
Chapter 4

Faster HSMM Inference with
E�cient Representations

⌅ 4.1 Introduction

In this chapter we address some fundamental scaling challenges for Hidden semi-Markov

Model (HSMM) inference. One reason HSMMs are not utilized nearly as often as the

ubiquitous Hidden Markov Model (HMM) is that the HSMM’s basic inference routines

are often too computationally expensive in practical settings. The time complexity of

HSMM inference scales quadratically with data sequence length while HMM inference

scales only linearly. The slowdown relative to HMM inference is due to the weaker

Markovianity properties in the HSMM state sequence, which require more expensive

message passing algorithms. For this reason, with growing dataset sizes and richer

hierarchical models requiring more data to be fit, HSMMs are often rejected even when

explicit durations provide a better model.

We address this challenge in two ways. First, we study HSMMs with a particular

natural family of duration distributions, the two-parameter negative binomial family,

and develop a message passing algorithm for these models with complexity that scales

only linearly with the sequence length. We derive the message passing algorithm in

terms of a general notion of HMM embeddings, which we define in Section 4.3 and which

improves upon previous work on expanded-state HMMs, as we discuss in Section 4.2.

We also develop a Gibbs sampling algorithm that uses this linear-time message passing

scheme. These algorithms immediately generalize to duration models that are mixtures

of negative binomials, a natural duration analog of the Gaussian mixture model. Second,

we give a linear time-invariant (LTI) system realization perspective that both generalizes

the class of duration models for which HSMM message passing can be made e�cient

and illuminates the limits of such an approach.

In subsequent chapters we build on these inference methods for HSMMs with nega-

tive binomial durations to develop scalable inference algorithms for hierarchical Bayesian

and Bayesian nonparametric models, including the stochastic variational inference (SVI)
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methods for the HSMM and HDP-HSMM described in Chapter 5 and both Gibbs sam-

pling and SVI algorithms for a new model described in Chapter 6.

The remainder of this chapter is organized as follows. In Section 4.2 we discuss

previous work and how it relates to the framework and methods we develop. In Sec-

tion 4.3, we provide our definition of HMM embeddings of HSMMs and give a general

result on computing HSMM messages in terms of the embedding. In Section 4.4 we give

a particular embedding for HSMMs with negative binomial durations and show how to

use the embedding to construct an HSMM Gibbs sampling algorithm for which the time

complexity of each iteration scales only linearly in the observation sequence length. Fi-

nally, in Section 4.5 we give a more general perspective on e�cient representations for

HSMM message passing in terms of LTI system realization.

⌅ 4.2 Related work

The work that is most closely related to the ideas we develop in this chapter is the work

on expanded state HMMs (ESHMMs) [98, 97, 61, 48]. In the ESHMM framework,

non-geometric state durations are captured by constructing an HMM in which several

states share each observation distribution; the observations are generated from the

same observation distribution while the hidden Markov chain occupies any state in the

corresponding group of states, and so the e↵ective duration distribution is modeled by

the Markov dwell time for the group of states. This technique is similar to the notion of

HMM embedding that we develop, but there are some key advantages to our approach,

both modeling and algorithmic. First, while an ESHMM is limited to a single HMM

of fixed size and transition topology, our definition of HMM embeddings as a way to

compute HSMM messages allows us to perform Bayesian inference over the HSMM

duration parameters and thus e↵ectively resize the corresponding HMM embedding, as

we show in Section 4.4.2. Second, another consequence of using HMM embeddings to

compute HSMM messages is that the message passing recursions we develop require

significantly less memory than those for the ESHMM, as we describe in Section 4.3.

Finally, as we show in Section 4.5.2, our definition can be generalized to give e�cient

HSMM message passing algorithms for duration models that cannot be captured by

ESHMMs.

Note that the HMM embedding we develop in Section 4.4 is most similar to the

ESHMM Type A model [97, 61], which can model a modified negative binomial duration

distribution with fixed r parameter and PMF given by

p(k|r, p) =

✓

k � 1

k � r

◆

(1 � p)rpk�r k = r, r + 1, r + 2, . . . . (4.2.1)
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This distribution is not the standard negative binomial distribution which we use in

Section 4.4. In particular, the PMF (4.2.1) has support starting at r, which can be

an artificial limitation when modeling duration distributions and particularly when

learning the r parameter, as we do in Section 4.4.

⌅ 4.3 HMM embeddings and HSMM messages

In this section, we give our definition for HMM embeddings of HSMMs and show how

the HSMM messages can be computed in terms of HMM messages in the embeddings.

In Section 4.4 we use these results to derive e�cient inference algorithms for HSMMs

with negative binomial durations, and in Section 4.5 we generalize these definitions.

As described in Chapter 3, there are standard HSMM forward and backward mes-

sages [78] analogous to those for the HMM. The forward messages (F, F ⇤) and backward

messages (B, B⇤) are defined by

Ft,i , p(y1:t, xt = i, xt 6= xt+1)

=
T�t�1
X

d=1

F ⇤
t�d,ip(d|xt�d = i)p(yt�d:t|xt�d:t = i) (4.3.1)

F ⇤
t,i , p(y1:t, xt+1 = i|xt 6= xt+1)

=
N
X

j=1

Ft,ip(xt+1 = i|xt = j, xt 6= xt+1) (4.3.2)

F1,i , p(x1 = i) (4.3.3)

Bt,i , p(yt+1:T |xt = i, xt 6= xt+1)

=
N
X

j=1

B⇤
t,jp(xt+1 = j|xt = i, xt 6= xt+1), (4.3.4)

B⇤
t,i , p(yt+1:T |xt+1 = i, xt 6= xt+1)

=
T�t
X

d=1

Bt+d,ip(d|xt+1 = i)p(yt+1:t+d|xt+1:t+d = i)

+
1
X

d=T�t+1

p(d|xt+1 = i)p(yt+1:T |xt+1:T = i), (4.3.5)

BT,i , 1, (4.3.6)
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where T denotes the length of the observation sequence and N the number of states.

These HSMM messages are expensive to compute because the expression for B⇤
t,i, like

that for Ft,i, involves summing over all possible durations, resulting in an overall time

complexity of O(TN2 + T 2N) compared to the HMM message passing complexity of

O(TN2). The HSMM algorithm’s quadratic dependence on the sequence length T

severely limits the settings in which HSMM inference can be performed and has led

many practitioners to prefer HMMs even when geometric state durations are unnatural.

One way to interpret the HSMM messages messages is to embed the HSMM into

a much larger HMM that encodes the same generative process [78, 54]. The HMM

embedding includes the duration information in its Markov state. Here we give a more

general definition of HMM embeddings than considered in previous work, and use this

general definition to explore opportunities for more e�cient representations.

Recall from Chapter 3 that we parameterize an HSMM on N states with a N ⇥ N

transition matrix A where Aij = p(xt+1 = j|xt = i, xt 6= xt+1), initial state distribution

⇡(0), observation parameters ✓ = {✓(i)}Ni=1, and duration parameters # = {#(i)}Ni=1.

Definition 4.3.1 (HMM embedding of an HSMM). Given an HSMM on N states with

parameters (A, ✓, ⇡(0), #) and an observation sequence length T , an HMM embedding

of the HSMM is an HMM on N̄ =
PN

i=1 N̄ (i) states for some N̄ (i) with parameters

(Ā, ✓̄, ⇡̄(0)) that satisfy the following requirements:

(1) The HMM transition matrix is of the form

Ā =

0

B

B

@

¯A(1)

¯A(2)

. . .

¯A(3)

1

C

C

A

+

0

B

B

@

|
¯b(1)

|
. . .

|
¯b(N)

|

1

C

C

A

0

@
A

1

A
 

c̄(1)T

. . .

c̄(N)T

!

(4.3.7)

for some nonnegative matrices Ā(i) of size N̄ (i) ⇥ N̄ (i) and nonnegative vectors b̄(i)

and c̄(i) of length N̄ (i) for i = 1, 2, . . . , N . Entries shown as blank are zero.

(2) Indexing each HMM state as (i, j) for i = 1, 2, . . . , N and j = 1, 2, . . . , N̄ (i), the

HMM observation parameters are ✓̄(i,j) = ✓(i) and the initial state distribution is

⇡̄(0)
(i,j) = ⇡(0)

i c(i)j . We can thus associate each HSMM state i with a collection of N̄ (i)

HMM states of the form (i, j), and we refer to each i as the state index and each

j as the pseudostate index.

(3) The probability the HSMM assigns to any label sequence x1:T = (xt)Tt=1 is equal

to the total probability the HMM embedding assigns to all HMM state sequences
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of the form x̄1:T = ((xt, et))Tt=1 for some sequence of pseudostate indices (et); that

is, writing p(x1:T |A, ⇡(0), ✓, #) for the probability the HSMM assigns to a fixed label

sequence x1:T and p(x̄1:T |Ā, ⇡̄(0), ✓̄) for the probability that the HMM assigns to a

state sequence x̄1:T with x̄t = (xt, et), we require

p(x1:T |A, ⇡(0), ✓, #) =
X

et

p(x̄1:T |Ā, ⇡̄, ✓̄) =
X

et

p((xt, et)
T
t=1|Ā, ⇡̄, ✓̄) (4.3.8)

where the sum is over all possible pseudostate index sequences.

Note that by the construction in (4.3.7), for any HMM embedding of an HSMM,

each matrix

✓

Ā(i) b̄(i)

c̄(i)T 0

◆

(4.3.9)

for i = 1, 2, . . . , N is row-stochastic. Further, again decomposing each x̄t = (xt, et) into

an HSMM state index and a pseudostate index, note that by Definition 4.3.1 we have

c̄(i)j = p(x̄t+1 = (i, j)|xt+1 = i, xt 6= xt+1) (4.3.10)

b̄(i)j = p(xt 6= xt+1|x̄t = (i, j)). (4.3.11)

Thus we refer to each c̄(i) as the vector of entrance probabilities and to each b̄(i) as

the vector of exit probabilities for the HMM embedding pseudostates corresponding to

HSMM state i. An HMM embedding captures the desired HSMM transition dynamics

because
PN̄(i)

k=1

PN̄(j)

`=1 p(x̄t+1 = (j, `)|x̄t = (i, k), xt 6= xt+1) = Aij . Finally, note that

an HMM embedding models the HSMM durations in terms of the dwell times within

the group of HMM states corresponding to each HSMM state, as we make clear in

Proposition 4.3.3.

First, we give an example of a generic HSMM embedding from a construction given

in Murphy [78] (though not in terms of our definition of HMM embeddings).

Example 4.3.2. We can construct an HMM embedding for an arbitrary HSMM by

using N̄ = TN total states with N̄ (i) = TN and
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Ā(i) =

0

B

B

B

B

B

@

0 1
0 1

. . .
. . .

0 1
0

1

C

C

C

C

C

A

b̄(i) =

0

B

B

B

B

B

@

0
0
...
0
1

1

C

C

C

C

C

A

(4.3.12)

c̄(i)T =
�

p(d � T |#(i)) p(d = T � 1|#(i)) · · · p(d = 2|#(i)) p(d = 1|#(i))
�

. (4.3.13)

In this HMM embedding, when the group of states corresponding to HSMM state i is

entered, a duration (censored to a maximum of T ) is sampled from the HSMM state’s du-

ration distribution encoded in c̄(i); if a duration d is sampled, the state with pseudostate

index T � d is entered. Then the pseudostate index serves as a counter, deterministi-

cally incrementing until reaching the maximum pseudostate index of T , at which point

a transition occurs and a new HSMM state is sampled.

While the construction makes it impossible to sample a pseudostate corresponding

to a duration greater than T , with the label sequence length fixed at T it is impossible

for any duration longer than T to be represented in the HSMM label sequence. Thus

this HMM embedding directly models the HSMM generative process for label sequences

of length T . Note that, in a sense we make precise in Section 4.5, an embedding that

depends on the sequence length T corresponds to an HSMM that does not have a finite-

size realization.

Example 4.3.2 also makes clear the computational complexity of HSMM message

passing and the reason it scales quadratically with T . The time complexity for message

passing on a generic HMM with TN states is O(T (TN)2) because at each time one

must compute a matrix-vector product with a matrix of size (TN) ⇥ (TN). However,

due to the structure of Ā each multiplication for the HMM embedding can be done in

O(N2 + TN) time. Indeed, this generic HSMM embedding provides a way to derive

the HSMM messages in terms of the HMM messages on the embedding.

Proposition 4.3.3. Let (A, ✓, ⇡(0), #) be an HSMM and let (Ā, ✓̄, ⇡̄(0)) be a candidate

HMM embedding satisfying conditions (1) and (2) of Definition 4.3.1. If for each i =

1, 2, . . . , N we have

c̄(i)T
⇣

Ā(i)
⌘d�1

b̄(i) = p(d|#(i)) d = 1, 2, . . . , T � 1 (4.3.14)

c̄(i)T
⇣

Ā(i)
⌘T�1

b̄(i) = p(d � T |#(i)) (4.3.15)
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then (Ā, ✓̄, ⇡̄(0)) is an HMM embedding of (A, ✓, ⇡(0), #).

Proof. Note that the matrix expression in (4.3.14) gives the probability of absorption

in d timesteps for a Markov chain with transition matrix and initial state distribution

given by
 

Ā(i) b̄(i)

0 1

!

and
⇣

c̄(i)T 0
⌘

, (4.3.16)

respectively. Therefore, by Definition 4.3.1, the expression gives the probability of

remaining in the pseudostates corresponding to HSMM state i for exactly d timesteps.

Finally, note that, as in Example 4.3.2, the HMM embedding only needs to represent

the duration distribution for durations up to the observation sequence length T .

As we show in the next example, based on a construction from Hudson [54], HMM

embeddings of an HSMM are not unique.

Example 4.3.4. For an HSMM (A, ✓, ⇡(0), #), using Definition 4.3.1 choose

Ā(i) =

0

B

B

@

0 1�p(d=1|#(i))

0 1�p(d=2|d�2,#(i))

. . .
. . .
0 1�p(d=T�1|d�T�1,#(i))

0

1

C

C

A

(4.3.17)

b̄(i) =

0

B

B

@

p(d=1|#(i))

p(d=2|d�2,#(i))
...

p(d=T�1|d�T�1,#(i))
1

1

C

C

A

c̄(i)T =
�

1 0 · · · 0 0
�

. (4.3.18)

This HMM embedding also uses the pseudostate index as a duration counter, but instead

of counting down until the time an HSMM transition occurs, the pseudostate here counts

up the time since the previous HSMM transition.

Given any valid HMM embedding of an HSMM, we can compute the HSMM mes-

sages in terms of the HMM messages for the embedding, as we show in the following

proposition.

Proposition 4.3.5 (HSMM Messages from HMM Embedding). Given an HMM em-

bedding for some HSMM, let F̄ and B̄ denote the HMM messages for the embedding as

in Eqs. (2.4.6) and (2.4.7) of Section 2.4, so that

B̄t,(i,j) = p(yt+1:T |x̄t = (i, j)) t = 1, 2, . . . , T (4.3.19)

F̄t,(i,j) = p(y1:t, x̄t = (i, j)) i = 1, 2, . . . , N, j = 1, 2, . . . , N̄ (i). (4.3.20)
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Then the HSMM messages for each time t = 1, 2, . . . , T and each index i = 1, 2, . . . , N

can be computed as

Ft+1,i =
N̄(i)
X

j=1

b̄(i)j F̄t,(i,j)p(yt+1|✓(i)) F ⇤
t,i =

N
X

j=1

Ft,iAji (4.3.21)

B⇤
t,i =

N̄(i)
X

j=1

c̄(i)j B̄t+1,(i,j)p(yt+1|✓(i)) Bt,i =
N
X

j=1

B⇤
t,iAij . (4.3.22)

Proof. Note that the expressions for F ⇤
t,i and Bt,i are identical to those in (4.3.2)

and (4.3.4), so it su�ces to check the expressions for B⇤
t,i and Ft+1,i. Using (4.3.10)

and (4.3.11) we have

N(i)
X

j=1

b̄(i)j F̄t,(i,j)p(yt+1|✓(i)) =
N(i)
X

j=1

p(y1:t+1, x̄t = (i, j))p(xt 6= xt+1|x̄t = (i, j)) (4.3.23)

= p(y1:t+1, xt = i, xt 6= xt+1) = Ft+1,i (4.3.24)

N(i)
X

j=1

c̄(i)j B̄t+1,(i,j)p(yt+1|✓(i)) =
N(i)
X

j=1

p(yt+1:T |x̄t+1 = (i, j))

· p(x̄t+1 = (i, j)|xt+1 = i, xt 6= xt+1) (4.3.25)

= p(yt+1:T |xt+1 = i, xt 6= xt+1) = B⇤
t,i (4.3.26)

Note that, since the full HMM messages do not need to be stored, the recursions

in Eqs. (4.3.21) and (4.3.22) can o↵er memory savings relative to simply computing

the HMM messages in the HMM embedding; instead, the recursions in Eqs. (4.3.21)

and (4.3.22) require only O(TN +N̄) memory to compute. In the case of the embedding

of Example 4.3.2, since multiplication by each Ā(i) only performs shifting, the HSMM

messages can be computed with O(TN) memory, and indeed in that case the com-

putation corresponds precisely to implementing the recursions in (4.3.1)-(4.3.5). The

recursions in Eqs. (4.3.21) and (4.3.22) can be computed in time O(TNN̄2
max + TN2),

where N̄max = maxi N̄ (i).

From the HMM embedding perspective, the HSMM message passing complexity is

due to generic duration distributions requiring each HSMM state to be augmented by

T pseudostates in the embedding. In the next section we study a particular family of

duration distributions for which an HSMM can be encoded as an HMM using many

fewer pseudostates.
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⌅ 4.4 HSMM inference with negative binomial durations

In this section, we develop an HMM embedding for HSMMs with negative binomial

duration distributions as well as a Gibbs sampler for such models. First, we develop

the HMM embedding in terms of the general results of the previous section, prove its

correctness, and state its message passing computational complexity. Next, we show

how to use the embedding to construct an HSMM Gibbs sampling algorithm in which

the overall time complexity of each iteration scales only linearly with the sequence

length T . Finally, we show how to generalize the HMM embedding construction to

include HSMMs in which the durations are mixtures of negative binomial distributions.

⌅ 4.4.1 An embedding for negative binomial durations

The negative binomial family of discrete distributions, denoted NB(r, p) for parameters

r > 0 and 0 < p < 1, is well-studied in both frequentist and Bayesian analysis [38].

Furthermore, it has been recommended as a natural model for discrete durations [26,

61] because of it can separately parameterize mean and variance and because it includes

geometric durations as a special case when r = 1. In this section, using our formulation

of HMM embeddings from Section 4.3 we show that negative binomial distributions

also provide computational advantages for HSMM message passing and inference.

The negative binomial probability mass function (PMF) can be written1

p(k|r, p) =

✓

k + r � 2

k � 1

◆

(1 � p)rpk�1 k = 1, 2, . . . . (4.4.1)

When r is taken to be fixed, the family of distributions over p is an exponential family:

p(k|r, p) = hr(k) exp {⌘(p) · t(k) � Zr(p)} (4.4.2)

with

hr(k) ,
✓

k + r � 2

k � 1

◆

, ⌘(p) , ln p, (4.4.3)

t(k) , k � 1, Zr(p) , r ln(1 � p). (4.4.4)

However, when considered as a family over (r, p), the negative binomial is no longer

an exponential family of distributions because the log base measure ln hr(k) has a

dependence on r that does not interact linearly with a statistic of the data. The

1While some definitions take the support of the negative binomial PMF to be {0, 1, 2, . . .}, for
duration modeling we shift the PMF to start at 1 because we do not want to include durations of 0
length.
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definition of the negative binomial can be generalized to any positive real r parameter

by replacing the definition of hr(k) with the appropriate ratio of gamma functions,

but in this chapter we restrict our attention to the case where r is a positive integer.

This restriction is essential to the algorithms developed here and does not substantially

reduce the negative binomial’s expressiveness as a duration model. For a discussion of

general results on exponential families of distributions, see Section 2.2.

To construct an e�cient HMM embedding, we use the fact that a negative binomial-

distributed random variable can be represented as a sum of r geometrically-distributed,

shifted random variables:

x ⇠ NB(r, p) () x = 1 +
r

X

i=1

zi with zi
iid⇠ ShiftedGeo(1 � p) (4.4.5)

where zi
iid⇠ ShiftedGeo(1 � p) denotes that the zi are independent and each has a

geometric distribution with parameter 1 � p shifted so that the support includes 0,

i.e. the PMF of each zi is given by

p(z|p) = pz(1 � p) z = 0, 1, 2, . . . . (4.4.6)

Therefore, given an HSMM in which the duration of state i is sampled from NB(r(i), p(i)),

we can construct an HMM embedding by augmenting each HSMM state with N̄ (i) = r(i)

pseudostates and choosing

Ā(i) =

0

B

B

B

@

p(i) 1 � p(i)

. . .
. . .

p(i) 1 � p(i)

p(i)

1

C

C

C

A

b̄(i) =

0

B

B

B

B

@

1 � p(i)

1

C

C

C

C

A

(4.4.7)

c̄(i) =

0

B

B

B

@

Binom(r(i) � 1|r(i) � 1, p(i))
Binom(r(i) � 2|r(i) � 1, p(i))

...
Binom(0|r(i) � 1, p(i))

1

C

C

C

A

(4.4.8)

where Binom(k|n, p) denotes a binomial PMF with parameters (n, p) and evaluated at

k, given by

Binom(k|n, p) ,
✓

n

k

◆

pk(1 � p)n�k. (4.4.9)

In the next proposition, we show that this HMM embedding encodes the correct dura-

tion distributions.
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Proposition 4.4.1. Using Ā(i), b̄(i), and c̄(i) as in (4.4.7) and (4.4.8) in the HMM

embedding construction of Definition 4.3.1 gives a valid HMM embedding of an HSMM

in which the duration of state i is distributed as NB(r(i), p(i)).

Proof. By Proposition 4.3.3 it su�ces to show that the probability of absorption af-

ter exactly d timesteps in each Markov chain with transition matrix and initial state

distribution given by
 

Ā(i) b̄(i)

0 1

!

and
⇣

c̄(i)T 0
⌘

, (4.4.10)

respectively, is distributed as NB(r(i), p(i)). To simplify notation, we drop the super-

script i for the remainder of this proof.

Writing Xj to denote the random time to absorption from state r � j for j =

0, 1, . . . , r�1 in the Markov chain parameterized by (4.4.10) , note that by the construc-

tion of the transition matrix we can write Xj = 1+Yj +Xj�1 for j = 1, 2, . . . , r�1 and

X0 = 1+Y0, where Yj
iid⇠ Geo(p) for j = 0, 1, . . . , r�1. Therefore Xj = 1+j +

Pj
k=1 Yj ,

and so we can write the PMF of Xj as
�

k�1
k�(r�j)

�

(1 � p)r�jpk�(r�j) for k = r, r + 1, . . ..

Summing over the initial state distribution we can write probability of absorption

after k steps as

r�1
X

j=0

✓

r � 1

r � j � 1

◆

(1 � p)jpr�j�1 ·
✓

k � 1

k � (r � j)

◆

(1 � p)r�jpk�(r�j) (4.4.11)

=
r�1
X

j=0

✓

r � 1

r � j � 1

◆✓

k � 1

k � (r � j)

◆

(1 � p)rpk�1 (4.4.12)

=

✓

r + k � 2

k � 1

◆

(1 � p)rpk�1 (4.4.13)

where the last line follows from the Vandermonde identity [4]

✓

m + n

`

◆

=
X̀

j=0

✓

m

j

◆✓

n

` � j

◆

. (4.4.14)

Note that we can compute matrix-vector products against each Ā(i) in O(r(i)) time.

Therefore with the HMM embedding given in (4.4.7) and (4.4.8) and Proposition 4.3.5,

for HSMMs with negative binomial durations we can compute the HSMM messages in

time O(TN2 + TNR), where R = maxi r(i). This message passing computation avoids

the quadratic dependence on T necessary for generic HSMM messages.
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This embedding is not unique; indeed, it can be checked that another valid HMM

embedding is given by choosing

Ā(i) =

0

B

B

B

@

p(i) (1 � p(i))(1 � (1 � p(i))r
(i)

)
. . .

. . .

p(i) (1 � p(i))(1 � (1 � p(i))2)
p(i)

1

C

C

C

A

(4.4.15)

b̄(i) =

0

B

B

B

@

(1 � p(i))r
(i)

...
(1 � p(i))2

1 � p(i)

1

C

C

C

A

c̄(i) =

0

B

B

@

1
1

C

C

A

(4.4.16)

As we describe in Section 4.5.2, with respect to the HSMM forward message recursions

these two alternative HMM embeddings for negative binomial durations are analogous

to LTI realizations in observable canonical form and controllable canonical form, re-

spectively.

⌅ 4.4.2 Gibbs sampling

Here we show how the HMM embedding for HSMMs with negative binomial durations

can be used to construct an HSMM (or weak limit HDP-HSMM) Gibbs sampler. Un-

like the corresponding Gibbs sampler developed for HSMMs with arbitrary duration

distributions in Chapter 3, the time complexity of each iteration of this Gibbs sampler

scales only linearly in T , requiring O(TN2 + TNR) time for each update instead of

O(TN2 + T 2N).

We describe the resampling steps for both the HSMM label sequence and the neg-

ative binomial parameters; the other sampling updates to the observation parameters,

transition matrix, and initial state distribution are performed as in Section 3.4. We

place priors of the form p(r(i), p(i)) = p(r(i))p(p(i)) over the negative binomial parame-

ters for each 1, 2, . . . , N . In particular, we choose the prior over each r(i) to be a generic

distribution with finite support {1, 2, . . . , rmax} and parameter ⌫ 2 RN
+ , writing the

PMF as

p(r|⌫) / exp
n

ln ⌫T
r

o

r = 1, 2, . . . , rmax (4.4.17)

where r denotes an indicator vector of length N with its rth entry set to 1 and its

others set to 0. We place beta priors over each p(i) with parameters (a, b), writing
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p(p|a, b) = Beta(a, b) = exp {(a � 1) ln(p) + (b � 1) ln(1 � p) � ln B(a, b)} (4.4.18)

for p 2 (0, 1), where B(a, b) is the beta function defined by

B(a, b) =

Z 1

0
ta�1(1 � t)b�1 dt. (4.4.19)

Resampling the label sequence x1:T . Using the sampled values of each (r(i), p(i)) and

the other HSMM parameters, as outlined in the previous section we can use the HMM

embedding given in (4.4.7)-(4.4.8) and the message passing recursions given in Propo-

sition 4.3.5 to compute the HSMM backward messages in time O(TN2 +TNR). Using

the HSMM backward messages and the forward sampling algorithm given in Section

3.4.1, we can then construct a block sample of the label sequence x1:T in time O(TN).

These steps require a total of O(TN + NR) memory to compute.

Resampling the negative binomial parameters (r(i), p(i)). To derive a sampling update

for the negative binomial parameters (r(i), p(i)) for each state i = 1, 2, . . . , N given the

sampled label sequence x1:T , we first denote the set of durations of label i in the label

sequence by {dk}Dk=1, where D is the number of times HSMM state i is entered in the

label sequence and we drop the explicit index i from the notation. Then the task is

then to sample (r(i), p(i)) conditioned on the {dk} and the hyperparameters a, b, and ⌫.

Suppressing explicit conditioning on hyperparameters from the notation, we can

generate such a sample by first sampling r(i)|{dk} and then sampling p(i)|r(i), {dk}. We

can sample r(i)|{dk} according to the PMF

p(r|{dk}) /
Z

p(r)p(p)p({dk}|r, p) dp (4.4.20)

= p(r)
D
Y

k=1

✓

dk + r � 2

dk � 1

◆

✓

1

B(a, b)

Z

exp
n

(a +
PD

k=1dk) ln(p) + (b + rD) ln(1 � p)
o

dp

◆

(4.4.21)

= ⌫r

D
Y

k=1

✓

dk + r � 2

dk � 1

◆

0

@

B
⇣

a +
PD

k=1 dk, b + rD
⌘

B(a, b)

1

A (4.4.22)

for r = 1, 2, . . . , rmax, where we have used the fact that, for each fixed r, the Beta prior
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on p is conjugate to the negative binomial likelihood. Using each sampled value r̂(i) of

r(i), we can then sample p(i) according to

p(p|{dk}, r = r̂(i)) = Beta

 

a +
D
X

i=1

di, b + r̂(i)D

!

. (4.4.23)

Thus, using Eqs. (4.4.22) and (4.4.23) we can resample the negative binomial parameters

(r(i), p(i)) for each HSMM state i, completing the Gibbs sampler.

Note that by resampling the negative binomial parameters r(i) we are e↵ectively

performing inference over the size of the HMM embedding given in Section 4.4.1, which

we only use to compute the HSMM messages during the resampling step for the label

sequence x1:T . Thus, unlike the ESHMM approach discussed in Section 4.2, we can

learn a much broader class of duration distributions than those corresponding to only

fixed r(i) parameters while maintaining e�cient message passing.

In Chapter 6, we extend the ideas used to derive this Gibbs sampling algorithm to

construct a scalable mean field inference algorithm for which approximate updates can

also be computed in time linear in the sequence length T .

⌅ 4.4.3 HMM embeddings for negative binomial mixtures

Here we show how to generalize the HMM embedding for negative binomial durations

to an HMM embedding for durations that are mixtures of negative binomials.

Suppose that the duration distribution for HSMM state i has the PMF

p(d|⇢, r, p) =
K(i)
X

j=1

⇢(i,j)
✓

r(i,j) + d � 2

d � 1

◆

(1 � p(i,j))
r(i,j)

p(i,j)
d�1

(4.4.24)

for mixture weights ⇢(i,j) and negative binomial parameters r(i,j) and p(i,j), with j =

1, 2, . . . , K(i) where K(i) is the number of mixture components. Then we can choose

the embedding

Ā(i) =

0

B

B

B

@

Ā(i,1)

Ā(i,2)

. . .

Ā(i,K(i))

1

C

C

C

A

b̄(i) =

0

B

B

B

@

b̄(i,1)

b̄(i,2)

...

b̄(i,K
(i))

1

C

C

C

A

c̄(i) =

0

B

B

B

@

c̄(i,1)

c̄(i,2)

...

c̄(i,K
(i))

1

C

C

C

A

(4.4.25)

where



Sec. 4.5. Generalizations via LTI system realization 93

Ā(i,j) =

0

B

B

B

@

p(i,j) 1 � p(i,j)

. . .
. . .

p(i,j) 1 � p(i,j)

p(i,j)

1

C

C

C

A

b̄(i,j) =

0

B

B

B

B

@

1 � p(i,j)

1

C

C

C

C

A

c̄(i,j) = ⇢(i,j)

0

B

B

B

@

Binom(r(i,j) � 1|r(i,j) � 1, p(i,j))
Binom(r(i,j) � 2|r(i,j) � 1, p(i,j))

...
Binom(0|r(i,j) � 1, p(i,j))

1

C

C

C

A

. (4.4.26)

That is, we can construct an embedding for any mixture model by a simple composi-

tion of embeddings, where the entrance probabilities c̄(i,j) are weighted by the mixture

weights ⇢(i,j).

The time complexity for message passing in this HMM embedding is O(TNR +

TN2) where now R = maxi
P

j r(i,j). The memory complexity is only O(TN + RN)

because, as with the other HMM embeddings, we do not need to store the corresponding

HMM messages. Gibbs sampling updates can be performed using standard methods

for mixture models [11].

⌅ 4.5 Generalizations via LTI system realization

In this section we extend the notion of HMM embedding of HSMMs developed in

Section 4.3 to a notion of LTI realization of HSMMs. The contributions in this section

are primarily of theoretical interest, though the framework we develop here may lead

to e�cient HSMM message passing for a greater variety of duration models or to new

approximation schemes. In addition, by making connections to LTI systems and positive

realization theory, we show the limits of such methods by giving both an example of

a duration distribution that can be represented e�ciently as an LTI realization but

not an HMM embedding as well as an example of a duration distribution that has no

e�cient representation of either kind.

The remainder of this section is organized as follows. In Section 4.5.1 we review

basic definitions and results from LTI system realization theory. In Section 4.5.2 we

develop a definition of LTI realizations of HSMMs and show some basic results, including

examples that show the limitations of such an approach to HSMM message passing.

We also show that HMM embeddings correspond to (normalized) positive realizations,

which are more constrained than general LTI realizations.
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⌅ 4.5.1 LTI systems and realizations

In this section we review some basic definitions and state some results from linear

system theory [86] and positive linear system theory [8, 25]. We use these definitions

and results to define LTI realizations of HSMMs in Section 4.5.2.

We consider discrete-time, single-input single-output (SISO) linear systems of the

form2:

zt+1 = Āzt + b̄ut z0 = 0

wt = c̄Tzt t = 0, 1, 2, . . . (4.5.1)

for input signals u, output signals w, and internal state sequence z. We call the triple

(Ā, b̄, c̄) the parameters of the LTI system, where A is a K ⇥ K matrix and b and c

are vectors of length K for some 0 < K < 1. Note that the impulse response of the

system can be expressed in terms of the parameters as c̄TĀt�1b̄ for t = 1, 2, . . . and the

transfer function of the system is c̄T(zI � Ā)�1b̄ for z 2 C.

Definition 4.5.1 (LTI realization). Given an impulse response ht with h0 = 0, we say

a system of the form (4.5.1) is an LTI realization of ht if ht = c̄TĀt�1b̄ for t = 1, 2, . . . .

Theorem 4.5.2. An impulse response ht has an LTI realization of the form (4.5.1) if

and only if the corresponding transfer function H(z) =
P1

t=1 htz�t is a strictly proper

rational function of z.

Definition 4.5.3 (Positive realization [8]). An LTI realization is a positive realization

if for all nonnegative input signals the output signal and internal state sequence are

nonnegative, i.e. if 8t ut � 0 =) 8t wt, zt � 0, where zt � 0 is taken entrywise.

Theorem 4.5.4 (Theorem 1 [8]). A realization (Ā, b̄, c̄) is a positive realization if and

only if Ā, b̄, c̄ � 0 entrywise.

As we make precise in the next subsection, HMM embeddings of HSMMs correspond

to positive realizations that are also normalized, in the sense that (4.3.9) is required to

be row-stochastic.

Definition 4.5.5 (Canonical realizations). We say an LTI system of the form (4.5.1)

is in controllable canonical form if the parameters (Ā, b̄, c̄) have the form

2We use zt to denote the system’s internal state and wt to denote its output to avoid confusion with
the HSMM label and observation sequences x

1:T and y

1:T , respectively.
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Ā =

0

B

B

B

B

B

@

a1 a2 · · · aK�1 aK
1

1
. . .

1

1

C

C

C

C

C

A

b̄ =

0

B

B

B

B

@

1
1

C

C

C

C

A

c̄ =

0

B

B

B

B

B

@

c1
c2
...

cK�1

cK

1

C

C

C

C

C

A

(4.5.2)

and we say it is in observable canonical form if the parameters have the form

Ā =

0

B

B

B

B

B

@

a1 1
a2 1
...

. . .

aK�1 1
aK

1

C

C

C

C

C

A

b̄ =

0

B

B

B

B

B

@

b1
b2
...

bK�1

bK

1

C

C

C

C

C

A

c̄ =

0

B

B

B

B

@

1
1

C

C

C

C

A

. (4.5.3)

We note that it is always possible to write LTI realizations of impulse responses corre-

sponding to strictly proper rational transfer functions in these two canonical forms.

⌅ 4.5.2 LTI realizations of HSMMs

To motivate the definition of LTI realizations of HSMMs, we start from the definition of

HMM embeddings developed in Section 4.3 and show that we can relax the requirement

that the embedding parameters Ā(i), b̄(i), and c̄(i) be nonnegative and normalized. In

particular, note that using the representation (4.3.7) and Proposition 4.3.5, we can

write the HSMM forward messages recursion as

Ft+1,i =
N̄(i)
X

j=1

b̄(i)j F̄t,(i,j)p(yt+1|✓(i)) F ⇤
t+1,i =

N
X

j=1

Ft+1,iAji (4.5.4)

F̄t+1,(i,j) =
N(i)
X

k=1

Ā(i)
kj F̄t,(i,j)p(yt+1|✓(i)) + c̄(i)j F ⇤

t+1,i F̄1,(i,j) = ⇡(0)
i c̄(i)j . (4.5.5)

These recursions can be represented as an interconnection of linear systems as shown

in Figure 4.1. The system labeled A simply applies right-multiplication by the HSMM

transition matrix A to its input vector. The block labeled by z�1 denotes a delay block

applied to each of its N inputs. Finally, the systems labeled D(i,t) are the single-input

single-output linear time-varying systems defined by
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...

Az�1

F ⇤
t,1

F ⇤
t,2

F ⇤
t,N

D(1,t)

D(2,t)

D(N,t)

F
t+1,1

F
t+1,2

F
t+1,N

Figure 4.1: A block diagram showing interconnected linear systems corresponding to
the forward HSMM message passing recursions in (4.5.4)-(4.5.5). The block labeled z�1

denotes a delay block. F
t,i

and F ⇤
t,i

are the standard HSMM forward messages. Note
that the inputs and outputs of the blocks labeled z�1 and A are vectors of length N ,
while the blocks labeled D(i,t) operate on each component of the vector.

zt+1 = Ā(i,t)zt + b̄(i,t)ut z0 = 0

wt = c̄(i)Tzt t = 0, 1, 2, . . . . (4.5.6)

for input signal u and output signal w, where

Ā(i,t) = p(yt|✓(i))Ā(i) b̄(i,t) = p(yt|✓(i))b̄(i). (4.5.7)

The corresponding recursion for the backward messages can be represented similarly.

While the linear systems defined in (4.5.6) are time-varying, as we show in the next

lemma to understand when any two such systems yield the same HSMM messages it

su�ces to compare two corresponding LTI systems.

Lemma 4.5.6. Let (Ā, b̄, c̄) and (Ā0, b̄0, c̄0) be two LTI systems and let dt 6= 0 be any

signal that is nonzero everywhere. The LTI systems have the same impulse response if

and only if the corresponding time-varying systems of the form

zt+1 = dt(Āzt + b̄ut) z0t+1 = dt(Ā
0zt + b̄0ut) (4.5.8)

wt = c̄Tzt w0
t = c̄0Tz0t, (4.5.9)
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with z0 = 0 and z00 = 0, yield the same output signal w = w0 given the same input signal

u.

Proof. Because the time-varying systems are linear, we can write [20] the outputs w

and w0 as linear functions of the input u:

wt =
t�1
X

`=0

d(t, `)c̄TĀt�`�1b̄u` w0
t =

t�1
X

`=0

d(t, `)c̄0TĀ0t�`�1b̄0u` (4.5.10)

where d(t, `) =
Qt

k=` dk. If we consider inputs of the form u` = �(k � `) for some k,

where �(k) is 1 if k is 0 and 0 otherwise, we see that the outputs wt and w0
t are equal for

all such inputs if and only if the terms in each sum are equal for each `. However, these

terms are equal if and only if we have c̄TĀt�1b̄ = c̄0TĀ0t�1b̄0 for all t = 1, 2, . . ..

Using Lemma 4.5.6, the following proposition gives a characterization of the pa-

rameters (Ā, b̄, c̄) that, when used in the recursions (4.5.4)-(4.5.5), compute the correct

HSMM messages. This proposition is analogous to Proposition 4.3.3 except it does not

require that the realization parameters be entrywise nonnegative or normalized, in the

sense that (4.3.9) need not be row-stochastic; it only constrains the system’s impulse

response and not its parameters or internal state.

Proposition 4.5.7. Let (A, ✓, ⇡(0), #) be an HSMM with N states and let (Ā(i), b̄(i), c̄(i))

be any (not necessarily positive) linear system for each i = 1, 2, . . . , N . If the impulse

response of each system satisfies

c̄(i)T
⇣

Ā(i)
⌘d�1

b̄(i) = p(d|#(i)) d = 1, 2, . . . , T � 1, (4.5.11)

c̄(i)T
⇣

Ā(i)
⌘T�1

b̄(i) = p(d � T |#(i)) (4.5.12)

then using these systems in the recursions (4.5.4)-(4.5.5) yields the correct HSMM mes-

sages.

Proof. If each linear system satisfies (4.5.11)-(4.5.12), then the first T values of the

impulse response of each system equal the first T values of the impulse response for

the HMM embedding of Example 4.3.2. Since the impulse responses are the same, by

Lemma 4.5.6 they yield the same HSMM messages when used in the recursions (4.5.4)-

(4.5.5). Therefore the linear systems (Ā(i), b̄(i), c̄(i)) yield the correct HSMM messages.

Proposition 4.5.7 motivates the following definition of an LTI realization of an

HSMM, which is strictly more general than the definition of HMM embedding be-
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cause it allows for parameters (Ā(i), b̄(i), c̄(i)) that are not necessarily nonnegative and

normalized and hence cannot necessarily be interpreted as encoding HMM transition

probabilities.

Definition 4.5.8 (LTI realization of an HSMM). Given an HSMM (A, ✓, ⇡(0), #) on N

states and an observation sequence length T , an LTI realization of the HSMM is a set

of N LTI systems of the form 4.5.1 with parameters (Ā(i), b̄(i), c̄(i)) for i = 1, 2, . . . , N

such that

c̄(i)TĀ(i)d�1b̄(i) = p(d|#(i)) d = 1, 2, . . . , T � 1, (4.5.13)

c̄(i)T
⇣

Ā(i)
⌘T�1

b̄(i) = p(d � T |#(i)). (4.5.14)

This definition generalizes the class of representations which can yield e�cient

HSMM message passing and provides connections to LTI system realization theory.

In particular, it makes clear that HMM embeddings correspond to positive realizations

of the duration PMF (which are also normalized in the sense that (4.3.9) must also be

row-stochastic), for which the internal system state is required to remain nonnegative

(and real) for all nonnegative inputs. Definition 4.5.8 removes this requirement of in-

ternal nonnegativity, and thus broadens the scope of such e�cient representations from

positive realizations to general LTI realizations. In particular, the internal state of an

LTI system is not required to remain nonnegative or even real-valued.

While this definition is primarily of theoretical interest for the purposes of this

chapter, the connection to system realization theory may allow for new algorithms and

approximation schemes for HSMM message passing. There are also immediate compu-

tational advantages: by showing that the LTI system parameters need not correspond

to HMM transition probabilities, it is clear that one can parameterize the system so that

each matrix Ā(i) is in bidiagonal Jordan form, and hence the overall HSMM message

passing complexity reduces from O(TN2 + TNK2
max) to O(TN2 + TNKmax + K3

max),

where Kmax denotes the size of the largest matrix Ā(i). This bidiagonalization is not

possible with HMM embeddings because HMM transition matrices may have negative

and even complex-valued eigenvalues in general.

Definition 4.5.8 also leads to a natural interpretation of the alternative forms of

generic HMM embeddings given in Examples 4.3.2 and 4.3.4, as well as the alternative

forms of the negative binomial HMM embedding given in Section 4.4. In each of these

pairs of alternative embeddings either b̄(i) or c̄(i) is chosen to be an indicator vector,

having a single nonzero entry. While these realizations are not precisely in control-

lable and observable canonical forms because the structure of the corresponding Ā is

not in canonical form, the structures of b̄(i) and c̄(i) are analogous to those given in
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Definition 4.5.5.

We conclude this section with some examples that use the connection to LTI and

positive realization theory to show the limits of both HMM embeddings and LTI real-

izations for constructing e�cient HSMM message passing recursions.

Example 4.5.9. The Poisson distribution has PMF given by p(d|�) = �d�1

(d�1)!e
�� for

a parameter � > 0 and d = 1, 2, . . .. Its probability generating function (PGF) can be

written as
P

d�1 p(d|�)zd = e��(1�z). Since its PGF is irrational, by Theorem 4.5.2

there is no finite LTI realization or HMM embedding of an HSMM with Poisson duration

distributions.3

Example 4.5.10. Adapting Example 4 of Benvenuti and Farina [8], consider a duration

distribution with PMF given by

p(d| ) =
1

Z
(1 + cos[(d � 1) ])e�d d � 1 (4.5.15)

for some  2 R and a normalization constant Z. As shown in Benvenuti and Farina

[8], this duration distribution has an LTI realization with parameters

Ā = e�1

0

@

cos sin 0
� sin cos 0

0 0 1

1

A b̄ =
e�1

Z

0

@

1
1
1

1

A c̄ =

0

@

0.5
0.5
0.5

1

A (4.5.16)

but, when  /⇡ is irrational, it has no finite positive realization. Therefore an HSMM

with such duration distributions has a finite LTI realization but no finite HMM embed-

ding.

⌅ 4.6 Summary

In this chapter we developed a general framework of HMM embeddings for HSMMs

and showed how to compute HSMM messages using HMM embeddings. The main

practical contribution, which we use in both Chapters 5 and 6, is the construction of

an HMM embedding for HSMMs with negative binomial duration distributions. Using

this HMM embedding, we showed how to compute HSMM messages in time that scales

only linearly with the observation sequence length, and we also derived a complete

Gibbs sampler for such HSMMs. The HMM embedding also generalizes to HSMMs

with duration distributions that are mixtures of negative binomial distributions.

3While there is no finite LTI realization or HMM embedding for all possible sequence lengths T , the
generic embedding of Example 4.3.2, in which the number of pseudostates must grow with T and thus
message passing complexity is quadratic in T , is always possible.
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As a theoretical contribution, we also provided a definition of LTI realizations of

HSMMs which is a strict generalization of the notion of HMM embeddings. This gen-

eralization may allow for the e�cient computation of HSMM messages for a greater

variety of duration distributions, and the connections to LTI realization theory may

provide a basis for finding e�cient approximation algorithms for message passing.


