
Chapter 5

Stochastic Variational Inference for
HMMs, HSMMs, and

Nonparametric Extensions

Hierarchical Bayesian time series models can be applied to complex data in many do-

mains, including data arising from behavior and motion [32, 33], home energy con-

sumption [60], physiological signals [69], single-molecule biophysics [71], brain-machine

interfaces [54], and natural language and text [44, 70]. However, for many of these

applications there are very large and growing datasets, and scaling Bayesian inference

in rich hierarchical models to these large datasets is a fundamental challenge.

Many Bayesian inference algorithms, including standard Gibbs sampling and mean

field algorithms, require a complete pass over the data in each iteration and thus do not

scale well. In contrast, some recent Bayesian inference methods require only a small

number of passes [52] and can even operate in the single-pass or streaming settings [15].

In particular, stochastic variational inference (SVI) [52] provides a general framework

for scalable inference based on mean field and stochastic gradient descent. However,

while SVI has been studied extensively for topic models [53, 115, 17, 114, 92, 52], it has

not been applied to time series.

In this chapter, we develop SVI algorithms for the core Bayesian time series models

of this thesis, namely the hidden Markov model (HMM) and hidden semi-Markov model

(HSMM), as well as their nonparametric extensions based on the hierarchical Dirichlet

process (HDP), the HDP-HMM and HDP-HSMM. Both the HMM and HDP-HMM are

ubiquitous in time series modeling, and so the SVI algorithms developed here are widely

applicable. However, as discussed in the previous chapter, general HSMM inference

subroutines have time complexity that scales quadratically with observation sequence

length, and such quadratic scaling can be impractical even in the setting of SVI. To

address this shortcoming, we use the methods developed in Chapter 4 for Bayesian

inference in (HDP-)HSMMs with negative binomial durations to provide approximate
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Algorithm 5.1 Stochastic gradient ascent

Initialize �(0)

for t = 1, 2, . . . do
k̂(t)  sample Uniform({1, 2, . . . , K})

�(t)  �(t�1) + ⇢(t)KG(t)r�g(�(t�1), ȳ(k̂
(t)))

SVI updates with time complexity that scales only linearly with sequence length.

In Section 5.1 we briefly review the basic ingredients of SVI. In Section 5.2, we derive

SVI updates for (finite) HMMs and HSMMs, and in Section 5.3 we apply the methods

derived in Chapter 4 to derive faster SVI updates for HSMMs with negative binomial

durations. Finally, in Section 5.4 we extend these algorithms to the nonparametric

HDP-HMM and HDP-HSMM.

⌅ 5.1 Stochastic variational inference

In this section we summarize the general stochastic variational inference (SVI) frame-

work developed in Ho↵man et al. [52]. SVI involves performing stochastic gradient

optimization on a mean field variational objective, so we first review basic results on

stochastic gradient optimization and next provide a derivation of the form of the nat-

ural gradient of mean field objectives for complete-data conjugate models. We use the

notation defined in Sections 2.3.2 and 2.4.2 throughout.

⌅ 5.1.1 Stochastic gradient optimization

Consider the optimization problem

arg max
�

f(�, ȳ) where f(�, ȳ) =
K
X

k=1

g(�, ȳ(k)) (5.1.1)

and where ȳ = {ȳ(k)}Kk=1 is a fixed dataset. Using the decomposition of the objective

function f , if k̂ is sampled uniformly over {1, 2, . . . , K}, we have

r�f(�) = K
K
X

k=1

1

K
r�g(�, ȳ(k)) = K · Ek̂

h

r�g(�, ȳ(k̂))
i

. (5.1.2)

Thus we can generate approximate gradients of the objective f using only one ȳ(k) at

a time. A stochastic gradient ascent algorithm for a sequence of stepsizes ⇢(t) and a

sequence of positive definite matrices G(t) is given in Algorithm 5.1.

From classical results in stochastic optimization [93, 14], if the sequence of stepsizes
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z(k) y(k)

k = 1, 2, . . . , K

�

Figure 5.1: Prototypical graphical model for stochastic variational inference (SVI).
The global latent variables are represented by � and the local latent variables by z(k).

satisfies
P1

t=1 ⇢(t) = 1 and
P1

t=1(⇢
(t))2 < 1 and each G(t) has uniformly bounded

eigenvalues, then the algorithm converges to a local optimum, i.e. �⇤ , limt!1 �(t)

satisfies r�f(�⇤, ȳ) = 0 with probability 1. If ȳ is a large dataset, then each update

in a stochastic gradient algorithm only operates on one ȳ(k), or minibatch, at a time;

therefore, stochastic gradient algorithms can scale to the large-data setting. To make a

single-pass algorithm, the minibatches can be sampled without replacement. The choice

of stepsize sequence can significantly a↵ect the performance of a stochastic gradient

optimization algorithm. There are automatic methods to tune or adapt the sequence

of stepsizes [104, 92], though we do not discuss them here.

SVI uses a particular stochastic gradient ascent algorithm to optimize a mean field

variational Bayesian objective over large datasets ȳ, as we review next.

⌅ 5.1.2 Stochastic variational inference

Using the notation of Section 2.3.2, given a probabilistic model of the form

p(�, z, y) = p(�)
K
Y

k=1

p(z(k)|�)p(y(k)|z(k), �) (5.1.3)

that includes global latent variables �, local latent variables z = {z(k)}Kk=1, and observa-

tions y = {y(k)}Kk=1, the mean field problem is to approximate the posterior p(�, z|ȳ) for

fixed data ȳ with a distribution of the form q(�)q(z) = q(�)
Q

k q(z(k)) by finding a local

minimum of the KL divergence from the approximating distribution to the posterior

or, equivalently, finding a local maximum of the marginal likelihood lower bound

L , Eq(�)q(z)



ln
p(�, z, ȳ)

q(�)q(z)

�

 p(ȳ). (5.1.4)

SVI optimizes the objective (5.1.4) using a stochastic natural gradient ascent algorithm

over the global factors q(�). See Figure 5.1 for a graphical model.

Gradients of L with respect to the parameters of q(�) have a convenient form if we
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assume the prior p(�) and each complete-data likelihood p(z(k), y(k)|�) are a conjugate

pair of exponential family densities. That is, if we have

ln p(�)=h⌘�, t�(�)i � Z�(⌘�) (5.1.5)

ln p(z(k), y(k)|�)=h⌘zy(�), tzy(z
(k), y(k))i�Zzy(⌘zy(�)) (5.1.6)

then conjugacy identifies the statistic of the prior with the natural parameter and log

partition function of the likelihood via t�(�) = (⌘zy(�), �Zzy(⌘zy(�)), so that

p(�|z(k), ȳ(k)) / exp{h⌘� + (tzy(z(k), ȳ(k)), 1), t�(�)i}. (5.1.7)

Conjugacy implies the optimal q(�) has the same form as the prior; that is, without loss

of generality we have q(�) = exp {he⌘�, t�(�)i � Z�(e⌘�)} for some variational parameter

e⌘�.

Given this structure, we can find a simple expression for the gradient of L with

respect to the global variational parameter e⌘�. To simplify notation, we write t(z, ȳ) ,
PK

k=1(tzy(z
(k), ȳ(k)), 1), e⌘ , e⌘�, ⌘ , ⌘�, and Z , Z�. Then we have

L = Eq(�)q(z) [ln p(�|z, ȳ) � ln q(�)] + const. (5.1.8)

= h⌘ + Eq(z)[t(z, ȳ)], rZ(e⌘)i � (he⌘, rZ(e⌘)i�Z(e⌘)) + const. (5.1.9)

where the constant term does not depend on e⌘ and where we have used the exponential

family identity Eq(�) [t�(�)] = rZ(e⌘) from Proposition 2.2.2. Di↵erentiating over e⌘, we

have

re⌘L =
�r2Z(e⌘)

� �

⌘ + Eq(z)[t(z, ȳ)] � e⌘� . (5.1.10)

The factor r2Z(e⌘) is the Fisher information of the prior p(�) and, because the prior and

variational factor are in the same exponential family, it is also the Fisher information

of the global variational factor q(�). The natural gradient ere⌘ can be defined in terms

of the gradient [52] via ere⌘ ,
�r2Z(e⌘)

��1 re⌘, and so we have

ere⌘L =
�

⌘ + Eq(z)[t(z, ȳ)] � e⌘� . (5.1.11)

Expanding q(z) =
QK

i=1 q(z(k)) and t(z, ȳ) ,PK
k=1(tzy(z

(k), ȳ(k)), 1) we can write

ere⌘L =

 

⌘ +
K
X

k=1

Eq(z(k))[t(z
(k), ȳ(k))] � e⌘

!

(5.1.12)

and so the natural gradient decomposes into local terms as required for stochastic
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Algorithm 5.2 Stochastic Variational Inference (SVI)

Initialize global variational parameter e⌘(1)�

for t = 1, 2, . . . do
k̂  sample Uniform({1, 2, . . . , K})

q⇤(z(k̂)) LocalMeanField(e⌘(t), ȳ(k̂)), e.g. Eq. (5.1.14)

e⌘(t+1)
�  (1� ⇢(t))e⌘(t)� + ⇢(t)

⇣

⌘� + s · E
q⇤(z(ˆk))

h

t(z(k̂), ȳ(k̂))
i⌘

gradient optimization in (5.1.2).

Therefore a stochastic natural gradient ascent algorithm on the global variational

parameter e⌘� proceeds at iteration t by sampling a minibatch ȳ(k) and taking a step of

some size ⇢(t) in an approximate natural gradient direction via

e⌘�  (1� ⇢(t))e⌘� + ⇢(t)
⇣

⌘� + s · Eq⇤(z(k))[t(z
(k), ȳ(k))]

⌘

(5.1.13)

where q⇤(x1:T ) is defined below and where s scales the stochastic gradient update on

the minibatch to represent the full size of the dataset; that is, if k is sampled uniformly

and we use |y| and |y(k)| to denote the sizes of the dataset and minibatch, respectively,

we have s = |y|/|y(k)|. In each step we find the optimal local factor q⇤(z(k)) using the

standard mean field update from Proposition 2.3.3 and the current value of q(�), i.e. we

compute:

q⇤(z(k)) / exp
n

Eq(�)[ln p(z(k)|�)p(ȳ(k)|z(k), �)]
o

. (5.1.14)

We summarize the general SVI algorithm in Algorithm 5.2.

⌅ 5.2 SVI for HMMs and HSMMs

In this section we apply SVI to both HMMs and HSMMs and express the SVI updates

in terms of HMM and HSMM messages. For notational simplicity, we consider a dataset

of K sequences each of length T , written ȳ = {ȳ(k)1:T }Kk=1, and take each minibatch to be

a single sequence written simply ȳ1:T , suppressing the minibatch index k for simplicity.

We also assume all sequences have the same initial state distribution ⇡(0).

⌅ 5.2.1 SVI update for HMMs

Recall from Section 2.4 that a Bayesian HMM with N states defines a joint distribution

over an initial state distribution ⇡(0), a row-stochastic transition matrix A, observation

parameters ✓ = {✓i}Ni=1, and K hidden state sequences x(k)
1:T and observation sequences

y(k)1:T for k = 1, 2, . . . , K. We use ⇡(i) to denote the ith row of A (i = 1, 2, . . . , N) and

⇡ = {⇡i}Ni=0 to collect the transition rows and the initial state distribution. When
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convenient, we use the alternative notations p(⇡) = p(⇡(0))p(A) =
QN

i=0 p(⇡(i)) to

denote the distribution over the initial state distribution and transition matrix and

p(✓) =
QN

i=1 p(✓(i)) to denote the distribution over the observation parameters. The

joint density for a Bayesian HMM is then

p(⇡(0))p(A)p(✓)
K
Y

k=1

p(x(k)
1:T , y(k)1:T |⇡(0), A, ✓). (5.2.1)

In terms of the notation in Section 5.1.2, the global variables are the HMM parame-

ters and the local variables are the hidden states; that is, � = (A, ⇡(0), ✓) and z = x1:T .

To derive explicit conjugate updates, we assume the observation model is conjugate

in that (p(✓(i)), p(y|✓(i))) is a conjugate pair of exponential family densities for each

i = 1, 2, . . . , N and write

p(⇡(i)) = p(⇡(i)|↵(i)) = Dir(↵(i)) i = 0, 1, . . . , N (5.2.2)

p(✓(i)) = p(✓(i)|⌘(i)✓ ) = exp{h⌘(i)✓ , t(i)✓ (✓(i))i � Z(i)
✓ (⌘(i)✓ )} i = 1, 2, . . . , N (5.2.3)

p(yt|✓(i)) = exp{ht(i)✓ (✓(i)), (t(i)y (yt), 1)i} i = 1, 2, . . . , N. (5.2.4)

Correspondingly the variational family is q(⇡)q(A)q(✓)
QK

k=1 q(x(k)
1:T ) with

q(⇡(i)) = q(⇡(i)|e↵(i)) = Dir(e↵(i)) i = 0, 1, . . . , N (5.2.5)

q(✓(i)) = q(✓(i)|e⌘(i)✓ ) = exp{he⌘(i)✓ , t(i)✓ (✓(i))i � Z(i)
✓ (e⌘(i)✓ )} i = 1, 2, . . . , N. (5.2.6)

That is, each variational factor is in the same (conjugate) prior family as the corre-

sponding factor in the joint distribution p. Therefore we wish to optimize over the

variational parameters for the initial state distribution e↵(0), the variational parameters

for the transition distribution e↵(i) (i = 1, 2, . . . , N), and the variational parameters for

the observation parameter distributions e⌘✓.

At each iteration of the SVI algorithm we sample a sequence ȳ1:T from the dataset

and perform a stochastic gradient step on q(A)q(⇡(0))q(✓) of some size ⇢. To compute

the gradient, we collect expected su�cient statistics with respect to the optimal factor

for q(x1:T ), which in turn depends on the current value of q(A)q(⇡(0))q(✓). Recall from

Section 2.4.2 that we define

e⇡(i) , Eq(⇡)

h

ln ⇡(i)
i

eLij , Eq(✓)

h

ln p(ȳt|✓(i))
i

(5.2.7)
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Algorithm 5.3 HMM SVI

Initialize global variational parameters e⌘(i)✓ , e↵(i), and e↵(0)

for t = 1, 2, . . . do
Sample minibatch index k̂ uniformly from {1, 2, . . . , K}
Using minibatch ȳ(k̂), compute each t̂(i)y , t̂(i)trans, and t̂(i)init

with Eqs. (5.2.8)-(5.2.10)

Update each e⌘(i)✓ , e↵(i), and e↵(0)

with Eqs. (5.2.11)-(5.2.13)

and collect the e⇡(i) into a matrix eA, where the ith row of eA is e⇡(i). Then using the

HMM messages F and B defined in Section 2.4 we write the expected statistics as

t̂(i)y , Eq(x
1:T )

T
X

t=1

I[xt = i]t(i)y (ȳt) =
T
X

t=1

Ft,iBt,i · (t(i)y (ȳt), 1)/Z (5.2.8)

(t̂(i)trans)j , Eq(x
1:T )

T�1
X

t=1

I[xt = i, xt+1 = j] =
T�1
X

t=1

Ft,i
eAi,j

eLt+1,jBt+1,j/Z (5.2.9)

(t̂init)i , Eq(x
1:T )I[x1 = i] = e⇡0B1,i/Z (5.2.10)

where I[ · ] is 1 if its argument is true and 0 otherwise and Z is the normalizer Z ,
PN

i=1 FT,i.

With these expected statistics, taking a natural gradient step in the parameters of

q(A), q(⇡0), and q(✓) of size ⇢ is

e⌘✓
(i)  (1� ⇢) e⌘✓

(i) + ⇢(⌘(i)✓ + s · t̂(i)y ) (5.2.11)

e↵(i)  (1� ⇢)e↵(i) + ⇢(↵(i) + s · t̂(i)trans) (5.2.12)

e↵(0)  (1� ⇢)e↵(0) + ⇢(↵(0) + s · t̂(i)init) (5.2.13)

where s = |ȳ|/|ȳ(k)| scales the minibatch gradient to represent the full dataset, as in

Section 5.1. When the dataset comprises K sequences where the length of sequence k

is T (k), we have s = (
PK

k0=1 T (k0))/T (k).

We summarize the overall algorithm in 5.3.

⌅ 5.2.2 SVI update for HSMMs

The SVI updates for the HSMM are similar to those for the HMM with the addition of

a duration update, though expressing the expected su�cient statistics in terms of the
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HSMM messages is substantially di↵erent. The form of these expected statistics follows

from the HSMM E-step [78, 54].

To derive explicit updates, we assume the duration prior and likelihood are a con-

jugate pair of exponential families. Writing the duration parameters as # = {#(i)}Ni=1,

we can write the prior, variational factor, and likelihood up to proportionality as

p(#(i)) / exp{h⌘(i)# , t(i)# (#(i))i}, (5.2.14)

p(d|#(i)) = exp{ht(i)# (#(i)), (td(d), 1)i}, (5.2.15)

q(#(i)) / exp{he⌘(i)# , t(i)# (#(i))i}. (5.2.16)

Using the HSMM messages (F, F ⇤) and (B, B⇤) with eL and eA from the previous section,

we can write

(t̂(i)trans)j , Eq(x
1:T )

T�1
X

t=1

[xt = i, xt+1 = j, xt 6= xt+1] (5.2.17)

=
T�1
X

t=1

Ft,iB
⇤
t,j

eAi,j/Z (5.2.18)

where Z is the normalizer Z , PN
i=1 B⇤

0,ie⇡
(0)
i .

To be written in terms of the HSMM messages the expected label sequence indicators

[xt = i] must be expanded to

[xt = i] =
X

⌧<t

[x⌧+1 = i, x⌧ 6= x⌧+1] � [x⌧ = i, x⌧ 6= x⌧+1]. (5.2.19)

Intuitively, this expansion expresses that a state is occupied after a transition into it

occurs and until the first transition occurs out of that state and to another. Then we

have

Eq(x
1:T ) [xt+1 = i, xt 6= xt+1] = F ⇤

t,iB
⇤
t,i/Z (5.2.20)

Eq(x
1:T ) [xt = i, xt 6= xt+1] = Ft,iBt,i/Z. (5.2.21)

from which we can compute Eq(x
1:T ) [xt = i], which we use in the definition of t̂(i)y given

in (5.2.8).

Finally, defining eDdi , Eq(#)

⇥

p(d|#(i))
⇤

, we compute the expected duration statistics

as indicators on every possible duration d via
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Algorithm 5.4 HSMM SVI

Initialize global variational parameters e⌘(i)# , e⌘(i)✓ , e↵(i), and e↵(0)

for t = 1, 2, . . . do
Sample minibatch index k̂ uniformly from {1, 2, . . . , K}
Using minibatch ȳ(k̂), compute each t̂(i)dur, t̂(i)y , t̂(i)trans, and t̂(i)init

with Eqs. (5.2.8),(5.2.10), (5.2.18), and (5.2.23)

Update each e⌘(i)# , e⌘(i)✓ , e↵(i), and e↵(0)

with Eqs. (5.2.11)-(5.2.13) and (5.2.24)

(t̂(i)dur)d , Eq(x
1:T )

"

X

t

[xt 6= xt+1, xt+1:t+d = i, xt+d+1 6= i]

#

(5.2.22)

=
T�d+1
X

t=1

eDd,iF
⇤
t,iBt+d,i(

t+d
Y

t0=t

eLt0,i)/Z. (5.2.23)

Note that this step alone requires O(T 2N) time.

With these expected statistics, the updates to the observation, transition, and initial

state factors are (5.2.11), (5.2.12), and (5.2.13). The duration factor update is

e⌘(i)#  (1� ⇢)e⌘(i)# + ⇢(⌘(i)# + s(
T
X

d=1

(t̂(i)dur)d · (td(d), 1))). (5.2.24)

We summarize the overall algorithm in 5.4.

While these updates can be used for any family of duration models, they can be

computationally expensive: as described in Chapter 4, both computing the HSMM mes-

sages and computing the expected statistics (5.2.22) require time that scales quadrati-

cally with the sequence length T , which can be severely limiting even in the minibatch

setting. In the next section, we apply the techniques developed in Chapter 4 to the

SVI algorithm to derive updates for which the computational complexity scales only

linearly with T .

⌅ 5.3 Linear-time updates for negative binomial HSMMs

General HSMM inference is much more expensive than HMM inference, having runtime

O(T 2N + TN2) compared to just O(TN2) on N states and a sequence of length T .

The quadratic dependence on T can be severely limiting even in the minibatch setting

of SVI, since minibatches often must be su�ciently large for good performance [52, 15].

In this section, we develop approximate SVI updates for a particular class of duration
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distributions with unbounded support for which the computational complexity is only

linear in T .

Following the development in Chapter 4, we consider HSMMs with negative binomial

duration distributions. Each duration likelihood has parameters r and p with the form

p(k|r, p) =

✓

k + r � 2

k � 1

◆

exp{(k � 1) ln p + r ln(1 � p)} (5.3.1)

for k = 1, 2, . . .. The negative binomial likelihood is not an exponential family of

densities over (r, p), and it has no simple conjugate prior. We use priors of the form

p(r, p) = p(r)p(p) with p(r) a finite categorical distribution with support {1, 2, . . . , rmax}
and p(p) an independent Beta distribution, i.e.

p(r) / exp{h⌫, ri}, p(p) = Beta(a, b) / exp{(a � 1) ln(p) + (b � 1) ln(1 � p)}.
(5.3.2)

Similarly, we define a corresponding mean field factor q(r, p) = q(r)q(p|r) as

q(r) / exp{he⌫, ri}, q(p|r) = Beta(ea(r),eb(r)). (5.3.3)

Thus for N states we have prior hyperparameters {(⌫(i), a(i), b(i))}Ni=1 and variational

parameters {(⌫(i), {a(r,i), b(r,i)}rmax

r=1 )}Ni=1. To simplify notation, we suppress the indices

r and i when possible.

We write d(i)(x1:T ) to denote the set of durations for state i in the state sequence

x1:T . Dropping indices for simplicity, the part of the variational lower bound objective

that depends on q(r, p) is

L , Eq(r,p)q(x
1:T )



ln
p(r, p, d(x1:T ))

q(r, p)

�

(5.3.4)

= Eq(r) ln
p(r)

q(r)
+ Eq(r)q(x

1:T )h(r, d(x1:T )) + Eq(r)

⇢

Eq(p|r) ln
p(p)p̄(d(x1:T )|r, p)

q(p|r)
�

(5.3.5)

where h(r, d(x1:T )) , P

d02d(x
1:T ) ln

�

r+d0�2
d0�1

�

arises from the negative binomial base mea-

sure term and ln p̄(d(x1:T )|r, p) , P

d02d(x
1:T )(d

0 ln p + r ln(1 � p)) collects the negative

binomial PMF terms excluding the base measure.

First, we show that the SVI updates to each q(p|r) can be considered independent

of each other and of q(r) by taking the natural gradient of L. The only terms in (5.3.4)

that depend on q(p|r) are in the final term. Since the expectation over q(r) in the
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final term is simply a weighted finite sum, taking the gradient of L with respect to

the parameters (ea(r),eb(r)) for r = 1, 2, . . . , rmax yields a sum of gradients weighted by

each q(r). Each gradient in the sum is that of a variational lower bound with fixed r,

and because q(p|r) is conjugate to the negative binomial likelihood with fixed r, each

gradient has a simple conjugate form. As a result of this decomposition, if we collect

the variational parameters of q(r, p) into e⌘# , (e⌫, (ea(1),eb(1)), . . . , (ea(rmax

),eb(rmax

))), then

the Fisher information matrix

J(e⌘#) , E(r,p)⇠q(r,p)

h

(re⌘# ln q(r, p))(re⌘# ln q(r, p))T
i

(5.3.6)

is block diagonal with the same partition structure as e⌘#. If we denote the Fisher

information of q(p|r) as J(ea(r),eb(r)) , then the (r + 1)th diagonal block of J(e⌘#) can

be written as q(r)J(ea(r),eb(r)), and so the q(r) factors cancel in the natural gradient.

Therefore the natural gradient updates to each (ea(r),eb(r)) are independent and can be

computed using simple conjugate Beta updates.

Next, we derive updates to q(r). Since q(r) is a discrete distribution with finite

support, we write its complete-data conditional in an exponential family form trivially:

p(r|p, d(x1:T )) / exp{h⌫ + tr(p, d(x1:T )), ri} (5.3.7)

(tr(p, d(x1:T )))r ,
P

d02d(x
1:T ) ln p(p|d0, r) + ln h(r, d0). (5.3.8)

From the results in Section 5.1.2 the jth component of the natural gradient of (5.3.4)

with respect to the parameters of q(r) is

⇣

ere⌫L
⌘

j
= ⌫j + Eq(p|r=j)q(x

1:T )tr(p, d(x1:T )) � e⌫j (5.3.9)

Due to the log base measure term ln h(r, d0) in (5.3.8), these expected statistics re-

quire O(T 2N) time to compute exactly even after computing the HSMM messages

using (5.2.23). The HSMM SVI algorithm developed in Section 5.2.2 provides an ex-

act algorithm using this update. However, we can use the e�cient sampling-based

algorithms developed in Chapter 4 to compute an approximate update more e�ciently.

To achieve an update runtime that is linear in T , we use a sampling method inspired

by the sampling-based SVI update used in Wang and Blei [114]. For some sample count

S, we collect S model parameter samples {(⇡̂(`), ✓̂(`), r̂(`), p̂(`))}S`=1 using the current

global mean field factors according to

⇡̂(`) ⇠ q(⇡) ✓̂(`) ⇠ q(✓) (r̂(`), p̂(`)) ⇠ q(r, p). (5.3.10)
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and for each set of parameters we sample a state sequence

x̂(`)
1:T ⇠ p(x1:T |ȳ1:T , ⇡̂(`), ✓̂(`), r̂(`), p̂(`)). (5.3.11)

Using the methods developed in Chapter 4, each such sample can be drawn in time

O(TNR + TN2). We denote the set of state sequence samples as S = {x̂(`)
1:T }S`=1 and

we set q̂(x1:T ) = 1
S

P

x̂2S �x̂(x1:T ). As the number of samples S grows, the distribution

q̂(x1:T ) approximates Eq(⇡)q(✓)q(r,p) [p(x1:T |ȳ1:T , ⇡, ✓, r, p)], while the optimal mean field

update sets q(x1:T ) / exp
�

Eq(⇡)q(✓)q(r,p) ln p(x1:T |ȳ1:T , ⇡, ✓, r, p)
 

. As discussed in Wang

and Blei [114], since this sampling approximation does not optimize the variational

lower bound directly, it should yield an inferior objective value. However, Wang and

Blei [114] found this approximate SVI update yielded better predictive performance

in some topic models, and provided an interpretation as an approximate expectation

propagation (EP) update. As we show in Section 5.5, this update can be very e↵ective

for fitting HSMMs as well.

Given the sample-based representation q̂(x1:T ), it is easy to compute the expecta-

tion over states in (5.3.9) by plugging in the sampled durations. The update to the

parameters of q(r(i), p(i)) becomes

e⌫(i)  (1� ⇢)e⌫(i) + ⇢
⇣

⌫(i) + s · t̂(i)r

⌘

(5.3.12)

ea(i,r)  (1� ⇢)ea(i,r) + ⇢
⇣

a(i) + s · t̂(i,r)a

⌘

(5.3.13)

eb(i,r)  (1� ⇢)eb(i,r) + ⇢
⇣

b(i) + s · t̂(i,r)b

⌘

(5.3.14)

for i = 1, 2, . . . , N and r = 1, 2, . . . , rmax, where

t̂(i,r)a , 1

S

X

x̂2S

X

d2d(i)(x)

(d� 1) (5.3.15)

t̂(i,r)b , 1

S

X

x̂2S

X

d2d(i)(x̂)

r (5.3.16)

(t̂(i)r )r , Eq(p|r)q̂(x
1:T )

h

tr(p, d(i)(x̂1:T ))
i

(5.3.17)

=
⇣

ea(i,r) + t̂(i,r)a � 1
⌘

Eq(p|r)

h

ln(p(i,r))
i

+
⇣

eb(i,r) + t̂(i,r)b � 1
⌘

Eq(p|r)

h

ln(1� p(i,r))
i

+
X

x̂2S

X

d2d(i)(x̂)

ln

✓

d + r � 2

d� 1

◆

. (5.3.18)

Similarly, we revise Eqs. (5.2.8)-(5.2.10) to compute the other expected su�cient statis-
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Algorithm 5.5 Negative Binomial HSMM SVI

Initialize global variational parameters e⌘(i)# , e⌘(i)✓ , e↵(i), and e↵(0)

for t = 1, 2, . . . do
Sample minibatch index k̂ uniformly from {1, 2, . . . , K}
Using minibatch ȳ(k̂), generate state sequence samples

according to Eqs. (5.3.10) and (5.3.11) and form q̂(x1:T )

Using q̂(x1:T ), compute each t̂(i)dur, t̂(i)y , t̂(i)trans, and t̂(i)init

with Eqs. (5.3.19)-(5.3.21) and (5.3.15)-(5.3.18)

Update each e⌘(i)# , e⌘(i)✓ , e↵(i), and e↵(0)

with Eqs. (5.2.11)-(5.2.13) and (5.3.12)-(5.3.14)

tics using q̂(x1:T ):

t̂(i)y , Eq̂(x
1:T )

T
X

t=1

I[xt = i]t(i)y (ȳt) (5.3.19)

(t̂(i)trans)j , Eq̂(x
1:T )

T�1
X

t=1

I[xt = i, xt+1 = j] (5.3.20)

(t̂init)i , Eq̂(x
1:T )I[x1 = i] (5.3.21)

We summarize the overall algorithm in 5.5.

⌅ 5.4 Extending to the HDP-HMM and HDP-HSMM

In this section we extend our methods to the Bayesian nonparametric versions of these

models, the HDP-HMM and the HDP-HSMM. These updates essentially replace the

transition updates in the previous algorithms.

Using the notation of Section 2.5 the generative model for the HDP-HMM with

scalar concentration parameters ↵, � > 0 is

� ⇠ GEM(�), ⇡(i) ⇠ DP(↵�), ✓(i)
iid⇠ p(✓(i)) (5.4.1)

x1 ⇠ ⇡(0), xt+1 ⇠ ⇡(xt), yt ⇠ p(yt|✓(xt)) (5.4.2)

where � ⇠ GEM(�) denotes sampling from a stick breaking distribution defined by

vj
iid⇠ Beta(1, �), �k =

Y

j<k

(1 � vj)vk (5.4.3)
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and ⇡(i) ⇠ DP(↵�) denotes sampling a Dirichlet process

w ⇠ GEM(↵) zk
iid⇠ � ⇡(i) =

1
X

k=1

wk�zk . (5.4.4)

To perform mean field inference in HDP models, we approximate the posterior with a

truncated variational distribution. While a common truncation is to limit the two stick-

breaking distributions in the definition of the HDP [52], a more convenient truncation

for our models is the “direct assignment” truncation, used in [70] for batch mean field

with the HDP-HMM and in [17] in an SVI algorithm for LDA. The direct assignment

truncation limits the support of q(x1:T ) to the finite set {1, 2, . . . , M}T for a truncation

parameter M , i.e. fixing q(x1:T ) = 0 when any xt > M . Thus the other factors, namely

q(⇡), q(�), and q(✓), only di↵er from their priors in their distribution over the first

M components. As opposed to standard truncation, this family of approximations is

nested over M , enabling a search procedure over the truncation parameter as developed

in [17]. A similar search procedure can be used with the HDP-HMM and HDP-HSMM

algorithms developed here.

A disadvantage to the direct assignment truncation is that the update to q(�) is

not conjugate given the other factors as in Ho↵man et al. [52]. Following Liang et al.

[70], to simplify the update we use a point estimate by writing q(�) = ��⇤(�). Since the

main e↵ect of � is to enforce shared sparsity among the ⇡(i), it is reasonable to expect

that a point approximation for q(�) will su�ce.

The updates to the factors q(✓) and q(x1:T ) are identical to those derived in the

previous sections. To derive the SVI update for q(⇡), we write the relevant part of the

untruncated model and truncated variational factors as

p((⇡(i)
1:M , ⇡(i)

rest)) = Dir(↵ · (�1:M , �rest)) (5.4.5)

q((⇡(i)
1:M , ⇡(i)

rest)) = Dir(e↵(i)) (5.4.6)

where i = 1, 2, . . . , M and where ⇡(i)
rest , 1 � PM

k=1 ⇡(i)
k and �rest , 1 � PM

k=1 �k.

Therefore the updates to q(⇡(i)) are identical to those in (5.2.12) except the number

of variational parameters is M + 1 and the prior hyperparameters are replaced with

↵ · (�1:M , �rest).

To derive a gradient of the variational objective with respect to �⇤, we write
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r�⇤L = r�⇤

⇢

Eq(⇡)



ln
p(�,⇡)

q(�)q(⇡)

��

(5.4.7)

= r�⇤

⇢

ln p(�⇤) +
M
P

i=1
Eq(⇡(i)) ln p(⇡(i)|�⇤)

�

(5.4.8)

where ln p(�⇤) = ln pv(v(�⇤))+ln det @v
@�

�

�

�

�⇤
, ln pv(v) = (��1)

P

j ln(1�vj), and vi(�) =

�i

1�
P

j<i �j
. The Jacobian @v

@� is lower-triangular, and is given by

✓

@v

@�

◆

ij

=

8

>

>

<

>

>

:

0 i < j
1

1�
P

k<i �k
i = j

��i

(1�
P

k<i �k)2
i > j

(5.4.9)

and so taking partial derivatives we have

@
@�⇤

k
ln p(�⇤) = 2

P

i�k

ln 1
1�

P
j<i

�⇤
j

� (� � 1)
P

i�k

ln 1
1�

P
ji

�⇤
j

(5.4.10)

@
@�⇤

k
Eq(⇡)[ln p(⇡(i)|�⇤)] = � (e↵(i)

k ) � � (e↵(i)
M+1)+� (�

PM+1
j=1 �⇤j ) � � (�⇤k). (5.4.11)

We use this gradient expression to take a truncated gradient step on �⇤ during each SVI

update, where we use a backtracking line search1 to ensure the updated value satisfies

the constraint �⇤ � 0.

The updates for q(⇡) and q(�) in the HDP-HSMM di↵er only in that the variational

lower bound expression changes slightly because the support of each q(⇡(i)) is restricted

to the o↵-diagonal (and renormalized). We can adapt q(⇡(i)) by simply dropping the

ith component from the representation and writing

q((⇡(i)1:M\i,⇡
(i)
rest)) = Dir(e↵(i)

\i ), (5.4.12)

and we change the second term in the gradient for �⇤ to

@
@�⇤

k
Eq(⇡)[ln p(⇡(i)|�⇤)] =

(

� (e↵(i)
k ) � � (e↵(i)

M+1)+� (�
P

j 6=i �
⇤
j ) � � (�⇤k) k 6= i

0 k = i
.

(5.4.13)

Using these gradient expressions for �⇤ and a suitable gradient-based optimization

procedure we can also perform batch mean field updates for the HDP-HSMM.

1In a backtracking line search, for some fixed parameter  2 (0, 1), given an initial point x and an
increment �, while x+� is infeasible we set � �.
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⌅ 5.5 Experiments

We conclude this chapter with a numerical study to validate the proposed algorithms.

As a performance metric, we approximate a variational posterior predictive density

on held-out data; that is, for the HMM models we estimate

p(ȳtest|ȳtrain) =

Z Z

p(ȳtest|⇡, ✓)p(⇡, ✓|ȳtrain)d⇡d✓ (5.5.1)

⇡ Eq(⇡)q(✓)p(ȳtest|⇡, ✓) (5.5.2)

by sampling models from the fit variational distribution. Similarly, for HSMM models

we estimate p(ȳtest|ȳtrain) ⇡ Eq(⇡)q(✓)q(#)p(ȳtest|⇡, ✓, #). In each experiment, we chose

⇢(t) = (t + ⌧)� with ⌧ = 0 and  = 0.6. Gaussian emission parameters were generated

from Normal-Inverse-Wishart (NIW) distributions with µ0 = 0, ⌃0 = I, 0 = 0.1, and

⌫0 = 7. For the HDP models, we set the truncation parameters to be twice the true

number of modes. Every SVI algorithm examined uses only a single pass through the

training data.

First, we compare the performance of SVI and batch mean field algorithms for

the HDP-HMM on synthetic data with fully conjugate priors. We sampled a 10-state

HMM with 2-dimensional Gaussian emissions and generated a dataset of 250 sequences

of length 4000 for a total of 106 frames. We chose a random subset of 95% of the

generated sequences to be training sequences and held out 5% as test sequences. We

repeated the fitting procedures on the training set 5 times with initializations drawn

from the prior, and we report the average performance with standard deviation error

bars. In Figure 5.2, the SVI procedure (in blue) produces fits that are on par with

those from the batch algorithm (in green) but orders of magnitude faster. In particular,

note that the SVI algorithm consistently converges to a local optimum of the mean field

objective in a single pass through the training set, requiring roughly the amount of time

needed for a single iteration of the batch mean field algorithm. This relative speedup

grows linearly with the size of the dataset, making the SVI algorithm especially useful

when the batch algorithm is infeasible.

Similarly, we compare the SVI and batch mean field algorithms for the HDP-HSMM.

We sampled a 6-state HSMM with 2-dimensional Gaussian emissions and negative bi-

nomial durations, where each of the negative binomial parameters were sampled as

p ⇠ Beta(1, 1) and r ⇠ Uniform({1, 2, . . . , 10}). From the model we generated a dataset

of 50 sequences of length 2000 and generated an additional test set of 5 sequences with

the same length. Figure 5.3 shows again that the SVI procedure (in blue) fits the data

orders of magnitude faster than the batch update (in green), and again it requires only

a single pass through the training set.
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Figure 5.2: A comparison of the HMM SVI algorithm with batch mean field. Algo-
ritm 5.3 is shown in blue and the batch mean field algorithm is shown in green.

Figure 5.3: A comparison of the HSMM SVI algorithm with batch mean field. Algo-
rithm 5.4 is shown in blue and the batch mean field algorithm is shown in green.

Finally, we compare the performance of the exact SVI update for the HSMM with

that of the approximate update proposed in Section 5.3. We sampled a 6-state HSMM

with 2-dimensional Gaussian emissions and Poisson durations, where each of the Poisson

duration parameters is sampled as � ⇠ Gamma(40, 2). From the model we generated

a dataset of 50 sequences of length 3000 and generated an additional test set of 5

sequences with the same length. We fit the data with negative binomial HDP-HSMMs

where the priors on the negative binomial parameters were again p ⇠ Beta(1, 1) and

r ⇠ Uniform({1, 2, . . . , 10}). We set the number of state sequence samples generated in



118 CHAPTER 5. SVI FOR BAYESIAN TIME SERIES

Figure 5.4: A comparison of HSMM SVI algorithms. The approximate update scheme
of Algorithm 5.5 is shown in blue and the exact update scheme of Algorithm 5.4 is shown
in green.

the sampling-based approximate update to S = 10. Figure 5.4 shows that the sampling-

based updates (in blue) are e↵ective and that they provide a significant speedup over the

exact SVI update (in green). Note that, since the figure compares two SVI algorithms,

both algorithms scale identically with the size of the dataset. However, the time required

for the exact update scales quadratically with the minibatch sequence length T , while

the sampling-based update scales only linearly with T . Therefore this approximate SVI

update is most useful when minibatch sequences are long enough so that the exact

update is infeasible.


