
Chapter 6

Scalable Inference in Models with
Multiple Timescales

⌅ 6.1 Introduction

In many settings we may wish to learn dynamics at multiple timescales. For example,

in the context of speech analysis, we may wish to model both the dynamics within

individual phonemes as well as the dynamics across phonemes [68, 18]. In the context

of modeling behavior, motion [51], or handwriting [67], it is natural to decompose

movements into steps, while still modeling the statistics of the sequence of movements.

Each of these modeling tasks involves dynamics at multiple timescales, and therefore it is

natural to consider dynamical models that can capture such dynamics while maintaining

tractable inference.

In this chapter, we develop a Bayesian nonparametric model and associated inference

algorithms applicable to unsupervised learning of such dynamics. We combine and build

on ideas developed in previous chapters. In particular, we extend the HDP-HSMM

developed in Chapter 3 to include Markovian dynamics within each of its segments. The

explicit duration modeling provided by the HDP-HSMM allows us to set duration priors

that can disambiguate short-timescale dynamics from long-timescale dynamics and is

important for identifiability in the unsupervised setting. Using ideas from Chapters 3

and 4, we develop e�cient Gibbs sampling algorithms for our proposed model. Finally,

extending ideas from Chapter 5, we also develop a structured Stochastic Variational

Inference (SVI) algorithm, which allows inference to scale to large datasets. Developing

scalable inference with e�cient updates is particularly relevant when fitting rich models,

since more data are often required to fit more complex models e↵ectively.

The main contributions of this chapter are algorithmic, particularly in incorporating

the algorithmic techniques developed in previous chapters. While the model we propose

is new, as we discuss in Section 6.2 many similar models have been explored in the

literature. The key advantage to our model is its amenability to the e�cient inference

algorithms we develop. Our model also benefits from explicit duration modeling and a
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120 CHAPTER 6. SCALABLE INFERENCE WITH MULTIPLE TIMESCALES

Bayesian nonparametric definition, which enable both explicit control over important

priors and flexible learning.

In Section 6.2 we highlight some key related work. In Section 6.4 we develop several

Gibbs sampling algorithms for the model, including a collapsed direct assignment sam-

pler, a weak limit sampler, and a more e�cient weak limit sampler when durations are

modeled with negative binomial distributions. In Section 6.5 we develop mean field and

SVI updates. Finally, in Section 6.6, we demonstrate our algorithms with an application

to unsupervised phoneme discovery.

This chapter synthesizes and extends results from previous chapters and so we rely

heavily on their notation and content.

⌅ 6.2 Related work

The model we define in this chapter is most closely related to generalizations of HMMs

and HSMMs known as segment models, which can model sub-dynamics within an HMM

or HSMM state. Segment models have a long history in the HMM literature; see

Murphy [78] and Murphy [80, Section 17.6] and the references therein. Such models

have had considerable success in modeling multiscale dynamics, particular in modeling

speech dynamics at the level of words, phones, and sub-phones [80, p. 624]. Such

models have typically been explored in non-Bayesian settings. Our model can be viewed

as a Bayesian nonparametric segment model, where the Bayesian approach gives us

explicit control over duration priors and modeling of uncertainty, and the nonparametric

definition provides for flexible learning of model complexity.

A related class of models is the class of Hierarchical HMMs (HHMMs) [28] [80,

Section 17.6.2], which have also been studied extensively in non-Bayesian settings. A

Bayesian nonparametric HHMM, the infinite HHMM (iHHMM), has been developed

and applied successfully to some small example datasets [51]. The model represents an

infinite number of dynamical timescales and is extremely flexible. However, it does not

provide explicit duration modeling and so it is not easy to use priors to control timescales

in the learned dynamics. Furthermore, its structure is not particularly amenable to

scalable inference, and in its Gibbs sampling algorithm the hidden states at each level

must be sampled conditioned on the hidden states at all the other levels. The model

we propose has only two timescales and so is less flexible than the iHHMM, but it

allows explicit prior control over duration distributions. In addition, the algorithms we

develop exploit more powerful message passing, and the SVI algorithm developed in

Section 6.5 allows inference in our model to scale to large datasets.

Finally, the model that is most similar to ours is that of Lee and Glass [68], which

develops a Bayesian nonparametric model for unsupervised phoneme discovery. Again,

a key di↵erence is again that our model provides explicit duration modeling and al-
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lows much more scalable algorithms. In addition, we allow for the substate dynamics

themselves to be modeled nonparametrically, while the model of Lee and Glass [68]

focuses on modeling each phoneme with fixed-size finite HMMs. While our model can

also use fixed-size finite HMMs for short-timescale dynamics, we focus on the fully

nonparametric specification.

⌅ 6.3 Model specification

In this section, we define our generative model, composing both the HDP-HSMM and

HDP-HMM generative processes described in Chapter 3, particularly Sections 3.2.3

and 3.3.2. Recall that we write the prior measure on duration parameters as G and

the corresponding duration likelihood as p(d|#(i)), and let ↵, � > 0 be concentration

parameters. According to the HDP-HSMM generative process, we generate the super-

state sequence (zs), the duration sequence (ds), and the label sequence (xt) as

� ⇠ GEM(�) (6.3.1)

⇡(i) iid⇠ DP(↵, �) #(i) iid⇠ G i = 1, 2, . . . (6.3.2)

zs ⇠ ⇡̄(zs�1

) ds ⇠ p(d|#(zs)) s = 1, 2, . . . (6.3.3)

xt(s):t(s+1)�1 = zs t(s) ,
(

t(s � 1) + ds�1 s > 1

1 s = 1
t = 1, 2, . . . , T, (6.3.4)

where, as in Section 3.3.2, ⇡̄(i) , ⇡
(i)
j

1�⇡
(i)
i

(1 � �ij). While the HDP-HSMM generates the

observation sequence (yt) within a segment as conditionally independent draws from

an observation distribution, here we instead generate observations for each segment

according to an HDP-HMM. That is, for each HDP-HSMM state i = 1, 2, . . . we have

an HDP-HMM with parameters {�(i), ⇡(i,j), ✓(i,j)}1j=1 generated according to

�(i) ⇠ GEM(�(i)) (6.3.5)

⇡(i,j) iid⇠ DP(↵(i), �(i)) ✓(i,j)
iid⇠ H j = 1, 2, . . . (6.3.6)

where H is the prior measure over observation parameters ✓(i,j), ↵(i) and �(i) are concen-

tration parameters, and each ⇡(i,j) is a transition distribution out of the corresponding

HDP-HMM’s jth state. Then for a segment s in with HDP-HSMM super-state zs and

duration ds, we generate observations from the corresponding HDP-HMM via
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Figure 6.1: A graphical model for the HDP-HSMM with sub-HDP-HMM observations.
Note that it is not formally a graphical model because the number of nodes is random
due to the random durations.

x̄t ⇠ ⇡(zs,x̄t�1

) yt ⇠ p(y|✓(zs,x̄t)) t = t(s), t(s) + 1, . . . , t(s + 1) � 1, (6.3.7)

where ✓(zs,x̄t) is the observation parameter from the corresponding HDP-HMM’s jth

state, and p(y|✓(zs,x̄t)) is the corresponding observation likelihood. We call (x̄t)Tt=1 the

substate sequence, and emphasize that it is distinct from the HDP-HSMM’s super-state

sequence (zs) and label sequence (xt). See Figure 6.1 for a graphical model.

This model definition combines the explicit duration modeling and nonparametric

flexibility of the HDP-HSMM of Chapter 3 with HDP-HMM dynamics within each

HSMM segment. The HDP-HSMM states can model longer-timescale dynamics, such

as the dynamics between phonemes, while the HDP-HMM states can model shorter-

timescale dynamics, such as the structure within an individual phoneme. As we show

in the following sections, this model definition is also amenable to e�cient inference.

While we have defined this model using Bayesian nonparametric priors for both

layers of dynamics, it is straightforward to adapt the definition so that one or both of

the layers is finite. For example, it may be desirable to use finite structured sub-HMM

models to exploit some domain knowledge [68]. Alternatively, it is also possible to

make the coarser-scale dynamical process a finite HSMM while allowing the substate
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dynamics to be generated from an HDP-HMM, thus enabling model selection via a

semiparametric approach [38].

⌅ 6.4 Gibbs sampling

In this section, we develop several Gibbs sampling algorithms for the model defined

in Section 6.3. First, we develop a collapsed direct assignment sampler. This sampler

avoids approximating the posterior with a finite distribution but, as with the direct

assignment sampler developed in Chapter 3 and simulated in Figure 3.11(b), its mix-

ing rate is far too slow to be practically useful. We include it for completeness and

theoretical interest.

Second, we develop a sampler based on the weak limit approximation. Analogous to

the weak limit sampler developed in Chapter 3, this sampler can use message passing

to perform block sampling and therefore achieve much greater mixing.

Finally, we build on the results of Chapter 4 to develop a much faster weak limit

Gibbs sampler for negative binomial duration distributions. The message passing com-

plexity is greatly reduced, and in particular is only linear in the sequence length T .

⌅ 6.4.1 Collapsed Gibbs sampler

To develop a collapsed Gibbs sampler, we extend the HDP-HSMM direct assignment

Gibbs algorithm developed in Section 3.4.3. Essentially, we combine the HDP-HSMM

direct assignment sampler and the HDP-HMM direct assignment sampler.

The algorithm state for our direct assignment sampler consists of a finite prefix

of the HDP-HSMM � parameter and finite prefixes of each of the sub-HDP-HMM

�(i) parameters. It also includes both the HDP-HSMM label sequence (xt) and the

substate sequence (x̄t). That is, we write the sampler state as (�1:N , �(i)

1:N(i) , x1:T , x̄1:T ),

where we use N to represent the number of used HDP-HSMM states and N (i) to

represent the number of used states in the ith HDP-HMM. The other parameters are

integrated out analytically, including the HDP-HSMM transition parameters {⇡(i)}, the

sub-HDP-HMM transition parameters {⇡(i,j)}, the duration parameters {#(i)}, and the

observation parameters {✓(i,j)}.

The algorithm proceeds by jointly resampling each pair (xt, x̄t) for t = 1, 2, . . . , T

and by resampling the �1:N and �(i)

1:N(i) .

Resampling the label and substate sequence. To resample each (xt, x̄t) conditioned on

all the other variables and parameters, we extend the HDP-HSMM sampling step of

Section 3.4.3 That is, we resample (xt, x̄t) by considering all possible assignments (k, k0)

for k = 1, 2, . . . , N + 1 and k0 = 1, 2, . . . , N (i) + 1 and evaluating up to proportionality

the conditional probability
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p((xt, x̄t) = (k, k0)|(x\t), (x̄\t), �, {�(i)}), (6.4.1)

where we suppress notation for conditioning on all the hyperparameters. Recall that

as we vary the assignment of the HDP-HSMM label xt we must consider the possible

merges into adjacent label segments, and as a result there are between 1 and 3 terms

in the expression for (6.4.1), each of the form

p((xt, x̄t) = (k, k0)|(x\t, x̄\t)) / ↵�k + nx
prev

,k

↵(1 � �x
prev

) + nx
prev

,·
| {z }

left-transition

· ↵�x
next

+ nk,x
next

↵(1 � �k) + nk,·
| {z }

right-transition

· fdur(t2 � t1 + 1)
| {z }

duration

· fobs(yt
1

:t
2

|k)
| {z }

observation

, (6.4.2)

where we have used t1 and t2 to denote the first and last indices of the segment,

respectively, and (x\t) and (x̄\t) to denote the label sequence and substate sequence

assignments excluding the tth index, respectively. See Section 3.4.3 for details. In the

case of the HDP-HSMM of Chapter 3, the term fobs(yt
1

:t
2

|k) is computed from the

independent observation model. For sub-HDP-HMM observations, we simply replace

this term with the appropriate score for HDP-HMM observations, incorporating not

only the data yt
1

:t
2

but also the substate assignment x̄t = k0 and the substate sequence

(x̄\t).

Using the formula for the probability of an assignment sequence under an HDP

model [43, 106], we can write the fobs(yt
1

:t
2

|k, k0) term for sub-HDP-HMM observations.

Let nij be the number of transitions from substate i to substate j in the kth sub-HMM,

and let ni· =
PN(k)

j=1 nij . In addition, for first and last segment indices t1 and t2, let

n̄ij = nij � #{t : x̄t = i, x̄t+1 = j, t1  t < t2, xt = k} (6.4.3)

be the number of transitions from substate i to substate j in the kth sub-HMM excluding

those in the segment from t1 to t2, and let n̄i· =
PN(k)

j=1 n̄ij . Then we can write



Sec. 6.4. Gibbs sampling 125

fobs(yt
1

:t
2

|k, k0) =

0

@

N(k)
Y

i=1

�(↵ + n̄i·)

�(↵ + ni·)

N(k)
Y

j=1

nij�1
Y

`=n̄ij

(↵�(k)
j + `)

1

A

·
 

Z t
2

Y

t=t
1

p(yt|✓(k,k0))p(✓(k,k
0)|{yt0 : x̄t0 = k0, xt0 = k}, ⌘✓) d✓(k,k

0)

!

(6.4.4)

where ⌘✓ is the corresponding observation hyperparameter. By substituting (6.4.4)

for fobs in (6.4.2), we can proceed with the HDP-HSMM sampling procedure of Sec-

tion 3.4.3.

Resampling �1:N and �(i)

1:N(i) . To resample �1:N conditioned on the HDP-HSMM label

sequence (xt), we use the same auxiliary variable method developed in Section 3.4.2.

To resample each �(i)

1:N(i) for each sub-HDP-HMM, i = 1, 2, . . . , N , we use the standard

HDP-HMM direct assignment update [106].

⌅ 6.4.2 Weak limit sampler

We can develop a more e�cient sampling algorithm by using a weak limit approximation

and exploiting dynamic programming. In particular, we develop a weak limit sampler

that block resamples the label sequence and substate sequence jointly. We build on the

weak limit sampler developed in Section 3.4.2. We write the weak limit truncation level

of the HDP-HSMM as N and the weak limit truncation level of the ith HDP-HMM as

N (i).

Recall that the label sequence (xt) can be resampled by first passing HSMM mes-

sages backward and then sampling forward, as in Section 3.4.1, particularly equations

(3.4.3) and (3.4.6). From Section 3.2.2, the HSMM messages (B, B⇤) are defined by

Bt,i =
N
X

j=1

B⇤
t,jp(xt+1 = j|xt = i, xt+1 6= xt) =

N
X

j=1

B⇤
t,jAij , (6.4.5)

B⇤
t,i =

T�t
X

d=1

Bt+d,i p(ds(t) = d|zs(t+1) = i)
| {z }

duration prior term

· p(yt+1:t+d|zs(t+1) = i, ds(t+1) = d)
| {z }

likelihood term

(6.4.6)

=
T�t�1
X

d=1

Bt+d,iDd,ip(yt+1:t+d|zs(t+1) = i, ds(t+1) = d) (6.4.7)

BT,i , 1, (6.4.8)
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where

Dd,i = p(d|#(i)) Aij = p(xt+1 = j|xt = i, xt+1 6= xt) (6.4.9)

and where s(t) denotes the segment index for time index t. In Chapter 3, the likelihood

term p(yt+1:t+d|zs(t+1) = i, ds(t+1) = d) is computed as a product of independent likeli-

hoods, while here we must compute it according to the HMM observation model. If we

can compute these segment likelihood terms e�ciently, we can use them in Eqs. (6.4.5)-

(6.4.8) to compute the backward messages over the HSMM and sample the HSMM

label sequence as in Section 3.4.1. Given the HSMM label sequence, we can then sam-

ple the substate sequence using the HMM state sequence sampling algorithm given in

Section 2.4.1.

Therefore it remains only to compute the segment likelihood terms e�ciently. We

can exploit the Markov structure in the substate sequence to write these likelihoods in

terms of another set of messages. For each i = 1, 2, . . . , N , we define the sub-HMM

backward messages for each t = 1, 2, . . . , T as

B(i,t)
t0,j =

N(i)
X

k=1

A(i)
jkL(i)

t0+1,kB
(i,t)
t0+1,k t0 = 1, 2, . . . , t B(i,t)

t,j = 1, (6.4.10)

where L(i)
t,k = p(yt|✓(i,k)) is the observation likelihood for the jth substate of the ith

HMM and A(i)
jk = p(x̄t+1 = k|x̄t = j, xt = i) is the probability of transitioning from the

jth to the kth substate in the ith HMM. Similarly, we define the sub-HMM forward

messages for each i = 1, 2, . . . , N and t = 1, 2, . . . , T as

F (i,t)
t0,j =

N(i)
X

k=1

AkjLt0,jF
(i,t)
t0�1,k t = t + 1, t + 2, . . . , T F (i,t)

t,k = ⇡(i,0)
k (6.4.11)

where ⇡(i,0) is the initial state distribution for the ith sub-HMM. For any fixed time

index t and superstate index i, we can compute these messages in time O(TN (i)2) time,

and therefore we can compute all such sub-HMM messages in time O(NT 2N (i)2) time.

Finally, we can use these messages to compute every segment likelihood term via

p(yt:t+d�1|zs(t) = i, ds(t) = d) =
N(i)
X

j=1

F (i,t)
t0,j B(i,t+d)

t0,j , (6.4.12)

for any t0 = t, t + 1, . . . , t + d � 1. To compute only the backward HSMM messages, as

required for the block sampling procedure, it su�ces to compute only the sub-HMM
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forward messages.

Composing these expressions, we can write the overall HSMM messages as

B⇤
t,i =

T�1�t
X

d=1

Bt+d,iDd,i

0

@

N(i)
X

`=1

F (i,t)
t+d,`

1

A Bt,i =
N
X

j=1

AijB
⇤
t,j . (6.4.13)

Writing Nsub = maxi N (i), these messages require O(T 2NN2
sub+TN2) time to compute.

With these messages, we can block resample the HSMM label sequence and substate

sequence.

The sampling updates to the other model parameters are identical to those described

in Sections 3.4.1 and 2.4.1.

⌅ 6.4.3 Exploiting negative binomial durations

While the weak limit sampling procedure developed in Section 6.4.2 is general, it can

be computationally expensive for long observation sequences. In this section we apply

and extend the ideas developed in Chapter 4 to write an update for negative binomial

duration models for which the computational complexity scales only linearly in T and

is generally much more e�cient. As in Chapter 4, this algorithm generalizes immedi-

ately to models in which the duration distributions are mixtures of negative binomial

distributions.

Recall from Chapter 4 that with negative binomial durations we can compute the

HSMM messages with more e�cient recursions because the duration can be represented

as an augmentation with a small number of Markov states. In particular, to represent an

HSMM with negative binomial parameters (r(i), p(i)) for i = 1, 2, . . . , N , we constructed

an equivalent HMM on
PN

i=1 r(i) states. We can similarly embed an HSMM with HMM

emissions and negative binomial durations in a stationary HMM on
PN

i=1 r(i)N (i) states.

Using the notation of Chapter 4, we choose

Ā(i) = Â(i) ⌦ A(i), b̄(i) = b̂(i) ⌦ (i), c̄(i) = ĉ(i) ⌦ ⇡(i)
sub, (6.4.14)

where X ⌦ Y denotes the Kronecker product of matrices X and Y , (i) denotes the

all-ones vector of size r(i), and (Â(i), b̂(i), ĉ(i)) denotes the HMM embedding parameters

for negative binomial durations given in Eqs. (4.4.7)-(4.4.8). Note that we can index

into the matrix Ā using the tuple (i, j, k), where i = 1, 2, . . . , N indexes the HSMM

state, j = 1, 2, . . . , r(i), indexes the duration pseudostate, and k = 1, 2, . . . , N (i) indexes

the sub-HMM substate. By comparing this construction to that of the embedding

developed in Section 4.4, it is clear that it encodes the same dynamics on the HSMM

label sequence: if we simply sum over the sub-HMM substates, we recover the same
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embedding as that of Section 4.4. That is, if we use Â to denote the transition matrix

of the HMM embedding of Section 4.4, then

Â(i,j),(i0,j0) =
N(i)
X

k=1

N(i0)
X

k0=1

Ā(i,j,k),(i0,j0,k0). (6.4.15)

Furthermore, the sub-HMM substate dynamics are faithfully represented: the last block

row of Ā(i,j) ensures that the first substate of a segment is sampled according to ⇡(j),

and the substate transition probabilities are those of A(i) until the superstate changes.

Note that due to the structure of the matrix Ā, the matrix-vector multiplications

required to perform message passing are especially e�cient to compute. In particular,

using the identity

(X ⌦ Y )vec(Z) = vec(XZY T) (6.4.16)

for any matrices X, Y , and Z of appropriate dimensions, we can compute the block

diagonal part of a matrix-vector product in O(N(R + N2
sub)), where R = maxi r(i).

Furthermore, using the structure in each Ā(i,j), we can compute the o↵-block-diagonal

part of a matrix-vector product in O(N2 + NNsub). Therefore, using the methods de-

veloped in Chapter 4, we can use the embedding to compute the HSMM messages in

only O(TN(R + N2
sub) + TN2) time, avoiding the quadratic dependence on T . Finally,

note that, using the methods developed in Chapter 4, this HSMM messages compu-

tation requires only O(TN + NRNsub) memory, a significant savings compared to the

O(TNRNsub) memory required to compute the HMM messages in the full HMM em-

bedding.

Given the HSMM messages, we can perform the block sampling update to the label

sequence and substate sequence described in Section 6.4.2 much more e�ciently.

⌅ 6.5 Mean field and SVI

In this section, we derive the key updates necessary to perform mean field or SVI

inference in the model. This section relies heavily on the notation used in Chapter 5,

and extends its results to the model developed in this chapter.

Following the notation of Chapter 5, we write our variational family as

q(�)q(⇡(0))
N
Y

i=1

q(⇡(i))q(#(i))

0

@q(�(i))q(⇡(i,0))
N(i)
Y

j=1

q(⇡(i,j))q(✓(i,j))

1

A q(x1:T , x̄1:T ) (6.5.1)

where N is the truncation parameter for the HDP-HSMM and each N (i) is the trunca-

tion parameter for the ith sub-HDP-HMM. The variational factors are defined analo-
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gously to those used in Chapter 5:

q(✓(i,j)) / exp
n

he⌘(i,j)✓ , t(i,j)✓ (✓(i,j))i
o

q(⇡(i,j)) = Dir(e↵(i,j)) (6.5.2)

q(⇡(i)) = Dir(e↵(i)) q(#(i)) / exp
n

he⌘(i)# , t(i)# (#(i))i
o

(6.5.3)

q(�) = ��⇤(�) q(�(i)) = ��⇤(i)(�
(i)). (6.5.4)

The corresponding prior densities on each term are

p(✓(i,j)) / exp
n

h⌘(i)✓ , t(i)✓ (✓(i,j))i
o

p(⇡(i,j)|�1:N(i)) = Dir(↵(i)�1:N(i)) (6.5.5)

p(⇡(i)|�1:N ) = Dir(↵�1:N ) p(#(i)) / exp
n

h⌘(i)# , t(i)# (#(i))i
o

.

(6.5.6)

We derive a mean field update to the variational factors over model parameters in

two steps: first, we define structured mean field message-passing recursions analogous

to those defined in Section 6.4.2; second, we show how to use the mean field messages

to compute the expected statistics necessary for the parameter updates.

As in Section 6.4.2, it is useful to define sub-HMM messages for each i = 1, 2, . . . , N

and each time index t = 1, 2, . . . , T :

eB(i,t)
t0,j =

N(i)
X

k=1

eA(i)
jk

eL(i)
t0+1,k

eB(i,t)
t0+1,k t0 = 1, 2, . . . , t eB(i,t)

t,j = 1 (6.5.7)

eF (i,t)
t0,j =

N(i)
X

k=1

eA(i)
kj

eL(i)
t0,j

eF (i,t)
t0�1,k t = t + 1, t + 2, . . . , T eF (i,t)

t,k = e⇡(i,0)
k (6.5.8)

where
eL(i)
t,j = Eq(✓(i,j)

h

ln p(yt|✓(i,j)
i

e⇡(i,j) = Eq(⇡)

h

ln ⇡(i,j)
i

(6.5.9)

and where eA(i) is a matrix with its kth row as e⇡(i,k). Then we can write the overall

message recursions as
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eB⇤
t,i =

T�1�t
X

d=1

eBt+d,i
eDd,i

0

@

N(i)
X

`=1

eF (i,t)
t+d,`

1

A

eBt,i =
N
X

j=1

eAij
eB⇤
t,j (6.5.10)

eFt,i =
T�t�1
X

d=1

eF ⇤
t�d,i

eDd,i

0

@

N(i)
X

`=1

eB(i,t)
t�d,`e⇡

(i,0)
`

1

A

eF ⇤
t,i =

N
X

j=1

eAji
eFt,j (6.5.11)

where

eDd,i = Eq(#(i))

h

ln p(d|#(i))
i

Z =
N
X

i=1

FT,i (6.5.12)

and where eA is a matrix with its ith row as e⇡(i). As in Section 6.4.2, these messages

can be computed in time O(T 2NN2
sub + TN2).

Next, we calculate expected statistics in terms of these messages. To simplify no-

tation, we write the event {xt:t+d�1 = i, xt�1 6= xt 6= xt+d} simply as {xt:t+d�1 = i}.

First, note that we can write

Eq(x
1:T ,x̄

1:T )

⇥

I[xt:t+d�1 = i]
⇤

=

0

@

eF ⇤
t,i

eBt+d�1,i
eDd,i

N(i)
X

`=1

eF (i,t)
t,`

eB(i,t+d)
t,`

1

A /Z. (6.5.13)

This decomposition follows from the definitions of the HSMM messages. Using the

definition of the sub-HMM messages, we can similarly write

Eq(x
1:T ,x̄

1:T )

⇥

I[x̄t0 = j, x̄t0+1 = k
�

�xt:t+d�1 = i
⇤

=

⇣

eF (i,t)
t0,j

eB(i,t+d)
t0+1,k

eL(i)
t0+1,k

eA(i)
j,k

⌘

PN(i)

`=1
eF (i,t)
t,`

eB(i,t+d)
t,`

(6.5.14)

for any t0 = t, t+1, . . . , t+d�2. To compute the expected statistics, we compose these

two expressions and use the basic identity that for any random variable X we have

E
⇥

I[X 2 A] I[X 2 B]
⇤

= P
⇥

X 2 A, X, 2 B
⇤

(6.5.15)

= P
⇥

X 2 A
⇤

P
⇥

X 2 B|X 2 A
⇤

(6.5.16)

= E
⇥

I[X 2 A]
⇤

E
⇥

I[X 2 B]
�

�X 2 A
⇤

. (6.5.17)

Therefore we can compute the expected statistics for each sub-HDP-HMM factor as
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t̂(i,j)y , Eq(x
1:T ,x̄

1:T )

"

T�1
X

t=1

T�1�t
X

d=1

I [xt:t+d�1 = i]
t+d�1
X

t0=t

I [x̄t0 = j] (t(i,j)y , 1)

#

=
T�1
X

t=1

T�1�t
X

d=1

⇣

eF ⇤
t,i
eBt+d�1,i

eDd,i

⌘

 

t+d�1
X

t0=t

eF (i,t)
t0,j

eB(i,t+d)
t0,j

eL(i)
t0,j

!

/Z (6.5.18)

(t̂(i,j)subtr)k , Eq(x
1:T ,x̄

1:T )
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d=1
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X
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#
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T�1
X

t=1

T�1�t
X

d=1

⇣

eF ⇤
t,i
eBt+d�1,i

eDd,i

⌘

 

t+d�2
X
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eF (i,t)
t0,j

eB(i,t+d)
t0+1,k

eL(i)
t0+1,k

eA(i)
j,k

!

/Z (6.5.19)

(t̂(i)subinit)j , Eq(x
1:T ,x̄

1:T )
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T�1�t
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d=1
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=
T�1
X

t=1

T�1�t
X

d=1

⇣

eF ⇤
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eBt+d�1,i

eDd,i

⌘⇣

eF (i,t)
t,j

eB(i,t+d)
t,j

⌘

/Z (6.5.20)

Furthermore, we can compute the expected statistics for each HDP-HSMM factor as

(t̂(i)dur)d , Eq(x
1:T )

"

T�1
X

t=1

I [xt:t+d = i]

#

=
T�1
X

t=1

eF ⇤
t,i
eBt+d,i

eDd,i

0

@

N(i)
X

`=1

eF (i,t)
t,`

eB(i,t+d)
t,`

1

A /Z (6.5.21)

(t̂(i)trans)j , Eq(x
1:T )

"

T�1
X

t=1

I [xt = i, xt+1 = j]

#

=
T�1
X

t=1

eFt,i
eB⇤
t,j
eAi,j/Z (6.5.22)

(t̂init)i , Eq(x
1:T )I[x1 = i] = eF ⇤

1,i
eB1,i/Z (6.5.23)

While these expected statistics expressions appear complex when fully expanded, the

expressions are in fact quite modular: each involves the expectation of an HSMM

segment indicator, which is computed using the HSMM messages, and possibly an

expectation in terms of a sub-HMM statistic, which is computed using the sub-HMM

messages.

Using the notation of Chapter 5, the corresponding SVI updates to the variational

factors on the model parameters are then
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Algorithm 6.1 Sub-HMM SVI

Initialize global variational parameters e⌘✓
(i,j), e↵(i,j), e↵(i), and e⌘(i)#

for t = 1, 2, . . . do
Sample minibatch index k̂ uniformly from {1, 2, . . . , K}
Using minibatch ȳ(k̂), compute sub-HMM messages using (6.5.7)-(6.5.8)

and HSMM messages using (6.5.10)-(6.5.11)

Using the messages, compute t̂(i,j)y , t̂(i,j)subr, t̂(i)subinit, t̂(i)dur, t̂(i)trans, and t̂init
using (6.5.18)-(6.5.23).

Update each e⌘✓
(i,j), e↵(i,j), e↵(i), and e⌘(i)# using (6.5.24)-(6.5.29)

e⌘✓
(i,j)  (1� ⇢) e⌘✓

(i,j) + ⇢(⌘(i,j)✓ + s · t̂(i,j)y ) (6.5.24)

e↵(i,j)  (1� ⇢)e↵(i,j) + ⇢(↵(i) + s · t̂(i,j)subtr) (6.5.25)

e↵(i,0)  (1� ⇢)e↵(i,0) + ⇢(↵(i) + s · t̂(i)subinit) (6.5.26)

e↵(i)  (1� ⇢)e↵(i) + ⇢(↵ + s · t̂(i)trans) (6.5.27)

e↵(0)  (1� ⇢)e↵(0) + ⇢(↵ + s · t̂(i)init) (6.5.28)

e⌘(i)#  (1� ⇢)e⌘(i)# + ⇢(⌘(i)# + s(
PT

d=1(t̂
(i)
dur)d · (td(d), 1))). (6.5.29)

for some stepsize ⇢ and minibatch scaling s as in Section 5.1.2. We summarize the

overall algorithm in Algorithm 6.1.

⌅ 6.6 Experiments

As discussed in Section 6.1, one natural motivation for models with multiple timescales

is speech analysis. Individual phonetic units, such as phonemes, have internal dynami-

cal structure that can be modeled by an HMM with Gaussian emissions [58, 68]. At the

same time, it is desirable to model the dynamical patterns among the phonemes them-

selves. The model and inference algorithms developed in this chapter can be applied

to capture these two timescales of dynamics. Furthermore, by utilizing both explicit

duration modeling and a Bayesian approach we can easily incorporate informative prior

knowledge and encourage the model to learn interpretable representations.

Similar models have been applied successfully to tasks in speech analysis. In partic-

ular, Lee and Glass [68] develop a Bayesian nonparametric approach in which phonetic

units are each modeled as fixed-size HMMs and the number of such units is discov-

ered using a Dirichlet process mixture. The authors show that the discovered phonetic

units are highly correlated with English phones and that the model can be used for
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some speech tasks to achieve state-of-the-art performance relative to other unsuper-

vised methods. Our model can be viewed as a refinement of this approach in two ways:

first, our model admits explicit phonetic unit duration and transition modeling, and

second, the inference algorithms we develop allow our model and similar models to be

fit to large datasets much more e�ciently. Indeed, our algorithms allow such models to

be fit in minutes or hours of computation time instead of days or weeks.

In this section we describe an application of our models and algorithms to semi-

supervised phonetic unit modeling based on the approach of Lee and Glass [68]. In

particular, we demonstrate the advantages of using explicit duration priors, of modeling

dynamics within phonetic units, and of using scalable inference algorithms.

The remainder of this section is organized as follows. In Section 6.6.1 we describe

the dataset and features we use to train and evaluate the model. In Section 6.6.2 we

describe a general approach to set the hyperparameters for informative duration priors.

Finally, in Section 6.6.3 we describe our training procedure and experimental results.

⌅ 6.6.1 Dataset and features

Our setup follows Lee and Glass [68] closely. We use the TIMIT dataset, which consists

of recordings of 630 speakers each reading 10 sentences, for a total of 6300 example

sequences. We process these recordings into 13-dimensional MFCC features [21] using

sliding windows of width 25ms spaced every 10ms. We concatenate the MFCCs with

their first- and second-order numerical time derivatives to form a 39-dimensional fea-

ture vector. We also center and whiten these features to have zero mean and identity

covariance.

The resulting dataset contains 6300 sequences of 39-dimensional features, where the

sequence lengths vary from 90 to 777 with an average length of 305. See Figure 6.2 for

a histogram of sequence lengths. The total number of features is 1,925,362 frames.

In addition, we follow Lee and Glass [68] and use the changepoint detector of Glass

[41] to accelerate our training algorithm. We include these detected possible change-

points while training our model to reduce the complexity of the message passing compu-

tation using the methods developed for the energy disaggregation application of Chap-

ter 3. See Figure 6.3 for a typical set of examples showing the detected changepoints

and the true changepoints.

The TIMIT dataset is also fully expert-labeled with phonetic units, and we make

use of a small subset of these labels to set our priors and initialize our fitting procedure,

as we describe in the subsequent sections.
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Figure 6.2: Histogram of TIMIT sequence lengths.

Figure 6.3: Detected possible changepoints

⌅ 6.6.2 Setting informative duration priors

We wish to use informative duration priors to encourage the model to learn interpretable

phonetic units. In this subsection we describe a general method for setting duration

hyperparameters.

Phonetic units have durations that are well-modeled by negative binomial distribu-

tions; see Figure 6.4(a) for typical phonetic unit duration distributions from the labels

in the TIMIT dataset. Recall from Chapter 4 that a negative binomial distribution has

parameters (r, p), where r 2 {1, 2, . . . , rmax} and 0 < p < 1. We use priors of the form
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(a) Ground-truth durations (b) Prior samples

Figure 6.4: Phonetic unit durations in the labeled dataset and informative priors set
using the method of Section 6.6.2

p(r, p) = p(r)p(p|r) where

p(r = j|⌫) = ⌫j p(p|r = j) = Beta(aj , bj) (6.6.1)

where (⌫j , aj , bj) for j = 1, 2, . . . , rmax are the hyperparameters we wish to determine

from labeled examples.

A natural way to set hyperparameters is via empirical Bayes [38], in which one

chooses hyperparameters to maximize the likelihood of an observed training set. While

we have no training set of (r, p) parameter pairs available for such a procedure, we

can simulate an appropriate set of parameters by using the Gibbs sampling procedure

developed in Section 4.4.2 and some labeled durations. Using a set of durations {di}Si=1

drawn from the expert labels in the TIMIT dataset, we collect samples of (r, p) pairs

from p(r, p|{di}, ⌫0, a0, b0), where ⌫0
j = 1

r
max

and a0j = b0j = 1 for j = 1, 2, . . . , rmax

are chosen to be non-informative. Using these simulated samples {(r̂k, p̂k)}Kk=1, we

then choose hyperparameters via maximum likelihood. We choose S, the number of

duration examples used to set the hyperparameters, to correspond to 2.5% of the labeled

examples, and we set K, the number of simulated samples, to be equal to S.

See Figure 6.4(b) for samples drawn from this prior. By comparing these duration

distribution samples to the histograms in Figure 6.4(a), it is clear that the prior sum-

marizes the empirical distribution over typical phoneme duration means and variances

well. In addition, the negative binomial duration distribution class is able to represent

the empirical phoneme duration distributions, which look substantially di↵erent from

the geometric durations to which we would be restricted with a purely HMM-based

approach.
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Table 6.1: Fit times and per-frame predictive likelihoods

Sub-HMM Sub-GMM HDP-HMM
Pred. Like. (nats) -44.046 -47.599 -47.940

Fit Time (min.) 110 67 10

⌅ 6.6.3 Experimental procedure and results

In this subsection we fit three alternative models, two of which are developed in this

thesis, and compare their performance both at prediction and on a phonetic unit seg-

mentation task. First, we fit the nonparametric model developed in this chapter, which

we refer to as the HDP-HSMM Sub-HMM model. Second, we fit an HDP-HSMM with

Gaussian mixture model (GMM) emissions, which we refer to as the HDP-HSMM Sub-

GMM model. This second model is di↵erent from the first only in that by using GMM

emissions instead of sub-HMM emissions, the internal structure of the phonetic units

is not modeled. Finally, we fit an HDP-HMM for comparison. The HDP-HMM does

not include the duration prior that the other two models can incorporate. Each model

has 39-dimensional Gaussian emission distributions, with Normal Inverse-Wishart pri-

ors with hyperparameters set as µ0 = 0, ⌃0 = I, 0 = 0.5, and ⌫0 = 45. For each of

the three models, we are able to scale e�cient inference to this large dataset using the

algorithms developed in this chapter and in Chapter 5, allowing the models to be fit

orders of magnitude faster than previous methods.

Often in speech analysis there is an abundance of unlabeled data but only a very

limited amount of labeled data. In such settings, labeled data is used to set priors and

initializations, while an unsupervised inference procedure is used with the large amount

of unlabeled data. Accordingly, we use the labels from 2.5% of the full dataset to set our

prior hyperparameters using Gibbs sampling. We also use this small subset of labeled

data to initialize our inference procedure. We perform inference over the unlabeled data

in a single pass over the dataset using a minibatch size of 50 sequences and a stepsize

sequence ⇢(t) = (t + ⌧)� where we chose ⌧ = 0 and  = 0.6.

Table 6.1 summarizes both the fitting runtimes and the predictive performance of

each model. We measure predictive performance by computing the per-frame predictive

likelihood on 20 held-out sequences, where a larger value indicates a higher average

likelihood assigned to each held-out frame and hence better predictions. The per-frame

predictive likelihoods are very similar, indicating that the alternative models perform

comparably well on predictive measures. However, their predictive performance does

not give any insight into the interpretability of the latent structure learned, which we

discuss next.

To evaluate the quality and interpretability of the learned latent parameters, we
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Table 6.2: Error rates for the segmentation task

Sub-HMM Sub-GMM HDP-HMM
Missed Detections 22.0 21.9 24

False Positives 31.9 35.0 59.8

consider a segmentation task similar to the one considered by Lee and Glass [68]. On

the 20 held-out sequences and using no changepoint information from the changepoint

detector, we compute the optimal variational factor over the label sequence (or state

sequence in the case of the HDP-HMM) and then perform a Viterbi decoding to find the

most probable joint assignment according to that variational factor. Finding this most

probable label sequence (or state sequence) assignment evaluates each model’s ability

to discover modes that correspond to phonemes, where the HDP-HMM is unable to

distinguish the dynamics at multiple timescales present in the data. We then compare

the changepoints in the Viterbi sequence to the true changepoints and measure both

the missed detection and false positive error rates. Following Lee and Glass [68] and

Scharenborg et al. [100], we allow a 20ms tolerance window to compute detections.

We summarize the segmentation performance of the three models in Table 6.2.

We find that both of the models which include explicit duration modeling perform

significantly better than the HDP-HMM at both missed detection and false positive

error rates. In addition, we find that modeling the dynamics within each phonetic unit

with the Sub-HMM model further reduces the false positive rate. The HDP-HMM,

which cannot separate timescales because it lacks explicit duration modeling, tends to

over-segment relative to the intended phonetic unit segmentation, leading to a very high

false positive error rate. The Sub-HMM changepoints also perform well qualitatively;

in Figure 6.5 we show 5 typical examples of the changepoints detected by each model.

These experiments demonstrate advantages of both our algorithms and our models.

With our SVI algorithms we are able to perform inference in a single pass over the

dataset in the time it would require to compute a single Gibbs sampling or batch mean

field update. Thus our algorithms allow inference in each of these models to scale to

large datasets e�ciently, reducing the computation time by orders of magnitude and

enabling even larger datasets to be explored. By comparing three related models, we

also show that explicit duration modeling provides a significant boost to segmentation

performance, with the Sub-HMM model refinement providing a further increase in per-

formance. These models and algorithms may provide new tools for speech researchers

to analyze detailed structure while imposing model regularities with interpretable prior

information.



138 CHAPTER 6. SCALABLE INFERENCE WITH MULTIPLE TIMESCALES

(a) Detected by the Sub-HMM model

(b) Detected by the Sub-GMM model

(c) Detected by the HDP-HMM model

Figure 6.5: Phonetic unit boundaries detected by the three models.



Sec. 6.7. Conclusion 139

⌅ 6.7 Conclusion

This chapter composes the ideas of Chapters 3, 4, and 5 to develop both new models and

new e�cient and scalable algorithms. In particular, it shows that the ideas developed

in this thesis can be readily extended. The flexible Bayesian nonparametric approach

to modeling dynamics at multiple timescales may provide new insights into complex

phenomena, and the algorithms we develop enable such rich models to be fit to large

enough datasets. Finally, our speech application shows the promise and potential utility

of explicit duration modeling in a Bayesian framework, both for performance and for

interpretability.


