

While it is possible to write the categorical as a regular minimal exponential family

by removing one component from the parameterization, it is often easiest to work with

the categorical (and multinomial) in the form (2.2.18).

⌅ 2.2.2 Conjugacy

In this subsection, we define a notion of conjugacy for pairs of families of distributions.

Conjugate families are especially useful for Bayesian analysis and algorithms.

Definition 2.2.7. Given two (not necessarily exponential) families of densities p1(✓|↵)

and p2(x|✓) indexed by parameters ↵ and ✓, respectively, we say the pair (p1, p2) are a

conjugate pair of densities if for all ↵, x, and ✓ we have

p1(✓|↵)p2(x|✓) / p1(✓|↵0) (2.2.20)

for some ↵0 = ↵0(x, ↵) that may depend on x and ↵.

We can extend this definition to distributions without densities by considering in-

stead indexed families of laws [88, Definition 2].

Conjugate pairs are particularly useful in Bayesian analysis because if we have a

prior family p(✓|↵) and we observe data generated according to a likelihood p(x|✓) then

the posterior p(✓|x, ↵) is in the same family as the prior. In the context of Bayesian

updating, we call ↵ the hyperparameter and ↵0 the posterior hyperparameter.

Given a regular exponential family likelihood, we can always define a conjugate

prior, as shown in the next proposition.

Proposition 2.2.8. Given a regular exponential family

pX|✓(x|✓) = hX(x) exp{h⌘X(✓), tX(x)i � ZX(⌘X(✓)) (2.2.21)

= hX(x) exp{h(⌘X(✓), �ZX(⌘(✓))), (tX(x), 1)i} (2.2.22)
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then if we define the statistic t✓(✓) , (⌘X(✓), �ZX(⌘(✓))) and an exponential family of

densities with respect to that statistic as

p✓|↵(✓|↵) = h✓(✓) exp{h⌘✓(↵), t✓(✓)i � Z✓(⌘✓(↵))} (2.2.23)

then the pair (p✓|↵, pX|✓) is a conjugate pair of families with

p(✓|↵)p(x|✓) / h✓(✓) exp{h⌘✓(↵) + (tX(x), 1), t✓(✓)i} (2.2.24)

and hence we can write the posterior hyperparameter as ↵0 = ⌘�1
✓ (⌘✓(↵) + (tX(x), 1)).

When the prior family is parameterized with its natural parameter, we have ⌘0 = ⌘ +

(tX(x), 1).

As a consequence of Proposition 2.2.8, if the prior family is written with natural

parameters and we generate data {xi}ni=1 according to the model

✓ ⇠ p✓|⌘( · |⌘) (2.2.25)

xi|✓ iid⇠ pX|✓( · |✓) i = 1, 2, . . . , n, (2.2.26)

where the notation xi
iid⇠ p( · ) denotes that the random variables xi are independently

and identically distributed, then p(✓|{xi}ni=1, ⌘) has posterior hyperparameter ⌘0 = ⌘ +

(
Pn

i=1 t(xi), n). Therefore if a prior family p( · |⌘) is tractable then the posterior under

the conjugate likelihood is tractable.

We conclude this subsection with two examples of conjugate pairs of exponential

families. A list of conjugate pairs can be found in Gelman et al. [38].

Example 2.2.9 (NIW-Gaussian conjugacy). Here we show that the normal-inverse-

Wishart (NIW) is a conjugate prior family for the Gaussian likelihood of Example 2.2.5.

The NIW density with parameter ↵ = (⇤0, µ0, 0, ⌫0) and ⇤0 � 0, 0 > 0, ⌫0 > d is

p(µ, ⌃|↵) / |⌃|�((⌫
0

+d)/2+1) exp
�� 1

2
tr(⇤0⌃

�1) � 0

2
(µ � µ0)

T⌃�1(µ � µ0)
 

= |⌃|�d/2+1

| {z }

h
NIW

(µ,⌃)

exp
�⌦

(⇤0 + 0µ0µ
T
0 , 0µ0, 0, ⌫0)

| {z }

⌘
NIW

(⇤
0

,µ
0

,
0

,⌫
0

)

, (�1
2⌃

�1, ⌃�1µ, �1
2µ

T⌃�1µ, �1
2 ln |⌃|)

| {z }

t
NIW

(µ,⌃)

↵ 

where h(A, b, c, d), (E, f, g, h)i = tr(ATE) + bTf + cg + dh.
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The normal density from Example 2.2.5 is

p(x|µ, ⌃) = (2⇡)�d/2

| {z }

h
N

(x)

exp
�⌦

(�1
2⌃

�1, ⌃�1µ)
| {z }

⌘
N

(µ,⌃)

, (xxT, x)
| {z }

t
N

(x)

↵� (12 ln |⌃| + 1
2µ

T⌃�1µ)
| {z }

Z
N

(⌘
N

(µ,⌃))

 

= (2⇡)�d/2

| {z }

h
N

(x)

exp
�⌦

(�1
2⌃

�1, ⌃�1µ, �1
2µ

T⌃�1µ, �1
2 ln |⌃|)

| {z }

(⌘
N

(µ,⌃),�Z
N

(⌘
N

(µ,⌃)))

, (xxT, x, 1, 1)
| {z }

(t
N

(x),1)

↵ 

.

The joint likelihood of n independent samples {xi
iid⇠ N (µ, ⌃) : i 2 [n]} is

p({x}ni=1|µ, ⌃) =
n
Y

i=1

p(xi|µ, ⌃)

= (2⇡)�nd/2 exp
�� 1

2

⌦

(⌘N(µ, ⌃), �ZN(⌘N(µ, ⌃))) ,
Pn

i=1 (tN(xi), 1)
↵ 

so we see that p(µ, ⌃|{x}ni=1, ↵) is in the NIW family with a new natural parameter

⌘NIW(⇤n, µn, n, ⌫n) = ⌘NIW(⇤0, µ0, 0, ⌫0) +
Pn

i=1 (tN(xi), 1)

= (⇤0 + 0µ0µ
T
0 , 0µ0, 0, ⌫0) + (

P

ixix
T
i ,
P

ixi, n, n)

where it can be checked by writing ⌘�1
NIW that

n = 0 + n

⌫n = ⌫0 + n

µn =
0

0 + n
+

n

0 + n
x̄

⇤n = ⇤0 + S +
0n

0 + n
(x̄ � µ0)(x̄ � µ0)

T

with x̄ = 1
n

P

i xi and S =
P

i(xi � x̄)(xi � x̄)T as in Gelman et al. [38].

Example 2.2.10 (Dirichlet-categorical conjugacy). Here we show that the Dirichlet is

a conjugate prior family for the categorical likelihood of Example 2.2.6.

The K-dimensional Dirichlet density with parameter ↵ 2 RK
+ where ↵ > 0 can be

written

p(⇡|↵) = Dir(↵) =
�(
PK

i=1 ↵i)
QK

i=1 �(↵i)

K
Y

i=1

x↵i�1
i (2.2.27)

/ exp{h↵ � 1, ln ⇡i}. (2.2.28)

Using the categorical density we have



32 CHAPTER 2. BACKGROUND

p(⇡|x, ↵) / p(⇡|↵)p(x|⇡) (2.2.29)

/ exp{h↵ � 1, ln ⇡i} exp{hln ⇡, xi} (2.2.30)

/ exp{h↵ � 1 + x, ln ⇡i} (2.2.31)

where, as in Example 2.2.6, x is an indicator vector with its xth entry set to 1 and

its other entries 0. Therefore the posterior p(⇡|x, ↵) is in the Dirichlet family with

parameter ↵ + x. Similarly, for the Multinomial likelihood

p(x|⇡) = exp{hln ⇡, nxi} (2.2.32)

where nx =
P

i xi so that the jth component is the number of occurences of outcome

j, the posterior p(⇡|x, ↵) is in the Dirichlet family with parameter ↵ + nx.

⌅ 2.3 Bayesian inference algorithms in graphical models

Here we outline the standard Bayesian inference algorithms and how they relate to the

graphical model structure described in Section 2.1 as well as the exponential family

conjugacy structure described in Section 2.2. In particular, we describe algorithms

that are compositional in terms of graphical model structure and that have particularly

e�cient updates when the graphical model is itself composed of tractable exponential

family distributions.

⌅ 2.3.1 Gibbs sampling

In Gibbs sampling, and sampling methods more generally, the task is to generate sam-

ples from a distribution of interest so that any probability or statistic can be estimated

using the sample population. For a Markov Chain Monte Carlo (MCMC) method such

as Gibbs sampling, to generate samples for some collection of random variables X the

algorithm simulates a Markov chain on the range of X such that the limiting distri-

bution or stationary distribution of the chain is the target distribution of X. In the

Bayesian context, the distribution of interest is typically an intractable posterior.

Given a collection of n random variables X = {Xi : i 2 [n]}, the Gibbs sampling

algorithm iteratively samples each variable conditioned on the sampled values of the

others. When the random variables are Markov on a graph G = (V, E), the conditioning

can be reduced to each variable’s respective Markov blanket, as in Algorithm 2.1.

A variant of the systematic scan of Algorithm 2.1, in which nodes are traversed in

a fixed order for each outer iteration, is the random scan, in which nodes are traversed

according to a random permutation sampled for each outer iteration. An advantage of

the random scan (and other variants) is that the chain becomes reversible and therefore
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Algorithm 2.1 Gibbs sampling

Input: distribution X on graph G with N nodes, conditionals pXi|X
MBG(i)

(xi|xMBG(i))

Output: samples {x̂(t)}
Initialize x = (x1, x2, . . . , xN )
for t = 1, 2, . . . do

for i = 1, 2, . . . , N do
xi ⇠ pXi|X

MBG(i)
( · |xMBG(i))

x̂(t)  (x1, x2, . . . , xN )

simpler to analyze [94, Section 10.1.2]. With the conditional independencies implied by

a graph, some sampling steps may be performed in parallel.

A Markov chain is called ergodic if has a unique steady-state distribution for any

initial state; see Robert and Casella [94, Section 6.6.1] for a definition for countable

state spaces and Meyn and Tweedie [76, Chapter 13] for a definition for general state

spaces. If the Markov chain produced by a Gibbs sampling algorithm is ergodic, then

the stationary distribution is the target distribution of X [94, Theorem 10.6]. The

Markov chain for a Gibbs sampler can fail to be ergodic if, for example, the support of

the target distribution is disconnected [94, Example 10.7]. Many of the Gibbs samplers

we develop result in ergodic chains because all of the conditional densities exist and are

positive [94, Theorem 10.8]. The main performance criterion of an MCMC sampler is

its mixing time [94, Chapter 12], which measures the rate at which the distribution of

the chain’s state reaches the target distribution.

For a more detailed treatment of Gibbs sampling theory, see Robert and Casella

[94, Chapter 6, Chapter 10]. For a detailed treatment of Markov chain ergodic theory

for general state spaces, as required in precise treatments of Gibbs samplers for the

Dirichlet process, see Meyn and Tweedie [76].

⌅ 2.3.2 Mean field variational inference

In mean field, and variational inference more generally, the task is to approximate an in-

tractable distribution, such as a complex posterior, with a distribution from a tractable

family in which inference can be performed e�ciently. In this section we define the

mean field optimization problem and derive the standard coordinate optimization algo-

rithm. We also give some basic results on the relationship between mean field and both

graphical model and exponential family structure. For concreteness and simpler nota-

tion, we work mostly with undirected graphical models; the results extend immediately

to directed models.

Mean field inference makes use of several densities and distributions, and so we use a

subscript notation for expectations to clarify the measure used in the integration when
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it cannot easily be inferred from context. Given a function f and a random variable X

with range X and density p with respect to a base measure ⌫, we write the expectation

of f as

Ep(X) [f(X)] =

Z

X
f(x)p(x)⌫(dx). (2.3.1)

Proposition 2.3.1 (Variational inequality). For a density p with respect to a base

measure ⌫ of the form

p(x) =
1

Z
p̄(x) with Z ,

Z

p̄(x)⌫(dx), (2.3.2)

for all densities q with respect to ⌫ we have

ln Z = L[q] + KL(q||p) � L[q] (2.3.3)

where

L[q] , Eq(X)



ln
p̄(X)

q(X)

�

= Eq(X) [ln p̄(X)] + H[q] (2.3.4)

KL(q||p) , Eq(X)



ln
q(X)

p(X)

�

. (2.3.5)

Proof. To show the equality, with X ⇠ q we write

L[q] + KL(q||p) = Eq(X)



p̄(X)

q(X)

�

+ Eq(X)



ln
q(X)

p(X)

�

(2.3.6)

= Eq(X)



ln
p̄(X)

p(X)

�

(2.3.7)

= ln Z. (2.3.8)

The inequality follows from the property KL(q||p) � 0, known as Gibbs’s inequality,

which follows from Jensen’s inequality and the fact that the logarithm is concave:

� KL(q||p) = Eq(X)



ln
p(X)

q(X)

�

 ln

Z

q(x)
p(x)

q(x)
⌫(dx) = 0 (2.3.9)

with equality if and only if q = p (⌫-a.e.).

We call the log of p̄ in (2.3.2) the energy and L[q] the variational lower bound,

and say L[q] decomposes into the average energy plus entropy as in (2.3.4). For two

densities q and p with respect to the same base measure, KL(q||p) is the Kullback-Leibler
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divergence from q to p, used as a measure of dissimilarity between pairs of densities [2].

The variational inequality given in Proposition 2.3.1 is useful in inference because if

we wish to approximate an intractable p with a tractable q by minimizing KL(q||p), we

can equivalently choose q to maximize L[q], which is possible to evaluate since it does

not include the partition function Z.

In the context of Bayesian inference, p is usually an intractable posterior distribution

of the form p(✓|x, ↵), p̄ is the unnormalized product of the prior and likelihood p̄(✓) =

p(✓|↵)p(x|✓), and Z is the marginal likelihood p(x|↵) =
R

p(x|✓)p(✓|↵)⌫(d✓), which

plays a central role in Bayesian model selection and the minimum description length

(MDL) criterion [74, Chapter 28] [49, Chapter 7].

Given that graphical model structure can a↵ect the complexity of probabilistic in-

ference, as discussed in Section 2.1.3, it is natural to consider families q that factor

according to tractable graphs.

Definition 2.3.2 (Mean field variational inference). Let p be the density with respect

to ⌫ for a collection of random variables X = (Xi : i 2 V ), and let

Q , {q : q(x) /
Y

C2C
qC(xC)} (2.3.10)

be a family of densities with respect to ⌫ that factorize according to a graph G = (V, E)

with C the set of maximal cliques of G. Then the mean field optimization problem is

q⇤ = arg max
q2Q

L[q] (2.3.11)

where L[q] is defined as in (2.3.4).

Note that the optimization problem is not convex and so one can only expect to find

a local optimum of the objective [113]. However, since the objective is convex in each

qC individually, an optimization procedure that updates each factor in turn holding

the rest constant will converge to a local optimum [11, Chapter 10]. We call such a

coordinate ascent procedure on (2.3.11) a mean field algorithm. For approximating

families in a factored form, we can derive a generic update to be used in a mean field

algorithm.

Proposition 2.3.3 (Mean field update). Given a mean field objective as in Defi-

nition 2.3.2, the optimal update to a factor qA fixing the other factors defined by

q⇤A = arg maxqA L[q] is

q⇤A(xA) / exp{E[ln p̄(xA, XAc)]} (2.3.12)

where the expectation is over XAc ⇠ qAc with qAc(xAc) / Q

C2C\A qC(xC).
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Proof. Dropping terms constant with respect to qA, we write

q⇤A = arg min
qA

KL(q||p) (2.3.13)

= arg min
qA

EqA [ln qA(XA)] + EqA [EqAc [log p̄(X)]] (2.3.14)

= arg min
qA

KL(qA||epA) (2.3.15)

where epA(xA) / exp{EqAc [ln p̄(xA, XAc)]}. Therefore, we achieve the unique (⌫-a.e.)

minimum by setting qA = epA.

Furthermore, if p factors according to a graph then the same graph structure is

induced in the factors of the optimal q.

Proposition 2.3.4 (Induced graph structure). If p is Markov on a graph G = (V, E)

with the form p(x) / Q

C2C  C(xC) for cliques C of G, then any optimal factor qA with

A ✓ V factors according to G \ Ac. Furthermore, the update (2.3.12) can be computed

using only the factors on the cliques C0 = {C 2 C : C \ A 6= ?}, i.e. the cliques on

variables in the Markov blanket of A.

Proof. Using (2.3.12) we have

q⇤A(xA) / exp{E[ln p̄(xA, XAc)]} / exp

(

X

C2C0

E[ln C(XC)]

)

(2.3.16)

where factors not involving the variables in A are dropped up to proportionality.

Because q inherits the graphical structure of p, it is therefore natural to consider

tractable families Q that are Markov on subgraphs of p. Note that when q is a subgraph

of p, the variational lower bound is a sum of terms corresponding to the factors of

p. When the family Q is chosen to be Markov on the completely disconnected graph

G = (V, E) with E = ?, the resulting algorithm is called naive mean field. When

the tractable subgraph retains some nontrivial graphical structure, the algorithm is

called structured mean field. In this thesis we use structured mean field extensively for

inference in time series models.

Finally, we note the simple form of updates for exponential family conjugate pairs.

Proposition 2.3.5 (Mean field and conjugacy). If xi appears in p̄ only in an exponen-

tial family conjugate pair (p1, p2) where
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p1(xi|x⇡G(i)) / exp{h⌘(x⇡G(i)), t(xi)i} (2.3.17)

p2(xcG(i)|xi) = exp{ht(xi), (t(xcG(i)), 1)i} (2.3.18)

then the optimal factor qi(xi) is in the prior family with natural parameter

e⌘ , Eq[⌘(X⇡G(i))] + Eq[(t(XcG(i)), 1)]. (2.3.19)

Proof. The result follows from substituting (2.3.17) and (2.3.18) into (2.3.12).

See Wainwright and Jordan [113, Chapter 5] for a convex analysis perspective on

mean field algorithms in graphical models composed of exponential families.

⌅ 2.4 Hidden Markov Models

In this section we use the definitions and results from previous sections to define the

Bayesian Hidden Markov Model and give Gibbs sampling and mean field inference algo-

rithms. For simplicity, we refer only to a single observation sequence; the generalization

to multiple observation sequences is immediate.

A Hidden Markov Model (HMM) on N states defines a joint distribution over a

state sequence x1:T and an observation sequence y1:T . It is parameterized by an initial

state distribution ⇡(0) 2 RN
+ , a transition matrix A 2 RN⇥N

+ , and emission parameters

✓ = {✓(i)}Ni=1. We use ⇡(i) to denote the ith row of A and collect the transition rows

and initial state distribution into ⇡ = {⇡(i)}Ni=0 for convenient notation.

Definition 2.4.1. We say sequences of random variables (x1:T , y1:T ) are distributed

according to a Hidden Markov Model, and write (x1:T , y1:T ) ⇠ HMM(⇡, ✓), when they

follow the generative process

x1 ⇠ ⇡(0), (2.4.1)

xt+1|xt ⇠ ⇡(xt) t = 1, 2, . . . , T � 1, (2.4.2)

yt|xt ⇠ p( · |✓(xt)) t = 1, 2, . . . , T. (2.4.3)

Figure 2.3 shows a graphical model for the HMM.

If each p(y|✓(i)) is an exponential family of densities in natural parameters of the

form

p(y|⌘(i)) = exp{h⌘(i)y , t(i)y (y)i � Zy(⌘
(i)
y )} (2.4.4)
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Figure 2.3: Directed graphical model for an HMM.

then we can write the joint density as an exponential family:

p(x1:T , y1:T ) = exp

(

(ln ⇡(0))T x
1

+
T�1
X

t=1

T
xt

A xt+1

+
T
X

t=1

h⌘(i)y , I[xt = i] · t(i)y (yt)i
)

.

(2.4.5)

Since the HMM is Markov on an undirected tree (more precisely, a chain), we can

use the tree message-passing algorithm to perform inference e�ciently. The HMM

messages and recursions are typically written in terms of forward messages F and

backward messages B, where

Ft,i , p(y1:t, xt) =
N
X

j=1

AjiFt�1,jp(yt|✓(i)) (2.4.6)

Bt,i , p(yt+1:T |xt = i) =
N
X

j=1

Aijp(yt+1|✓(j))Bt+1,j (2.4.7)

with the initial values F1,i = ⇡(0)
i p(y1|✓(i)) and BT,i = 1. Algorithms to compute these

messages are given in Algorithms 2.2 and 2.3.

A Bayesian treatment of HMMs places priors on the parameters (⇡, ✓) and includes

them in the probabilistic model. We use Dir(↵) where ↵ 2 RK
+ for some K > 0 to

denote the Dirichlet distribution with parameter ↵.

Definition 2.4.2. We say (✓,⇡, x1:T , y1:T ) are distributed according to a Bayesian Hid-

den Markov Model with hyperparameters ↵ = {↵(i)}Ni=1 and � = {�(i)}Ni=1, and write

(✓,⇡, x1:T , y1:T ) ⇠ BayesHMM(↵, �), when they follow the generative process

⇡(i) iid⇠ Dir(↵(i)) (2.4.8)

✓(i)
iid⇠ p( · |�(i)) (2.4.9)

(x1:T , y1:T )|⇡, ✓ ⇠ HMM(⇡, ✓) (2.4.10)

where HMM(⇡, ✓) is defined in Definition 2.4.1. Figure 2.4 shows a graphical model.
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Figure 2.4: Directed graphical model for a Bayesian HMM.

Given an observation sequence ȳ1:T the task of interest is to perform inference in

the posterior ⇡, ✓, x1:T |ȳ1:T . In this section we develop both Gibbs sampling and mean

field algorithms for this inference task.

⌅ 2.4.1 HMM Gibbs sampling

The HMM Gibbs sampler iterates sampling ✓, ⇡, and x1:T from their respective con-

ditionals. To sample the state sequence x1:T from its conditional, we exploit the tree

message-passing algorithm. Furthermore, since the Dirichlet is the conjugate prior to

the categorical from which each state is sampled, the conditional for ⇡ is also Dirichlet.

The HMM Gibbs sampler can then be written as Algorithm 2.4.

An alternative Gibbs sampler can be constructed by marginalizing the parameters

(⇡, ✓), which is tractable when the observation prior and likelihood form a conjugate

pair, and generating samples of x1:T |ȳ1:T , ↵, �. While such collapsed samplers can be

advantageous in some settings, in the case of a Bayesian HMM eliminating ⇡ and ✓

induces a full graph on the remaining nodes, and so one cannot exploit tree message

passing to construct a joint sample of the state sequence and each xt must be resampled

one at a time. Because the xt are highly correlated in the model, the collapsed Gibbs

sampler is often slow to explore the posterior.

⌅ 2.4.2 HMM mean field

Here we briefly overview a mean field algorithm for HMMs. For more details on the

HMM mean field algorithm, see Beal [6, Chapter 3].

We choose a variational family that factorizes as q(⇡, ✓, x1:T ) = q(⇡, ✓)q(x1:T ) so

that the parameters and state sequence are decoupled. The Bayesian HMM graphical

model then induces independences so that the variational family is

q(⇡, ✓, x1:T ) =
N
Y

i=0

q(⇡(i))q(✓(i))q(x1:T ). (2.4.11)
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Note that because ⇡(i) is the ith row of the transition matrix A, i = 1, 2, . . . , N , we

write q(⇡(1), . . . , ⇡(N)) equivalently as q(A) to simplify some notation. The variational

objective function is

E


ln
p(⇡, ✓, x, y)

q(⇡)q(✓)q(x1:T )

�

= Eq(⇡)



ln
p(⇡)

q(⇡)

�

+ Eq(✓)



ln
p(✓)

q(⇡)

�

(2.4.12)

+ Eq(x
1:T )q(⇡)q(✓)



ln
p(x1:T , y1:T |⇡, ✓)

q(x1:T )

�

. (2.4.13)

For more explicit updates, we assume that each observation prior and likelihood form

a conjugate pair of densities and that the prior family is written in natural parameters

with the form

p(✓(i)|⌘(i)✓ ) / exp{h⌘(i)✓ , t(i)✓ (✓(i))i} p(y|✓(i)) = exp{ht(i)✓ (✓(i)), (ty(y), 1)i}. (2.4.14)

Then the update for the factor q(x1:T ) is

q⇤(x1:T ) / E[ln p(x1:T , y1:T |✓, ⇡)] (2.4.15)

= exp

(

(Eq(⇡)[ln ⇡(0)])T x
1

+
T
X

t=1

T
xt

Eq(A)[ln A] xt+1

+
T
X

t=1

hEq(✓)[t
(i)
✓ (✓(i))], I[xt = i]ty(yt, 1)i

)

(2.4.16)

and so, as expected, the optimal factor is also Markov on a chain graph.

For the conjugate updates to q(⇡) and q(✓), we write the variational factors as

q(✓(i)) / exp{he⌘(i)✓ , t(i)✓ (✓(i))i} q(⇡(i)) = Dir(e↵(i)). (2.4.17)

We can compute the expected su�cient statistics over q(x1:T ) by running the HMM

message-passing algorithm. Defining

e⇡(i) , Eq(⇡)[ln ⇡(i)] eLt,i , Eq(✓)[ln p(yt|✓(i))], (2.4.18)

and defining eA to be a matrix where the ith row is e⇡(i) for i = 1, 2, . . . , N , we compute
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t̂(i)y , Eq(x
1:T )

T
X

t=1

[xt = i]t(i)y (ȳt) =
T
X

t=1

Ft,iBt,i · (t(i)y (ȳt), 1)/Z (2.4.19)

(t̂(i)trans)j , Eq(x
1:T )

T�1
X

t=1

[xt = i, xt+1 = j] =
T�1
X

t=1

Ft,i
eAij

eLt+1,jBt+1,j/Z (2.4.20)

(t̂init)i , Eq(x
1:T ) [x1 = i] = e⇡0B1,i/Z (2.4.21)

where Z =
PN

i=1 FT,i. With these expected statistics, the updates to the parameters of

q(A), q(⇡0), and q(✓) are then

e⌘✓
(i)  ⌘(i)✓ + t̂(i)y (2.4.22)

e↵(i)  ↵(i) + t̂(i)trans (2.4.23)

e↵(0)  ↵(0) + t̂(i)init. (2.4.24)

We summarize the overall algorithm in Algorithm 2.6.

⌅ 2.5 The Dirichlet Process and nonparametric models

The Dirichlet process is used to construct Bayesian nonparametric models, including

nonparametric HMMs such that the number of states is unbounded a priori. Bayesian

nonparametric methods allow model complexity to be learned flexibly from data and

to grow as the amount of data increases. In this section, we review the basic definition

of the Dirichlet process and the HDP-HMM.

Definition 2.5.1 (Dirichlet process). Let (⌦, F , H) be a probability space and ↵ > 0.

We say G is distributed according to a Dirichlet process with parameter ↵H, and write

G ⇠ DP(↵H) or G ⇠ DP(↵, H), if (⌦, F , G) is a probability space and for every finite

partition {Ai ✓ ⌦ : i 2 [r]} of ⌦

r
[

i=1

Ai = ⌦ i 6= j =) Ai \Aj = ?, (2.5.1)

we have

(G(A1), . . . , G(Ar)) ⇠ Dir(↵H(A1), . . . , ↵H(Ar)). (2.5.2)

By the Kolmogorov consistency theorem, this definition in terms of consistent finite-

dimensional marginals defines a unique stochastic process [88]. Though the definition

is not constructive, some properties of the Dirichlet process are immediate.
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Proposition 2.5.2. If G ⇠ DP(↵H), then

1. G is atomic w.p. 1, meaning it can be written

G =
1
X

i=1

⇡i�✓i (2.5.3)

for some atoms !i 2 ⌦ and weights ⇡i 2 (0, 1).

2. If ✓i|G iid⇠ G for i = 1, 2, . . . , N , then G|{✓i}Ni=1 is distributed as a Dirichlet process

with

G|{✓i}Ni=1 ⇠ DP(↵H +
N
X

i=1

�✓i). (2.5.4)

Proof. As shown in Ferguson [27], these properties follow from Definition 2.5.1 and

finite Dirichlet conjugacy.

A construction that satisfies Definition 2.5.1 is the stick breaking process. In the

following, we use X ⇠ Beta(↵, �) to denote that X has the density

p(x|↵, �) / x↵�1(1 � x)��1. (2.5.5)

Definition 2.5.3 (Stick-breaking process). We say ⇡ = {⇡i : i 2 N} is distributed

according to the stick-breaking process with parameter ↵ > 0, and write ⇡ ⇠ GEM(↵),

if

�i ⇠ Beta(1, ↵), ⇡i = �i

Y

j<i

(1 � �j), i = 1, 2, . . . . (2.5.6)

Theorem 2.5.4 (Stick-breaking construction). Let ⇡ ⇠ GEM(↵) and ✓i
iid⇠ H for i 2 N.

If G =
P1

i=1 ⇡i�✓i then G ⇠ DP(↵H).

Proof. See Sethuraman [103].

We can define Dirichlet processes that share the same set of atoms and have similar

weights using the hierarchical Dirichlet process construction [107]. This construction is

useful in defining a Bayesian nonparametric extension of the HMM.

Definition 2.5.5 (Hierarchical Dirichlet process). We say a collection of random mea-

sures {Gj : j 2 N} are distributed according to the hierarchical Dirichlet process with

parameters ↵, �, and H if

G0 ⇠ DP(↵, H) Gj
iid⇠ DP(�, G0). (2.5.7)
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Figure 2.5: Directed graphical model for an HDP-HMM.

We can use the stick-breaking construction of the DP to define a stick-breaking

construction of the HDP.

Definition 2.5.6. We say (⇡, ✓, x1:T , y1:T ) are distributed according to an HDP-HMM

with parameters ↵, � > 0 and base measure H if

� ⇠ GEM(�), ⇡i
iid⇠ DP(↵�), ✓i

iid⇠ H, (2.5.8)

xt ⇠ ⇡xt�1

, yt ⇠ p( · |✓xt) (2.5.9)

where � is treated as a density with respect to counting measure on N and where we set

x1 = 0. We write (⇡, ✓, x1:T , y1:T ) ⇠ HDP-HMM(↵, �, H).

Figure 2.5 shows a graphical model for the HDP-HMM.

There are several methods to perform sampling inference in Dirichlet process mod-

els. First, exploiting the conjugacy properties of the Dirichlet process, one can ana-

lytically marginalize the DP draws, as in the Chinese Restaurant Process (CRP) and

Chinese Restaurant Franchise (CRF) samplers for the Dirichlet process and hierar-

chical Dirichlet process, respectively [107]. However, as before, eliminating variables

introduces many dependencies and can result in poor sampler performance for models

like the HDP-HMM. One can also work with a finite instantiation of the Dirichlet pro-

cess draws, so that the sampler only needs to work with the finite Dirichlet marginals,

as in the Direct Assignment sampler [107], but such a construction still precludes tree

message-passing in an HDP-HMM. The approach we take for most samplers in this the-

sis is based on approximating a DP prior with a finite symmetric Dirichlet distribution,

where the notion of approximation is made precise in the following result.

Theorem 2.5.7 (Weak limit approximation). Let (⌦, F , H) be a probability space,

↵ > 0 be a positive constant, and f : ⌦ ! R be any (F , B(R))-measurable function.
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Consider the finite model of size K given by

✓i
iid⇠ H ⇡ = (⇡1, . . . , ⇡K) ⇠ Dir(↵1/K, · · · , ↵K/K) (2.5.10)

and define the measure GK =
PK

i=1 ⇡i�✓i. Then as K ! 1 we have
Z

f(!)GK(d!)
D�!

Z

f(!)G(d!) (2.5.11)

where G ⇠ DP(↵H).

Proof. See Ishwaran and Zarepour [57, Theorem 2], which also gives rates of convergence

and bounds on the probabilities of some error events.

Based on this approximation result, we can define Bayesian nonparametric models

and perform approximate inference with finite models of size K, where K becomes an

algorithm parameter rather than a model parameter. With these finite approximations

we can exploit graphical model structure and tree message-passing algorithms in both

Gibbs sampling and mean field algorithms for time series models defined with the HDP.
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Algorithm 2.2 HMM Forwards Messages

Input: transition potentials A, emission potentials L, initial state potential ⇡(0)

Output: HMM forward messages F
function HMMFwdMessages(A,L,⇡(0))

F1,:  ⇡(0) � L1,:

for t = 2, 3, . . . , T do
Fti  

PN
j=1 Ft�1,jAjiLti

return F

Algorithm 2.3 HMM Backward Messages

Input: transition potentials A, emission potentials L
Output: HMM backwards messages B

function HMMBwdMessages(A,L)
BT,:  1
for t = T � 1, T � 2, . . . , 1 do

Bt,i  
PN

j=1 AijBt+1,jLt+1,j

return B

Algorithm 2.4 Bayesian HMM Gibbs sampling

Input: ↵, �, ȳ1:T
Output: samples {(x̂1:T , ✓̂, ⇡̂)(t)}

Initialize x1:T

for t = 1, 2, . . . do
for i = 1, 2, . . . , N do

⇡(i)  sample Dir(↵(i) + ni:) with nij =
P

t I[xt = i, xt+1 = j]
✓(i)  sample p(✓|�, {yt : xt = i})

⇡(0)  sample Dir(↵(0) + x
1

)
x1:T  HMMSampleStates(⇡(0), A, L) with Lt,i = p(yt|✓(i))
(x̂1:T , ✓̂, ⇡̂)(t)  (x1:T , ✓, ⇡)

Algorithm 2.5 HMM state sequence sampling

Input: ⇡(0), A, L
Output: a sample x1:T

function HMMSampleStates(A,L)
B  HMMBwdMessages(A, L)

x1  sample ⇡(0)
i B1,iL1,i over i

for t = 2, 3, . . . , T do
xt  sample Axt�1

,iBt,iLt,i over i
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Algorithm 2.6 HMM Mean Field

Initialize variational parameters e⌘(i)✓ , e↵(i), e↵(0)

for t = 1, 2, . . . until convergence do
F  HMMFwdMessages( eA, eL, e⇡(0))
B  HMMBwdMessages( eA, eL)

Using F and B, compute each t̂(i)y , t̂(i)trans, and t̂init
with Eqs. (2.4.19)-(2.4.21)

Update e⌘(i)✓ , e↵(i), e↵(0) for i = 1, 2, . . . , N
with Eqs. (2.4.22)-(2.4.24)


